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 ABSTRACT 
Background Metabolites in plasma form biosignatures of a range of common complex human diseases. Mapping the genetic 
architecture and discovering variants with pleiotropic effects across metabolites can reveal underlying mechanisms and 
potential targets for personalized interventions. 
Methods We performed univariate and multivariate genome-wide association studies (GWAS) on the Nightingale panel of 
249 circulating plasma metabolic markers, across 207,836 White British UK Biobank participants (mean age 57.4 years, 
53.7% female), with replication conducted across 27,509 UK Biobank participants with different ancestries, and 92,661 
Estonian Biobank participants (mean age 50.9 years, 65.7% female). We investigated rare variation through whole exome 
sequencing gene burden tests, quantified genetic architectures through Gaussian mixture modelling, analysed the causal role 
of body mass index (BMI) through Mendelian randomization, and performed genome-wide interaction analyses with sex. 
Results We discovered 14,837 loci (497 unique), with shared and distinct effects on cardiometabolic traits, with high 
replication rates across populations. The loci explained over 70% of genetic variance for fatty acids. Findings from common 
and rare variant gene tests converged on lipid homeostasis pathways. There was strong evidence for causal effects of BMI 
on cholesterol and amino acid levels. We discovered 31 loci interacting with sex, which mapped to genes involved in 
cholesterol processing, and to cardiometabolic conditions with sex differences in prevalence. 
Discussion The findings offer new insights into the genetic architecture of circulating metabolites, revealing novel loci and 
plausible sex-specific molecular mechanisms of lipid metabolism. This improved understanding of the molecular biology of 
metabolism lays a foundation for personalized prevention and treatment strategies.    
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Small molecules abundant in plasma, including 
lipoproteins, fatty acids, amino acids, and ketone 
bodies, are part of metabolic processes essential for 
human health. Reliable quantification of absolute 
concentrations of metabolites can now be achieved 
through high-throughput nuclear magnetic resonance 
(NMR) spectroscopy.1 Metabolomics data in large 
population samples such as the UK Biobank (UKB), 
coupled to national health records, has allowed 

researchers to identify numerous associations between 
patterns of metabolite concentrations and a wide range 
of common medical conditions.2 These metabolites 
hold potential for precision medicine as they have 
been shown to predict long term outcomes,3 and could 
aid in combatting key public health issues, including 
the adverse effects of the worldwide obesity 
epidemic.4 
Charting the pleiotropic genetic architecture of 
metabolic biomarkers, through the effects of common 
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and rare variants, is key to understanding 
interindividual differences in metabolic processes. 
Genome-wide association studies (GWAS) of 
metabolomics data have confirmed there is a 
substantial genetic component to these metabolite 
concentrations and have identified dozens of common 
variants associated with individual metabolites.5 The 
sets of metabolites included in metabolomics panels 
are strongly genetically correlated to each other;6 joint 
analysis through a multivariate approach may aid in 
discovery of variants with widespread effects by 
leveraging shared genetic signal across the 
metabolites.7 Additionally, characterizing the 
influence of rare variants on metabolites through 
whole exome sequencing (WES) data complements 
GWAS efforts, as rare variants are likely to be 
particularly impactful and point towards promising 
drug targets.8,9 

Obesity and sex are likely important moderators of 
the relation between an individual’s genetic make-up 
and metabolic health. As obesity and its downstream 
medical conditions co-occur with changes in 
metabolite concentrations;10 disentangling the causal 
role of obesity in determining these levels can aid in 
devising treatment strategies. Biological sex is a 
further important determinant of metabolic 
activity,11 yet there is little knowledge about sex-
dependent genetic influences. Males and females 
differ substantially in basal metabolic activity, as 
well as in their propensity to develop prominent 
metabolic conditions, such as obesity, coronary 
artery disease (CAD) and type 2 diabetes (T2D).12 
Previous studies have shown that there is a genetic 
basis for sex differences in metabolism, beyond the 
impact of gonadal hormones.13  

Here, we take advantage of the latest generation of 
targeted metabolomics technology available in the 
UKB and Estonian Biobank (EstBB), to perform the 

largest GWAS to date of circulating metabolic traits, 
leveraging NMR spectroscopy data from over 300,000 
individuals. We employ a multivariate approach to 
boost discovery of variants with widespread shared 
effects across metabolites. We additionally perform 
novel quantification of the global genetic architecture 
and incorporate WES data, to expand on knowledge 
about the impact of both common and rare variants. 
Lastly, we identify widespread sex-specific effects 
and estimate the influence of obesity (indexed by 
BMI) to provide a clinically relevant risk scenario as a 
foundation for precision medicine approaches. 
Results 
We conducted GWAS of 249 circulating metabolites 
from the Nightingale NMR metabolomic platform, 
charting their shared and specific genetic architectures. 
This panel encompasses 228 lipids, lipoproteins and 
fatty acids, and 21 non-lipids, including amino acids, 
ketone bodies, fluid balance, glycolysis- and 
inflammation-related metabolites. See Supplementary 
Table 1 for an overview of these circulating 
metabolites, their categories, and sample sizes. For the 
main analyses we used data from UKB, including 
207,836 White British participants, with a mean age of 
57.4 years (standard deviation (SD) 8.0 years), 53.7% 
female. Additionally, there were data on 27,509 non-
White British UKB participants, with a mean age of 
54.5 years (SD=8.4 years), 54.3% female. From EstBB, 
we included 92,661 unrelated White European 
participants, with a mean age of 50.9 years (SD=16.2 
years), 65.7% female, which we used to test for 
generalization of the discovered loci across different 
populations. For each of these subsets, identical 
analyses were carried out, covarying for age, sex, and 
the first twenty genetic principal components to control 
for population stratification.14 

