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Abstract 14 

For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is 15 

usually absent from a host population, a key public health policy question is whether 16 

the pathogen’s arrival will initiate local transmission, which depends on the season in 17 

which arrival occurs. This question can be addressed by estimating the “probability of a 18 

major outbreak” (the probability that introduced cases will initiate sustained local 19 

transmission). A standard approach for inferring this probability exists for seasonal 20 

pathogens (involving calculating the Case Epidemic Risk; CER) based on the 21 
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mathematical theory of branching processes. Under that theory, the probability of 22 

pathogen extinction is estimated, neglecting depletion of susceptible individuals. The 23 

CER is then one minus the extinction probability. However, as we show, if transmission 24 

cannot occur for long periods of the year (e.g., over winter or over summer), the 25 

pathogen will inevitably go extinct, leading to a CER of zero even if seasonal outbreaks 26 

can occur. This renders the CER uninformative in those scenarios. We therefore devise 27 

an alternative approach for inferring outbreak risks for seasonal pathogens (involving 28 

calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves 29 

calculating the probability that introduced cases will initiate a local outbreak in which a 30 

threshold number of infections is exceeded before outbreak extinction. For simple 31 

seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed 32 

model, the TER can be calculated numerically (without model simulations). For more 33 

complex models, such as stochastic host-vector models, the TER can be estimated 34 

using model simulations. We demonstrate the application of our approach by 35 

considering Chikungunya virus in northern Italy as a case study. In that context, 36 

transmission is most likely in summer, when environmental conditions promote vector 37 

abundance. We show that the TER provides more useful assessments of outbreak risks 38 

than the CER, enabling practically relevant risk quantification for seasonal pathogens. 39 

 40 

Author Summary 41 

Invasive pathogens pose a challenge to human health, particularly as outbreak risks for 42 

some infectious diseases are being exacerbated by climate change. For example, the 43 

occurrence of seasonal vector-borne disease outbreaks in mainland Europe is 44 
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increasing, even though pathogens like the Chikungunya and dengue viruses are not 45 

normally present there. In this changing landscape, assessing the risk posed by invasive 46 

pathogens requires computational methods for estimating the probability that 47 

introduced cases will lead to a local outbreak, as opposed to the first few cases fading 48 

out without causing a local outbreak. In this article, we therefore provide a 49 

computational framework for estimating the risk that introduced cases will lead to a 50 

local outbreak in which a pre-specified, context specific threshold number of cases is 51 

exceeded (we term this risk the “Threshold Epidemic Risk”, or TER). Since even small 52 

seasonal outbreaks can have negative impacts on local populations, we demonstrate 53 

that calculation of the TER provides more appropriate estimates of local outbreak risks 54 

than those inferred using standard methods. Going forwards, our computational 55 

modelling framework can be used to assess outbreak risks for a wide range of seasonal 56 

diseases. 57 

 58 

1. Introduction 59 

Even if a pathogen is not commonly present in a host population, there remains a risk 60 

that imported cases will lead to local transmission [1–5]. In southern Europe, for 61 

example, vector-borne diseases such as dengue and chikungunya are not endemic, yet 62 

outbreaks occur due to pathogen importation followed by autochthonous (i.e., local) 63 

transmission [6–8]. The risk that imported cases will lead to a substantial local 64 

outbreak, as opposed to sporadic onwards transmissions occurring, varies seasonally. 65 

This is because factors such as host behaviour, pathogen survivability and vector 66 

ecological dynamics change during the year, and are alected by weather variables such 67 
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as temperature, rainfall and humidity [9–12]. It is useful to identify times of year at which 68 

outbreaks are most likely, and to provide quantitative estimates of temporally varying 69 

outbreak risks, to inform vector or pathogen surveillance and control interventions.  70 