Global genetic architecture 

Figure 1. Required sample sizes to uncover the genetic architecture of metabolite concentrations. Illustration of the relationship between genetic variance 
explained by genome-wide significant hits (y-axis) and sample size (x-axis) for 37 clinically validated metabolites, ordered from most to least explained 
variance in the table next to the plot. Colours indicate metabolite category, as outlined in the legend. The vertical dashed line marks the current sample size. 
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We first determined the SNP-based heritability, h2, of 
the metabolites through LD score regression (LDSC). 
We also estimated the polygenicity and average 
magnitude of non-null effects (‘discoverability’) by 
fitting a Gaussian mixture model of null and non-null 
effects to the univariate GWAS summary statistics 
using MiXeR.15,16 Overall, the output showed that the 
metabolites vary widely in their global genetic 
architecture; h2 ranged from .02 (acetoacetate, standard 
error (SE)=.002) to .21 (triglycerides to total lipids in 
very large HDL, SE=.001), all p-values < 1.1*10-21. 
Polygenicity estimates spread across two orders of 
magnitude, from oligogenic (phenylalanine with an 
estimated 17 causal variants) to moderately polygenic 
(creatinine with an estimated 1529 causal variants). 
Similarly, discoverability ranged from 1.2*10-4 
(lactate) to 2.4*10-3 (omega-3%). Heritability was 
driven by polygenicity (Spearman correlation, ρ, =.56, 
p<1*10-16), not by discoverability (ρ=-.11, p=.08), and 
there was a strong negative relation between 
polygenicity and discoverability (ρ=-.81, p<1*10-16), 
similar to other biological measures.17 Figure 1 depicts 
the estimated proportion of h2 explained by genome-
wide significant variants as a function of sample size, 
for 37  metabolites validated for clinical use.1 This 
shows that, for some metabolic markers, the GWAS is 
approaching saturation; over 70% of genetic variance 
is explained by discovered variants at the current 
sample size for omega-3 and omega-6 fatty acid 
concentrations. These results further showed that the 
genetic architecture varies by metabolite category; lipid 
levels have a relatively simple architecture while levels 
of glycolysis- and fluid balance-related metabolites are 
more complex. All estimates, for each of the 249 
metabolites, are listed in Supplementary Table 1.   
 
Univariate GWAS 
We estimated the effective number of independent 
traits in our analyses to be 96, based on matrix spectral 
decomposition18 of the phenotypic correlation between 
all 249 metabolite concentrations. We therefore set the 
univariate GWAS significance threshold at p=5*10-

8/96=5.2*10-10. The GWAS of all individual 249 
metabolites revealed  497 unique loci loci surpassing 
the significance threshold. There was a median of 61 
loci discovered per metabolite (range 8 to 97). When 
aggregated, there was a total of 14,873 unique loci, as 
shown in Figure 2, suggesting high numbers of shared 
genetic variants across the metabolites. In line with the 
differences in estimated discoverability, the number of 
loci discovered for lipid measures was more than 
double that for non-lipid measures, as displayed in 
Supplementary Figure 1. Supplementary Table 1 
further lists the number of significant loci and lead 
SNPs for each of the 249 metabolites. 

We checked replication of the locus discovery in the 
non-White British UKB subset and the White EstBB 
cohort. We found that 94.9% of all 14,873 
discovered locus lead variants showed the same 
direction of effects in the additional UKB subset 
(n=27,509 individuals), and 56.4% were nominally 
significant. For the larger EstBB replication set 
(n=92,645 individuals), the concordance rate was 
99.0% for the 11,386 available locus lead variants, 
and 92.2% were nominally significant. Thus, our 
results suggest cross-population generalization of 
the discovered genetic associations. Supplementary 
Figure 1 shows the relationship between the number 
of discovered loci in UKB and replicated loci in 
EstBB, per metabolite. Supplementary Table 2 lists 
information on all discovered loci per metabolite, 
including the replication p-values, and all Manhattan 
plots are provided in Supplementary Figure 2.  

Multivariate GWAS  

Genetic variants are likely to have distributed effects 
across the metabolites, given these metabolites are 
correlated components of the same biological system, as 
also indicated by the univariate GWAS findings. We 
therefore jointly analysed all measures with the 
Multivariate Omnibus Statistical Test (MOSTest),7 
which prioritizes the identification of pleiotropic variants 
by leveraging shared genetic signal across the univariate 
measures, yielding a multivariate association with each 
genetic variant.  

For the primary sample, MOSTest revealed 12,216 
independent significant SNPs and 2,690 lead SNPs 
across all metabolites, for a total of 534 loci covering 
8.3% of the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Effect sizes for discovered loci for individual metabolites. 
Scatterplot displaying the effect sizes (y-axis) of all 14,873 locus lead SNPs 
identified through univariate GWAS of 249 metabolites, ordered by their 
minor allele frequency (x-axis) and colour coded by metabolite category. 
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genome, see Figure 3a. The lead SNPs of 96 of these loci 
did not show genome-wide significant effects on any of the 
individual metabolites, i.e. they were detected only through 
MOSTest due to their distributed signal across the 
metabolites. Supplementary Figure 3 summarizes the 
significance of the locus lead SNPs across all metabolites, 
illustrating the pervasive pleiotropy of most discovered 
variants. Indeed, 48 of these SNPs showed a genome-wide 
significant association with more than 100 metabolites, as 
summarized in Supplementary Table 3.  

We further compared the findings to the previously largest 
GWAS of 233 metabolites of the Nightingale metabolomics 
panel, which identified 276 genomic regions across 136,016 
participants and did not include UKB in the discovery 
sample.19 This comparison showed that 274 of these 276 
regions overlap with the MOSTest-discovered loci, while 
MOSTest uncovered another 260 loci not reported in this 
previous GWAS. 

We performed phenome-wide association studies (pheWAS) 
of each of the 534 loci identified through MOSTest, querying 
GWAS Catalog and FinnGen GWAS summary statistics 
through the ‘otargen’ R package, leveraging the 
OpenTargets ‘diseases’ categorization in order to determine 
clinical relevance.20 There were a total of 9,816 significant 
associations (p<.005), with 1545 reported traits across 1,621 
studies. The results, fully listed in Supplementary Table 4, 
are summarized in Figure 3b. This shows that many of the 
discovered variants are associated with cardiovascular 
diseases, as expected. Notably, the nervous system disease 
category (encompassing psychiatric and neurological 
diseases) ranks high in this list, among more outright 
cardiometabolic conditions, fitting with mounting evidence 
of the importance of metabolic dysfunction in these 
conditions.21  

Gene-based analyses 

To gain biological insights, we employed several 
complementary approaches to gene identification. First, 
we applied a combination of PolyFun and FINEMAP, 
Bayesian fine-mapping procedures bundled in the 
SAFFARI pipeline,22 to each of the univariate GWAS 
summary statistics, retaining 2,625 variants with a 
posterior probability >.95 as a credible set. We then 
mapped these variants to 2,493 protein-coding genes 
using OpenTargets.23 Supplementary Table 5 lists the 
results from fine-mapping in more details, including all 
mapped genes and their coupling to individual 
metabolites. 

Next, we ran SKAT-O24 gene burden tests on WES data 
restricted to intragenic variants with MAF <.005, to 
characterize the impact of rare exonic variation on 
metabolites. There were 335 protein-coding genes with a 
multiple comparison-corrected significant burden 
(p<.05/(96 independent traits * 17,849 total protein-
coding genes), see Supplementary Table 6.  

Figure 4 lists the top genes identified through burden tests, 
based on the number of associations with individual 
metabolites, split by metabolite category. This showcases 
the widespread impact of apolipoprotein genes, well-
known for their association with obesity and Alzheimer’s 
disease, on these metabolites. We used the DGIdb 
(v5.0.6)25 to identify drug-gene interactions among the 338 
genes, showing that 128 genes were interacting with a total 
number of 1,244 drugs. Many of these are anti-
inflammatory, anti-hypercholesterolaemic, or anti-
hypertensive, in addition to multiple anti-depressants and 
anti-psychotics. We performed GSEA to test if the 338 
genes were enriched for drug target genes of specific drugs, 
showing significant (FDR<0.05) enrichment for targets of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Discovery of pleiotropic 
variants and their relationship to 
disease. a) Manhattan plot of the 
output of the multivariate GWAS 
(MOSTest) on all 249 metabolites, 
with the observed -log10(p) for each 
variant shown on the y-axis. The x-
axis shows the relative genomic 
location, grouped by chromosome, 
and the red dashed line indicates the 
genome-wide significance threshold 
of 5x10-8. The colour coding 
represents the number of genome-
wide significant associations of 
each variant with metabolites at the 
univariate level, ranging from 0 (in 
black) to 214 (in red), illustrating 
the extent of pleiotropy. b) Bar plot 
of findings from the phenome-wide 
association study, coupling the 534 
MOSTest-identified lead SNPs to 
published GWAS of medical 
conditions. On the x-axis are the 
number of significant associations, 
and on the y-axis the categories of 
diseases as compiled by 
OpenTargets. 
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nine drugs. These include three lipid-lowering agents, three 
antibacterial drugs, a drug used to treat leukemia, an 
anticonvulsant, and a platelet aggregation inhibitor 
(Supplementary Table 7). 