Previous work on the topic of inferring the risk that introduced cases will initiate 71 

sustained local transmission has focussed on estimating the so-called “probability of a 72 

major outbreak”, based on the number of imported cases and the transmissibility of the 73 

pathogen. This probability can be inferred both for pathogens that are transmitted 74 

directly between hosts [13–26] and those that are spread via vectors [27–30]. 75 

Furthermore, the probability of a major outbreak has been calculated in systems in 76 

which transmission parameter values are assumed to be constant [8,30–33] and those 77 

in which temporal variations in transmission are accounted for [29,34–41]. Estimates of 78 

the probability of a major outbreak have been generated using approximations of a wide 79 

range of epidemiological models, including SIS, SIR and SEIR models [30,31], spatial 80 

models [22,23,27], models with host demography [25,26,42] and models that relax the 81 

standard assumption that epidemiological time periods are drawn from exponential 82 

distributions [24,43]. In addition, calculations of the probability of a major outbreak 83 

have been undertaken for a wide variety of diseases, including COVID-19 [21,32], Ebola 84 

[31,43] and dengue [8,44]. 85 

In all these dilerent settings, the probability of a major outbreak is typically derived by 86 

assuming that infections are generated according to a branching process [45], 87 

neglecting depletion of susceptible individuals (i.e., assuming that there is a constant 88 

supply of susceptible hosts available for each infected individual to infect). When 89 

transmission parameter values do not vary temporally, under this assumption a 90 
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pathogen either goes extinct following its introduction or the number of infections grows 91 

unboundedly. The probability of a major outbreak calculated in this way corresponds to 92 

the probability that the second of these scenarios arises (i.e., that infinitely many 93 

infections occur in the branching process model). Generally, this is appropriate, and 94 

estimates of the probability of a major outbreak match the proportion of simulations of 95 

stochastic compartmental models (that account for depletion of susceptible 96 

individuals) in which “large” outbreaks occur, at least when parameters take constant 97 

values and 𝑅! is suliciently larger than one [29,30]. However, the use of branching 98 

process theory to estimate outbreak risks can be problematic when transmission is 99 

seasonal.  100 

Specifically, when transmission can only occur during some periods of the year, the 101 

pathogen will inevitably go extinct in seasons when environmental conditions are 102 

unsuitable for transmission. Consequently, even with a constant supply of susceptible 103 

individuals for infected hosts to infect, the number of infections will not grow 104 

indefinitely. As a result, standard analytic estimates of the probability of a major 105 

outbreak (here called the Case Epidemic Risk, or CER, following the use of this 106 

terminology previously for pathogens for which transmission varies temporally [29]) are 107 

vanishingly small. Since pathogen extinction will almost certainly occur, a more 108 

practically relevant question is how many infections will there be before extinction?  If a 109 

substantial number of infections arises prior to pathogen extinction, we contend that an 110 

outbreak should still be classified as “major”. 111 

Here, we therefore provide a new metric for calculating the probability of a major 112 

outbreak for seasonal pathogens. Specifically, we calculate the probability that, 113 
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following the introduction of a pathogen to a host population, a pre-specified, context 114 

dependent threshold number of total infections is exceeded. We refer to this metric as 115 

the Threshold Epidemic Risk (TER). This metric can be calculated using stochastic 116 

compartmental transmission models that account for both seasonality and depletion of 117 

susceptible individuals, and throughout this article we compare calculations of the TER 118 

to analogous values of the CER. A schematic is shown in Fig 1, illustrating that when 119 

transmission varies seasonally (Fig 1A) then any outbreak may be likely to fade out as 120 

soon as a season arrives that is not conducive to transmission (leading to a CER of zero; 121 

Fig 1B). However, even in that scenario, seasonal outbreaks may still lead to substantial 122 

numbers of cases (the TER may be larger than zero; Fig 1C). 123 

First, we show how the TER can be calculated numerically (i.e., through the numerical 124 

solution of a system of equations, without requiring model simulations) for the 125 

stochastic SIR model with seasonally varying transmission. Then, we show how the TER 126 

can be calculated for more complex models using stochastic simulations by 127 

considering a stochastic host-vector model of Chikungunya virus transmission in 128 

northern Italy. When transmission is possible all year round, the TER and CER can give 129 

similar estimates. However, for both models, when there are substantial periods of the 130 

year during which sustained transmission is not possible, the dilerence between 131 

outbreak risk estimates arising from these two metrics can be large. For Chikungunya 132 

virus, which is spread by Aedes albopictus, there are long periods of the year in northern 133 