Next, we applied MAGMA to each of the univariate GWAS 
summary statistics, aggregating across all common variants 
within the same 17,849 genes. Tests of tissue-specificity, 
covarying for mean expression across all tissues, revealed 
differential expression in the liver for nearly all metabolites 
(243 out of 249), in line with its central role in metabolism of 
both lipids and amino acids. Differential expression of gene-
sets in other tissues was more specific to a metabolite category, 
as can be seen for the spleen, summarized in Figure 5a. 
Competitive gene-set analysis for each individual metabolite 
GWAS, testing for 7,522 Gene Ontology (GO) biological 
processes, primarily uncovered associations with lipoprotein 
particle modification, organization, and homeostasis, see 
Figure 5b. Supplementary Table 8 contains the complete 
results of the gene-set analyses for each individual metabolite. 

We further applied MAGMA to the multivariate GWAS 
summary statistics as well, identifying particularly pleiotropic 
genes. This allowed us to compare the gene-level association 
of pleiotropic, common and rare variation with the 
metabolites. We identified 2,590 multiple-comparisons-
corrected significant protein-coding genes through the 
multivariate approach compared to 1,921 through the 
univariate approach and 335 through the WES burden tests. 
See Figure 5c for overlapping and unique components of the 
identified sets of genes through these different approaches. 
Supplementary Table 9 lists all identified genes per gene-
based test. The unique and shared sets of genes were coupled 
to the GWAS Catalog through hypergeometric tests, with 
results summarized in Supplementary Table 10.  

 

Analyses of sex and BMI 

Given sex and BMI have been associated with substantial 
interindividual variation in metabolic activity,10,11 we next 
investigated the phenotypic and genetic relation of these 
individual determinants with the metabolites. First, we 
conducted linear regression analyses, regressing each 
metabolite onto sex, BMI, sex*BMI, and age. These 
models produced highly significant associations with sex, 
BMI, and their interaction across nearly all metabolites, as 
summarized in Supplementary Table 11. Notably, there 
was a very high correlation between the coefficients of sex 
and BMI (r=.87, p=4.1*10-79), indicating that these factors 
share mechanisms that in turn impact metabolites. This 
underlines the need for sex-specific research into 
metabolic health.    

Sex-specific genetic influences 

We first ran univariate GWAS within both sexes 
separately, to compare the overall genetic architecture 
between men and women. Through paired t-tests applied 
to sex-specific LDSC heritability estimates, we found that 
the mean h2 was significantly higher for women than for 
men (h2=.148 vs. .132, t=12.8, p<1*10-16). Men’s h2 was 
still higher than that of the overall GWAS (h2=.132 vs. 
.128, t=7.5, p=9*10-13), suggesting heritability estimates 
may be lowered by combining two subsamples (men and 

 

Figure 4. Genes most widely associated with metabolites based on rare 
variants. Stacked bar plot showing the number of significant associations 
(x-axis) with genes identified through whole-exome sequencing-based 
gene burden tests (y-axis), coloured by metabolite category.  

 

Figure 5. Functional annotation of gene-based tests. a) Stacked bar plot 
summarizing the output of tests of tissue-specific gene expression, with the 
top 15 tissues on the x-axis. b) Competitive gene-set analysis of Gene 
Ontology biological processes, with top 15 pathways listed on the x-axis. 
For both plots, the number of significant associations with metabolites is 
shown on the y-axis and the colours indicate metabolite categories. c) 
Venn diagram of the number of genes identified through gene-based tests 
of the multivariate GWAS (MOSTest), univariate GWAS and rare variant 
WES data. 
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women) with differing genetic influences. We further 
calculated genetic correlations between the two sets of 
sex-specific GWAS and found that these ranged between 
.85 and 1. While these correlations were high, the majority 
differed significantly from 1, as reported in 
Supplementary Table 12.  

Given the identification of sex-specific genetic 
components through LDSC, we ran multivariate GWAS 
with an interaction term between sex and each genetic 
variant, to discover individual variants with sex-specific 
effects. We found 31 loci with a genome-wide significant 
interaction effect, see Figure 6a. Follow-up in the 
univariate summary statistics showed that the interaction 
effects were often present for numerous metabolites, with 
one interaction effect (rs1065853, APOE) being genome-
wide significant across 110 metabolites. Figure 6b 
provides an example of univariate cross-over interaction 
effect between sex and the rs1065853 genetic variant on 
lipid levels, with no significant main effect of this SNP. 
Figure 6c shows another significant sex*gene variant 
interaction effect of rs964184 (ZPR1), a known risk factor 
for metabolic syndrome and CAD,26,27 which appears to 
only influence cholesterol levels in females. In total, there 
were 496 univariate genome-wide significant interactions.  

The concordance rate was 90.7% in the non-White UKB 
subset, with 268 out of the 496 lead variants being 
nominal significant (54.0%). In EstBB, the concordance 
rate was 99.3%, and 113 out of 158 (71.5%) of the 
available lead variants was nominally significant. The lists 
of all multivariate and univariate loci with significant 
interactions are provided in Supplementary Table 13. 

 Functional annotation of 29 genes mapped to the 31 
MOSTest-identified locus lead variants through 
OpenTargets revealed tissue-specific upregulation in 
kidney, liver, and heart tissues based on GTEx v8 data, 
and enrichment for GO pathways involved primarily in 

cholesterol regulation. Coupling these 29 genes to the 
GWAS Catalog showed enrichment among gene lists 
reported for metabolic syndrome, CAD, T2D, and 
steatotic liver disease, which are well-known for having 
sex differences in prevalence and etiology.12. 

Next, to estimate the causal nature of the identified 
relationships between BMI and metabolites, we ran 
bidirectional two-sample Mendelian randomization 
(MR), combining inverse variance weighted MR with the 
weighted median approach. There were no instances 
where the metabolites had a significant causal effect on 
BMI consistently across the different MR methods. BMI 
had a multiple comparisons-corrected significant causal 
effect on 79 metabolites, consistent across both MR 
methods, with strong negative effects on HDL 
cholesterol metabolites and positive effects on several of 
the amino acids, as summarized in Figure 7. When 
further thresholded by the MR Egger approach, the 
causal effect of BMI on only six metabolites remained: 
albumin, phenylalanine, average diameter for LDL 
particles, cholesterol % in small LDL, tyrosine, and 
valine. 

Sensitivity analyses  

We ran two sets of variations on the primary GWAS, to 
investigate the role of medication and of the 
preprocessing pipeline. First, we re-ran the primary 
GWAS controlling for insulin, blood pressure, and 
cholesterol-lowering medication. Second, we re-ran 
without the ‘ukbnmr’ pre-processing pipeline, directly on 
the originally released metabolomics data. For both 
variations, the produced summary statistics were highly 
comparable with the primary GWAS, with median 
genetic correlations of .992 and .998 across the 
metabolites, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Genome-wide 
interactions between sex and 
genetic variants. a) Manhattan 
plot of the multivariate GWAS 
with an interaction term with sex 
on all 249 metabolites, with the 
observed -log10(p) of each 
interaction shown on the y-axis. 
The x-axis shows the relative 
genomic location, grouped by 
chromosome, and the red dashed 
line indicates the genome-wide 
significance threshold of 5x10-8. 
The y-axis is clipped at -
log10(p)=150. b) Illustration of 
an identified significant cross-
over interaction between sex and 
rs1065853 on chromosome 19, 
showing opposite effects on 
phospholipid concentrations (y-
axis) in men and women (x-axis). 
c) An interaction effect of 
rs964184 on chromosome 11, 
illustrating effects on VLDL 
cholesterol concentrations only 
in women.  
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 Discussion 

Here, we reported results from a large-scale GWAS of 
circulating metabolite concentrations. This led to the 
identification of the largest number of discovered genetic 
determinants across these metabolites to date, mapped to 
genes with roles in lipid homeostasis. Our findings 
emphasized the pervasive pleiotropy across metabolic 
measures, with a sizeable role for rare variants. We further 
identified the causal effect of BMI on metabolites, 
indicating obesity as a primary target for improving 
metabolic health. Last, we discovered novel, sex-specific 
genetic effects on metabolite concentrations, which may 
explain the substantial sex differences in metabolic health. 

 Locus discovery was high, in line with the 
estimated genetic architecture. The complementary 
univariate and multivariate GWAS approaches employed 
in this study particularly emphasized the pervasive 
pleiotropy across the set of included metabolites, in 
accordance with previous findings.6 Joint analyses of 
these interrelated measures are essential to boost 
discovery of variants with small, yet distributed effects. 
The clinical relevance of this discovery is underscored by 
the results of the pheWAS analyses, showing the 
association of many of these pleiotropic variants with 
medical conditions across domains. This likely 
contributes to the extensive comorbidity across complex 
medical conditions with a cardiometabolic 
component,28,29 which is an important determinant of 
clinical outcomes.29,30  

The gene-based analyses illustrated the relative 
contributions of common and rare variation, with 
extensive pleiotropy, to determining metabolite levels. 
The WES gene burden tests, aggregating across rare 
variants, identified 335 genes with widespread 
associations across both lipid and non-lipid metabolite 
categories. Among the most pleiotropic were 
apolipoprotein genes, well-known for their involvement 
in diabetes and CAD as well as in brain disorders.31 
Particularly notable in this context is the identification of 

BACE1 on chromosome 11 among the most influenced 
genes, the protein product of which is central to the 
generation of amyloid-B peptides in neurons and a key 
enzyme in the pathophysiology of AD.32 Overall, this rare 
variant data confirms the presence of impactful rare 
variants with high potential for druggability, as confirmed 
by the coupling to DGIdb. The generated data on the 
specificity of these genetic effects on metabolites is 
important information for research into comorbidities and 
for predicting utility as a biomarker and drug target.  

The findings of the gene-by-sex interaction analyses 
underscore the substantial differences between males and 
females in metabolism.11 This is likely to be a strong 
explanatory factor of sex differences in the prevalence of 
a wide array of cardiometabolic conditions,12 advocating 
for the investigation of sex-specific mechanisms. The 
notoriously low power of interaction effects33 is 
counteracted by our multivariate approach. MOSTest is 
insensitive to differences in the directions of these 
interactions across the univariate measures, which would 
hamper other approaches to aggregation across measures. 
The identification of the widespread sex-dependent 
effects of rs1065853 showcases the potential of these 
interaction terms to identify variants that explain 
interindividual variation beyond their main effects. This 
SNP, located in a known enhancer of APOE, is well 
known for its association with numerous metabolic and 
clinical outcomes, including AD and CAD.34,35 The 
identification of such non-linear effects represent a new 
frontier in genomics, which needs to be explored in order 
to further resolve interindividual heterogeneity. Our 
findings particularly suggest value of additional sex-
specific research into obesity and metabolic health. 