Italy during which vector abundance is too low for virus transmission [8].  Consequently, 134 

the CER is zero, yet major outbreaks due to local transmission can sometimes occur, 135 

depending on the precise definition of a “major outbreak” used. Since a policy-maker 136 

can choose a practically relevant threshold when estimating the TER, it is a useful 137 
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quantity to consider when quantifying seasonal outbreak risks as an aid for public 138 

health policy making. 139 

 140 

Figure 1. Schematic illustrating the di4erence in outbreak risk assessments for seasonal pathogens 141 

obtained using the CER and TER. A. Seasonal pathogen transmission comprises of periods of high and 142 

low transmissibility (low transmissibility periods, during which sustained pathogen transmission is 143 

impossible, are shaded in red). B. In the scenario considered here, all outbreaks go extinct during low 144 

transmissibility periods, leading to the CER taking the value zero. C. Despite all outbreaks going extinct, 145 

there is the potential for some outbreaks to generate a substantial number of cases. In this illustrative 146 

example, three out of every five outbreaks generate numbers of cases that exceed a pre-specified 147 

threshold,	𝑀, leading to a TER value of 0.6. In panels B and C, outbreaks that generate numbers of cases 148 

that exceed 𝑀 are shown as green lines and those that do not are shown as blue lines.149 
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2. Methods 150 

2.1 Epidemiological models 151 

2.1.1 SIR model 152 

The ordinary dilerential equation (ODE) version of the Susceptible-Infectious-Removed 153 

(SIR) model with time-dependent infection and removal rates is: 154 

d𝑆(𝑡)
d𝑡 = −

𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)
𝑁 , 155 

d𝐼(𝑡)
d𝑡 =

𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)
𝑁 − 𝛾(𝑡)𝐼(𝑡),											 156 

d𝑅(𝑡)
d𝑡 = 𝛾(𝑡)𝐼(𝑡).																											(1)	 157 

In this model, 𝑆(𝑡) is the number of individuals who are susceptible to the pathogen at 158 

time 𝑡, 𝐼(𝑡) is the number of infectious individuals, and 𝑅(𝑡) is the number of removed 159 

individuals (including those who have recovered and become immune and those who 160 

have died). The total population size, 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁, is constant under this 161 

model. In our analyses, the analogous stochastic model is considered, and simulations 162 

are run using a modified version of the Gillespie direct method [46] in which time-163 

dependent rates are accounted for [29,47,48] (Text S1.2, Algorithm 1). For this model, 164 

the instantaneous basic reproduction number is given by 𝑅!(𝑡) =
"($)
&($)

. 165 

Time 𝑡 is measured in months and the infection rate is chosen to be periodic with a 166 

period of 12 months: 167 

𝛽(𝑡) = max 5𝛽! + 𝛽' cos 5
𝜋
6 𝑡 − 𝜙< , 0<.													(2) 168 
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The removal rate is assumed to be constant (𝛾(𝑡) = 𝛾). We use these specific forms of 169 

the infection and removal rates in our analyses but our approach for computing the TER 170 

can be applied for any func*ons 𝛽(𝑡) and 𝛾(𝑡) (the functions do not even need to be 171 

periodic). The parameter values used are shown in the captions to Figures 2-4.  172 

2.1.2 Chikungunya transmission model 173 

We adapt the ODE model of Chikungunya virus transmission described by Guzzetta et 174 

al. [8,44]. Specifically, we separate the vector ecological dynamics from the host-vector 175 

epidemiological dynamics. The ecological model is given by: 176 

d𝐸
d𝑡 = 𝑛(𝑑)B𝑇(𝑡)D𝑁) − 5𝑚(B𝑇(𝑡)D + 𝑑(B𝑇(𝑡)D< 𝐸,	177 

d𝐿
d𝑡 = 𝑑(B𝑇(𝑡)D𝐸 − G𝑚*B𝑇(𝑡)D H1 +

𝐿
𝑎+
J + 𝑑*B𝑇(𝑡)DK 𝐿,	178 

d𝑃
d𝑡 = 𝑑*B𝑇(𝑡)D𝐿 − 5𝑚,B𝑇(𝑡)D + 𝑑,B𝑇(𝑡)D<𝑃,	179 

				
d𝑁)
d𝑡 =

1
2𝑑,B𝑇

(𝑡)D𝑃 − 𝑚)B𝑇(𝑡)D𝑁) .													(3) 180 

In this model, the population of vectors (Ae. albopictus) is split into eggs (𝐸), larvae (𝐿), 181 

pupae (𝑃) and adults (𝑁)). For notational convenience, we do not denote the 182 

dependence of these state variables on 𝑡 in the equations above explicitly, although the 183 

number of vectors in each compartment of the model varies temporally. The factor of  184 

1/2	in the equation for 𝑁)  reflects the fact that we only track adult female vectors, since 185 

male vectors do not spread the virus. The spatial scale of the model is assumed to be a 186 

single hectare (so that 𝑁)  represents the number of adult female vectors in one 187 

hectare).  The elect of overcrowded breeding sites on the larval mortality rate is 188 
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determined by the overcrowding parameter, 𝑎+, which was fitted to vector capture data 189 

by Guzzetta et al. [8,44]. 190 

The temperature, 𝑇(𝑡), is assumed to vary seasonally (i.e., with period 12 months): 191 

𝑇(𝑡) = 𝑇! + 𝑇' cos 5
𝜋
6 𝑡 − 𝜓<.		(4) 192 

The values of 𝑇!, 𝑇' and 𝜓 were determined by fitting 𝑇(𝑡) to daily mean temperature 193 

data (measured in Celsius) from Feltre, a town in northern Italy, separately for both 2014 194 

and 2015 (data were obtained from MODIS satellite Land Surface Temperature 195 

measurements as detailed in [8]) using least squares estimation. In our analysis of the 196 

temperature data from 2014, time 𝑡 = 0 corresponds to 1st April 2014. In our analysis of 197 

the data from 2015, time 𝑡 = 0 corresponds to 1st April 2015. 198 

We solve the ecological model (system of equations (3)) numerically to obtain 𝑁)(𝑡). To 199 

facilitate straightforward computation of the CER (see below), we then fit a skewed and 200 

scaled Gaussian to the monthly values of 𝑁)(𝑡) using least squares estimation, and use 201 

the resulting fitted version of 𝑁)(𝑡) in all of our analyses. Again, we perform this fitting 202 

separately for 2014 and 2015. The fitted curve is of the form: 203 

𝑁)(𝑡) = 𝐴𝐵-
($-.)!
/ G1 + erf H

𝑡 − 𝐶
𝐸 JK,					(5) 204 

in which erf is the error function. By considering the deterministic version of the 205 

ecological model, we avoid running stochastic simulations of the ecological model, 206 

which would be computationally expensive due to the large number of events that 207 

would arise in that system. 208 
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Stochastic epidemiological dynamics are then simulated using a stochastic host-vector 209 

model. The analogous deterministic model to the stochastic model that we consider is: 210 

d𝑆)
d𝑡 = −𝑘𝛽)

𝑆)𝐼0
𝑁 −𝑚)(𝑇(𝑡))𝑆) , 211 

d𝐸)
d𝑡 = 	𝑘𝛽)

𝑆)𝐼0
𝑁 − Y

1
𝜔)

+𝑚)(𝑇(𝑡))[𝐸) , 212 

d𝐼)
d𝑡 =

1
𝜔)

𝐸) −𝑚)(𝑇(𝑡))𝐼) , 213 

d𝑆0
d𝑡 = −𝑘𝛽0

𝑆0𝐼)
𝑁 , 214 

d𝐼0
d𝑡 = 𝑘𝛽0

𝑆0𝐼)
𝑁 −

1
𝜏 𝐼0 , 215 

d𝑅0
d𝑡 =

1
𝜏 𝐼0 .							(6) 216 

In this model, it is assumed that, after entering the 𝐼)  compartment, an adult female 217 

vector remains infectious for life. The temperature-dependent rates in systems of 218 

equations (3) and (6) are explicitly labelled as a function of temperature, 𝑇, which itself 219 

varies temporally. For defini*ons of each of the parameters in systems of equa*ons (3) and 220 