The MR analyses provided evidence for the causal effect 
of BMI, as a proxy of obesity, on circulating metabolic 
biomarkers, emphasizing the importance of obesity as a 
primary target for treatment of cardiometabolic 
conditions. In accordance with previous findings in 
smaller samples, we  show that BMI has a significant 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Causal influences 
of BMI on the metabolites. 
Plot listing coefficients from 
Mendelian Randomization 
(MR) analyses on the x-axis, 
and the 79 different 
metabolites that showed a 
significant influence of BMI 
on the y-axis. The dots and 
lines represent the point 
estimates with their 
standard errors, colour-
coded by the MR method 
used, grouped by metabolite 
category, as specified in the 
legend above. The red stars 
indicate the 6 six 
metabolites that also show a 
significant causal effect of 
BMI using the MR-Egger 
method. 
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causal effect on levels of metabolites,36 while there was 
no evidence of effects of metabolites on BMI. Obesity 
therefore appears to drive changes in metabolites, which 
may then cause complications.37 Robustness analyses, 
sensitive to violations of MR assumptions,38 did 
substantially reduce the number of causal relationships 
identified. This suggests a sizeable role for pleiotropic 
effects complicating the relationship between genetically 
mediated obesity and metabolite levels, particularly the 
lipid-related measures, in line with our GWAS findings. 
It speaks, for instance, to the complex role of the GLP-1 
secretory system, currently hailed as a highly promising 
therapeutic target for treatment of obesity,39 with 
divergent findings across both human and animal 
studies.40 A better understanding of the role of genetic 
susceptibility and sources of interindividual variation is 
needed to optimize individual outcomes. 

Strengths of this study are the large sample size and the 
use of high quality, accurately measured metabolomics 
data. We further combined the study of individual 
metabolites with a multivariate approach to genetic 
discovery and inclusion of WES data, allowing for greater 
insight into the overall genetic architecture of metabolism. 
This study included two replication samples with varying 
genetic ancestry, enabling estimation of generalization of 
the findings. However, given known ethnic differences in 
the association between obesity and metabolic conditions 
such as T2D,41 the role of ethnicity should be investigated 
in further detail. It should also be noted that the data 
collection was not done under fasting conditions, which 
has been shown to obscure associations between genetic 
variation and metabolites.19  

To conclude, metabolic health is central to the most 
prevalent and impactful medical conditions in our society, 
indicating a strong need for new therapeutic targets. 
Knowledge about causal individual-level determinants is 
central to develop effective strategies that optimally treat 
the individual. Here, we showed that accurate NMR-
derived circulating metabolite concentrations share 
genetic influences that can be leveraged to boost 
discovery of pleiotropic variants of high relevance for 
cardiometabolic diseases. The summary statistics made 
freely available can be used by follow-up studies to 
further enhance our understanding of metabolism and 
related diseases, identify potential drug targets for these 
diseases, and contribute to the development of precision 
medicine by identifying individual-level determinants. 
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Methods 

Participants 

For the UKB, we obtained data under accession number 
27412. The composition, set-up, and data gathering 
protocols of the UKB have been extensively described 
elsewhere.42 It has received ethics approval from the 
National Health Service National Research Ethics Service 
(ref 11/NW/0382), and obtained informed consent from 
its participants. For the primary analyses, we selected 
unrelated White Europeans (KING cut-off 0.05)43 that had 
the Nightingale metabolomics data, as well as genetic and 
complete covariate data available (N=207 836, mean age 
57.4 years (SD=8.0), 53.7 % female). BMI was taken from 
UKB field 21001, with a mean of 27.4 (SD=4.8).  For the 
generalization analyses, we made use of data from non-
White European UKB participants (N=27 509, mean age 
54.5 years (SD=8.4), 54.3 % female). Ethnicity was based 
on self-report confirmed by genetics (UKB field 22006).  

EstBB is a volunteer-based biobank composed of 
~213,000 individuals with data available on genotype, 
phenotype and electronic health records.44 All EstBB 
participants have signed an informed consent form and the 
study  was granted ethical approval from the Estonian 
Council on Bioethics and Human Research (24 March 
2020, nr 1.1-12/624). All analyses were conducted using 
data according to release S60 from EstBB. Specifically, 
individuals were selected under conditions identical to 
those used for the UKB data for filtering and quality 
control, resulting in 92,661 unrelated White European 
participants, with a mean age of 50.9 years (SD=16.2 
years),  65.7% female. BMI values (mean 26.1, SD=5.3) 
were either calculated at the time of recruitment and blood 
donation or referenced from EHR within a year from 
enrollment. 