(6), and the values used in our analyses (including func*onal forms of the temperature-221 

dependent parameters), see Table S1.1. Unlike the total host population size, which 222 

remains constant (𝑆0 + 𝐼0 + 𝑅0 = 𝑁), the vector population size, 𝑁), varies with 223 

temperature and therefore varies temporally (equation (5)). The equation for the 224 

instantaneous basic reproduction number, 𝑅!(𝑡), for this system is [8]: 225 

𝑅!(𝑡) = 𝑘1𝛽0𝛽)
𝜏

𝑚)(𝑇(𝑡))
𝑁)
𝑁

1
1 + 𝜔)𝑚)(𝑇(𝑡))

.							(7) 226 
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When we run stochastic simulations of system of equations (6), we again adapt the 227 

Gillespie direct method [46] (Text S1.2, Algorithm 2). We assume that transmission 228 

parameters take constant values within each day (given by their values at the start of the 229 

day). We are therefore able to use the Gillespie direct method within each day. At the 230 

end of each day, we compare the total vector population size, 𝑆) + 𝐸) + 𝐼), with 𝑁)  (as 231 

determined by equation (5)).  If 𝑆) + 𝐸) + 𝐼) < 𝑁), then we assume that new 232 

susceptible vectors are born (i.e., we increase 𝑆)) until 𝑆) + 𝐸) + 𝐼) = 𝑁). If instead 233 

𝑆) + 𝐸) + 𝐼) > 𝑁), we select vectors uniformly at random to die until 𝑆) + 𝐸) + 𝐼) =234 

𝑁), since the per-vector death rates in system of equations (6) are equal for each of the 235 

𝑆), 𝐸)  and 𝐼)  compartments. By following this procedure, we simulate stochastic 236 

epidemiological dynamics while remaining consistent with the deterministic ecological 237 

dynamics (system of equations (3) and equation (5)). 238 

2.2 Case Epidemic Risk (CER) 239 

As described in the Introduction, a standard approach for estimating the probability of a 240 

major outbreak exists, involving the assumptions that infections occur according to a 241 

branching process and a constant supply of susceptible individuals is available for 242 

each infectious host to infect. This approach has been used previously in the context of 243 

pathogens for which transmission parameters vary temporally (e.g., [29,34,40]). Here, 244 

we refer to the probability of a major outbreak calculated in this way as the CER, 245 

following the use of this terminology in our earlier work [29]. In this section, we describe 246 

how the CER can be calculated for the stochastic SIR model and the stochastic host-247 

vector model of Chikungunya virus transmission.248 
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2.2.1 SIR model 249 

For the stochastic SIR model, if a single infectious individual enters the host population 250 

at time 𝑡!, then the CER is given by [29,34,40]: 251 

CER(𝑡!) =
'

'2∫ &(4)5"∫ $(&)"((&) d&*
+, d4-

+,

.    (8) 252 

A derivation of this expression can be found in Section 2.3.1 of [29]. 253 

2.2.2 Chikungunya transmission model 254 

To compute the CER for the host-vector model of Chikungunya virus transmission, we 255 

use the method described in [29]. We denote the probability of a major outbreak 256 

occurring, if there are 𝑖 infectious hosts, 𝑗 exposed vectors and 𝑘 infectious vectors at 257 

time 𝑡, by 𝑝789(𝑡). 258 

Assuming that the virus is introduced into the population at time 𝑡! by a single 259 

infectious host, then the CER is given by 𝑝'!!(𝑡!). Calculation of the CER then involves 260 

solving the following system of ODEs: 261 

d𝑝'!!(𝑡)
d𝑡 =

𝑘𝛽)𝑁)(𝑡)
𝑁

[𝑝'!!(𝑡) − 1]𝑝!'!(𝑡) +
1
𝜏 𝑝'!!

(𝑡), 262 

d𝑝!'!(𝑡)
d𝑡 = −

1
𝜔)

𝑝!!'(𝑡) + G𝑚)(𝑡) +
1
𝜔)
K 𝑝!'!(𝑡), 263 

d𝑝!!'(𝑡)
d𝑡 = 𝑘𝛽0𝑝'!!(𝑡)[𝑝!!'(𝑡) − 1] + 𝑚)(𝑡)𝑝!!'(𝑡).				(9) 264 

The first of these equations is derived in Text S1.3 with the derivation of the remaining 265 

two equations following an identical procedure. We numerically solve system of 266 

equations (9) using the Chebfun open source MATLAB software package [49], with 267 

periodic boundary conditions (𝑝'!!(0) = 𝑝'!!(12), 𝑝!'!(0) = 𝑝!'!(12) and 𝑝!!'(0) =268 
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𝑝!!'(12)). Chebfun requires the coelicients of 𝑝'!!, 𝑝!'! and 𝑝!!' on the right-hand-269 

side of system of equations (9) to be provided in functional forms (as functions of 𝑡, 270 

rather than vectors of values), necessitating our decision to use a functional form for 271 

𝑁)(𝑡) (equation (5)). 272 

2.3 Threshold Epidemic Risk (TER) 273 

Here, we describe how the TER can be calculated for the stochastic SIR model and 274 

stochastic host-vector model of Chikungunya virus transmission. The TER represents 275 

the probability that, if a single infected individual (for the host-vector model, a single 276 

infected host) enters the population at time 𝑡!, an outbreak with more than a threshold 277 

number (denoted 𝑀) of infections follows. For the host-vector model, this threshold 278 

refers to the total number of host infections. 279 

2.3.1 SIR model 280 

For the stochastic SIR model, we calculate the TER numerically, without resorting to 281 

model simulation. To do this, we choose a time, 𝑡max, that is longer than any outbreak 282 

could potentially be. We then denote the probability that the total number of infections 283 

exceeds 𝑀 prior to time 𝑡max, given that there are 𝐼∗ infectious individuals and 𝑅∗ 284 

removed individuals in the population at time 𝑡, by 𝑞>(𝐼∗, 𝑅∗, 𝑡). In other words: 285 

𝑞>(𝐼∗, 𝑅∗, 𝑡) = P(𝐼(𝑡max) + 𝑅(𝑡max) ≥ 𝑀|	𝐼(𝑡) = 𝐼∗, 𝑅(𝑡) = 𝑅∗).   (10) 286 

By choosing 𝑡max to be longer than the timescale of any local outbreak, 𝑞>(𝐼∗, 𝑅∗, 𝑡) is 287 

equivalent to the probability that at least 𝑀 infections occur prior to outbreak 288 

extinction. 289 
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We discretise the time interval [0, 𝑡max] into 𝑛 time steps, each of length Δ𝑡, where Δ𝑡 is 290 

chosen to be small (by choosing 𝑛 to be large) so that at most one event occurs in any 291 

time interval of length Δ𝑡. By conditioning on the possible events occurring in the interval 292 

(𝑖Δ𝑡,	(𝑖 + 1)Δ𝑡], for 𝑖 = 0,1, … , !max
"!

− 1, we obtain: 293 

𝑞#(𝐼∗, 𝑅∗, 𝑖Δ𝑡) = 	P(infection	event	in	interval	(𝑖Δ𝑡, (𝑖 + 1)Δ𝑡])𝑞#(𝐼∗ + 1, 𝑅∗, (𝑖 + 1)Δ𝑡)294 