Data collection and pre-processing 

We included all 249 metabolites from the Nightingale 
NMR metabolomics panel,  encompassing 228 lipids, 
lipoproteins or fatty acids and 21 non-lipid traits, namely 
amino acids, ketone bodies, fluid balance, glycolysis-, and 
inflammation-related metabolites, as QC’ed and released 
by UKB.2 We applied additional pre-processing through 
the ‘ukbnmr’ R package, to remove sources of technical 
noise.45 

We applied rank-based inverse normal transformation46 to 
each measure, leading to normally distributed measures as 
input for the GWAS.  

Univariate GWAS and univariate interaction GWAS 

We made use of the UKB v3 imputed data, which has 
undergone extensive quality control procedures as 
described by the UKB genetics team.47 After converting 
the BGEN format to PLINK binary format,48 we set a 
minor allele frequency threshold of 0.005, leaving 
11,144,506 SNPs. 

We carried out univariate GWAS on each of the 249 

metabolites through PLINK2, which were then combined 
into a multivariate GWAS through the freely available 
MOSTest software 
(https://github.com/precimed/mostest). Details about the 
procedure and its extensive validation have been 
described previously.7 GWAS on each of the normalized 
measures were carried out using the standard additive 
model of linear association between genotype vector, 𝑔#, 
and phenotype vector, 𝑦. In all analyses we covaried for 
mean-centered age and twenty genetic principal 
components. We additionally covaried for biological sex, 
except in the sex-specific analyses. 

Association of genotype*sex interaction with each of 249 
metabolites was tested with PLINK2, including genotype, 
sex, mean-centered age and 20 genetic principal 
components as covariates. Produced univariate GWASs 
were then combined into multivariate MOSTest analysis. 
Calibration of the null distribution for the MOSTest 
analysis was performed permuting both genotypes and sex 
independently. 

Clumping 

For both univariate and multivariate GWAS, independent 
significant variants and genomic loci were identified in 
accordance with the Psychiatric Genomics Consortium 
locus definition.49 First, we selected a subset of variants 
that passed genome-wide significance threshold, and used 
PLINK to perform a clumping procedure at LD r2=0.6 to 
identify the list of independent significant variants.   
Second, we queried the reference panel for all candidate 
variants in LD r2 of 0.1 or higher with any independent 
significant variant. Further, for each independent 
significant variant, its corresponding genomic loci were 
defined as a contiguous region of the independent 
significant variants' chromosome, containing all candidate 
variants in r2=0.1 or higher LD with the independent 
significant variant. Adjacent genomic loci were merged if 
separated by less than 250 KB. A subset of independent 
significant variants with LD r2<0.1 was selected as lead 
variants (with potentially more than one lead variant per 
locus). Finally for each locus the most significant among 
all lead variants was defined as the locus lead variant. 
Allele LD correlations were computed from EUR 
population of the 1000 genomes Phase 3 data. The number 
of unique significant loci across all univariate GWAS was 
determined through the min-P approach.50 

Gene mapping 

We used the Variant-to-Gene (V2G) pipeline from Open 
Targets Genetics, to map lead variants to genes based on 
the strongest evidence from quantitative trait loci (QTL) 
experiments, chromatin interaction experiments, in silico 
functional prediction, and proximity of each variant to the 
canonical transcription start site of genes.23 

PheWAS 

We used the ‘otargen’ R package to conduct the pheWAS 
analyses on each of the 534 MOSTest-identified locus 
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lead SNPs. We restricted the analyses to the FinnGen and 
GWAS Catalog study sources, and selected only traits that 
had the term ‘disease’ in the trait category. The results 
were thresholded to associations of each of the locus lead 
SNP at p<.05 divided by the unique number of traits 
included (n=7,684).  

Fine-mapping procedure 

We used the SAFFARI pipeline to perform statistical and 
functional fine mapping.22 This consisted of applying 
PolyFun+FINEMAP to each of the GWAS in order to 
identify sets of functionally-informed highly credible 
causal variants, selecting those that were part of a credible 
set with a posterior probability >.95  prioritizing these for 
follow-up.  

WES gene burden tests 

We used Regenie (v3.1.1) to perform omnibus SKAT-O 
tests to combine variance component tests and burden 
tests for each of the 249 metabolites, with age, sex and 20 
genetic principal components as covariates. We merged 
the genotype data of chromosome 1 to 22 into a single 
PLINK file, lifted the genomic build from GRCh37 to 
GRCh38, and filtered with PLINK (--maf 0.01 --mac 20 -
-geno 0.1 --hwe 1e-15 --mind 0.1) to select 591,260 SNPs 
for step 1. Step 2 variants were rare (MAF < 0.005) with 
the following annotation masks: LoF, missense (0/5), 
missense (5/5), missense (>=1/5), and synonymous. We 
used relevant annotation files described elsewhere: 
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=916. 
We included the same set of protein coding genes as used 
for the MAGMA gene-based analyses. The analyses were 
conducted on the Research Analysis Platform. 
(https://ukbiobank.dnanexus.com) 

Gene-set analyses 

We carried out gene-based analyses using MAGMA v1.08 
with default settings, which entails the application of a 
SNP-wide mean model.51 We used a randomly selected 
set of 10 000 white British UKB participants as reference 
panel. Gene-set analyses were done in a similar manner, 
restricting the sets under investigation to those that are 
part of the Gene Ontology biological processes subset 
(n=7,522), as listed in the Molecular Signatures Database 
(MsigdB; c5.bp.v7.1).  