+ P(removal	event	in	interval	(𝑖Δ𝑡, (𝑖 + 1)Δ𝑡])𝑞#(𝐼∗ − 1, 𝑅∗ + 1, (𝑖 + 1)Δ𝑡)295 

+ P(no	event	in	interval	(𝑖Δ𝑡, (𝑖 + 1)Δ𝑡])𝑞#(𝐼∗, 𝑅∗, (𝑖 + 1)Δ𝑡)296 

= 𝛽(𝑖Δ𝑡)
(𝑁 − 𝐼∗ − 𝑅∗)𝐼∗

𝑁
Δ𝑡𝑞#(𝐼∗ + 1, 𝑅∗, (𝑖 + 1)Δ𝑡)297 

+ 𝛾(𝑖Δ𝑡)𝐼∗Δ𝑡𝑞#(𝐼∗ − 1, 𝑅∗ + 1, (𝑖 + 1)Δ𝑡)298 

+ B1 − 𝛽(𝑖Δ𝑡)
(𝑁 − 𝐼∗ − 𝑅∗)𝐼∗

𝑁
Δ𝑡 − 𝛾(𝑖Δ𝑡)𝐼∗Δ𝑡C𝑞#(𝐼∗, 𝑅∗, (𝑖 + 1)Δ𝑡).					(11) 299 

Since the outbreak will definitely have ended by time 𝑡max, we note that: 300 

𝑞>(𝐼∗, 𝑅∗, 𝑡max) = l1, 𝐼
∗ + 𝑅∗ ≥ 𝑀

0, 𝐼∗ + 𝑅∗ < 𝑀,        (12) 301 

enabling us to solve system of equations (11) backwards in time to find the values of 302 

𝑞>(𝐼∗, 𝑅∗, 𝑖Δ𝑡) for all values of 𝐼∗, 𝑅∗ and 𝑖. In other words, we first compute 303 

𝑞> 5𝐼∗, 𝑅∗, 5
$max
?$

− 1<Δ𝑡<, then 𝑞> 5𝐼∗, 𝑅∗, 5
$max
?$

− 2<Δ𝑡<, and so on. The TER, assuming 304 

that a single infectious individual is introduced to the host population at time 𝑡!, is then 305 

given by 𝑞>(1,0, 𝑡!). 306 

We note that in principle it would be possible to rearrange system of equations (11) and 307 

take the limit Δ𝑡 → 0 to obtain a system of ODEs for 𝑞#(𝐼∗, 𝑅∗, 𝑡). However, since we 308 

would then be required to discretise time to solve those ODEs numerically, we solve 309 

system of equations (11) directly as described above.  310 
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2.3.2 Chikungunya transmission model 311 

To compute the TER for the host-vector model, we use a simulation-based approach. 312 

Specifically, we repeatedly simulate the analogous stochastic model to system of 313 

equations (6), following the simulation procedure described in section 2.1.2. In each 314 

simulation, we start with a single infectious host in the population at time 𝑡!. The TER is 315 

then given by the proportion of model simulations in which 𝐼0 + 𝑅0  exceeds or equals 𝑀 316 

prior to pathogen extinction occurring. 317 

 318 

3. Results 319 

3.1 SIR model 320 

To begin comparing the CER and TER, we calculated these quantities for the stochastic 321 

SIR model (the analogous stochastic model to system of equations (1)) with a 322 

seasonally varying infection rate (equation (2)). We first considered a scenario in which 323 

sustained transmission is possible all year round (𝑅!(𝑡) > 1 for all values of 𝑡), and set 324 

the threshold number of infections defining a “major outbreak” to be 𝑀 = 100 when 325 

calculating the TER. We found that the TER matches the CER closely in that scenario 326 

(orange and blue lines in Fig 2A). Not only did we calculate the TER numerically using 327 

system of equations (11) (orange line in Fig 2A), but we also calculated the TER using 328 

repeated model simulation. To do this, we assumed that there was a single infected 329 

individual in the population at the time of pathogen introduction, 𝑡! (i.e. 𝑆(𝑡!) = 𝑁 −330 

1, 𝐼(𝑡!) = 1 and 𝑅(𝑡!) = 0), ran 10,000 simulations of the stochastic SIR model and 331 

then computed the proportion of simulations in which the number of infections 332 
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exceeded or equalled 𝑀 = 100  prior to outbreak extinction. We repeated this for a 333 

range of values of the time of introduction, 𝑡! (orange dots in Fig 2A). 334 

While the CER and TER matched closely when transmission was possible all year round 335 