For tissue-specificity analyses, we applied MAGMA 
gene-property analyses to test relationships between 
tissue-specific gene expression profiles and the identified 
gene associations. This encompassed running one-sided 
tests for each of 30 general tissue types, testing whether 
the association between each tissue’s known gene 
expression levels and the gene-based Z-scores is greater 
than 0, corrected for the average expression across all 
tissue types and a set of technical confounders. We used 
preprocessed and normalized GTEx v8 tissue expression 
values52 as provided through FUMA’s downloads 
(https://fuma.ctglab.nl/).  

Multiple comparison’s correction for these analyses 

consisted of a Bonferroni correction for the number of 
protein-coding genes, with a=.05/17,849=2.8*10-6 

Drug enrichment analysis 

The Drug Gene Interaction Database (DGIdb, 
(https://www.dgidb.org/) v.5.0.6 (04/04/2024)25 was used 
to identify drug-gene interactions among the genes 
identified from the WES gene burden tests. The DGIdb 
provides information on drug-gene interactions from 28 
diverse sources that are aggregated and normalized. The 
database collects drug-gene interactions based on 
information about therapeutic targets and their 
corresponding drugs, knowledge from clinical trials, as 
well as potentially clinically actionable drug-gene 
associations based on metadata such as molecule structure 
and molecular weight.25 Gene-set enrichment analysis 
(GSEA) was performed to test if the genes identified from 
the WES gene burden tests were significantly (FDR<0.05) 
enriched for targets of specific drugs.  

LDSC 

We applied univariate53 and cross-trait54 LDSC to 
estimate narrow-sense heritability and genetic 
correlations, respectively. For this, we formatted the 
GWAS summary statistics using our standardized 
pipeline, including ‘munging’ and removal of all variants 
in the extended major histocompatibility complex (MHC) 
region (chr6:25–35 Mb), in accordance with 
recommendations 
(https://github.com/precimed/python_convert/blob/maste
r/sumstats.py).  

MiXeR analysis 

We applied a causal mixture model15,16 to estimate the 
percentage of variance explained by genome-wide 
significant SNPs as a function of sample size. For each 
SNP, 𝑖, MiXeR models its additive genetic effect of allele 
substitution,𝛽' , as a point-normal mixture, 𝛽' = (1 −
𝜋-)𝑁(0,0) + 𝜋-𝑁30, 𝜎567, where 𝜋- represents the 
proportion of non-null SNPs (`polygenicity`) and 𝜎56 
represents the variance of effect sizes of non-null SNPs 
(`discoverability`). Then, for each SNP, 𝑗, MiXeR 
incorporates LD information and allele frequencies for 
9,997,231 SNPs extracted from the EUR population of the 
1000 Genomes Phase3 data to estimate the expected 
probability distribution of the signed test statistic, 𝑧# =
𝛿# + 𝜖# = 𝑁∑ =𝐻'𝑟'#𝛽' + 𝜖#' , where 𝑁 is the sample size, 
𝐻' indicates heterozygosity of i-th SNP, 𝑟'#  indicates an 
allelic correlation between i-th and j-th SNPs, and 𝜖# ∼
𝑁(0, 𝜎A6) is the residual variance. Further, the three 
parameters, 𝜋-,𝜎56, 𝜎A6, are fitted by direct maximization 
of the likelihood function. Finally, given the estimated 
parameters of the model, the power curve𝑆(𝑁) is then 
calculated from the posterior distribution 𝑝3𝛿#D𝑧#,𝑁. 

For quality control of the MiXeR results, we used the 
Aikaike Information Criterion (AIC), comparing the 
Gaussian mixture model fit to that of the infinitesimal 
model. In this study, the AIC values of all 249 metabolites 
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were positive, i.e. the Gaussian mixture had better model 
fit, warranting the inclusion of the results.  

Mendelian randomization 

We ran bidirectional MR, investigating the causal 
relationships between BMI and the 249 metabolites, with 
the TwoSampleMR R package. For this, we combined the 
BMI GWAS summary statistics from the GIANT 
consortium with no UKB participants (N=339 224),55 to 
prevent sample overlap, with the metabolomics GWAS 
summary statistics generated in this study. We selected 
only genome wide significant variants for the analysis, 
clumped using PLINK with clump_p = 1, clump_r2 = 
0.001, clump_kb = 10000 against the 1000 Genomes 
Phase3 503 EUR samples keeping other settings default. 
We calculated MR regression coefficients using the 
inverse variance weighted method and the weighted 
median method. To create robust findings, we only 
selected findings that showed a multiple comparisons-
significance (p<.05/249) across both methods. As an 
additional check, we ran MR-Egger and selected those 
relationships with nominal significance on this test. 

Statistical analyses 

All pre-processing steps and analyses performed outside 
the above-mentioned tools and software, e.g. formatting 
the data and creating the graphs, were carried out in R, 
v4.2. 
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