(as was the case in previous studies in which the CER was calculated, e.g. [29]), we 336 

then went on to consider a second scenario in which sustained transmission is only 337 

possible for some of the year (Fig 2B). In that scenario, outbreaks with at least 𝑀 = 100 338 

infections were possible for some pathogen introduction times, leading to values of the 339 

TER that were greater than zero (orange line and dots in Fig 2B). However, since 340 

pathogen extinction always eventually occurred during time periods in which 341 

transmission was not possible, the CER took the value zero at all pathogen introduction 342 

times (blue line in Fig 2B).  343 

Although we only considered a single introduced case in Fig 2, we also conducted a 344 

supplementary analysis in which we considered multiple pathogen introductions when 345 

calculating the TER (Fig S1.1). 346 

 347 

Figure 2. Comparison between calculated values of the CER and TER for the stochastic SIR model 348 

with seasonal transmission. A. The CER (obtained using equation (8) – blue line) and the TER (obtained 349 

by solving system of equations (11) numerically – orange line – and by running model simulations – orange 350 

A B
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dots) when sustained transmission is possible throughout the year (𝛽1 = 10, 𝛽2 = 5 and 𝛾 = 4.9 month-1). 351 

B. Analogous results to panel A, but in a scenario in which sustained transmission can only occur for 352 

some of the year (𝛽1 = 4, 𝛽2 = 5 and 𝛾 = 4.9 month-1). In both panels, a threshold of 𝑀 = 100 was used 353 

when computing the TER and the overall population size was assumed to be 𝑁 = 1,000 individuals. When 354 

we computed the TER using model simulations, we ran 10,000 simulations of the stochastic model (using 355 

the simulation approach described in Section 2.1.1) for each time of introduction considered. In both 356 

panels, the inset shows 𝑅1(𝑡) = 𝛽(𝑡)/𝛾(𝑡) as a function of 𝑡. 357 

 358 

We then explored the elect of the duration of time in the year for which sustained 359 

transmission is impossible on the mismatch between the CER and TER in more detail. 360 

Specifically, we considered varying the value of 𝛽! and again calculated the CER and 361 

TER (Fig 3). As in Fig 2B, whenever transmission is not possible for long periods of the 362 

year, the CER always takes the value zero yet outbreaks with at least 𝑀 = 100  363 

infections may still occur (Fig 3A,B). If, however, there are periods of the year for which 364 

sustained transmission is impossible, but those periods are not very long, then CER 365 

values greater than zero but less than the TER can occur. This is because there is a 366 

chance that the pathogen survives in the host population across the periods during 367 

which conditions are not suitable for sustained transmission. We note that, even in 368 

those scenarios, if the duration of the year for which sustained transmission is 369 

impossible is not very short, then the CER is likely to suggest a lower outbreak risk than 370 

the TER, at least at some times of year (Fig 3C,D). Again, when sustained transmission is 371 

possible all year round, or is only impossible for very short periods, than the CER and 372 

TER match closely (Fig 3E,F). 373 
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We consider a similar analysis, but instead varying the extent of seasonality in the 374 

infection rate (𝛽'), rather than 𝛽!, in Fig S1.2. 375 

 376 

Figure 3. Comparison between calculated values of the CER and TER for the stochastic SIR model 377 

with seasonal transmission, for a range of values of  𝜷𝟎. A. The CER (obtained using equation (8) – blue 378 

line) and the TER (obtained by solving systems of equations (11) numerically – orange line) when 379 

A β0=1 B β0=3

D β0=7C β0=5

E β0=9 F β0=11
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sustained transmission is only possible for a short period of the year (𝛽1 = 1, 𝛽2 = 5 and 𝛾 = 4.9 month-1). 380 

B. Analogous results to panel A, but with 𝛽1 = 3. C. Analogous results to panel A, but with 𝛽1 = 5. D. 381 

Analogous results to panel A, but with 𝛽1 = 7. E. Analogous results to panel A, but with 𝛽1 = 9. F. 382 

Analogous results to panel A, but with 𝛽1 = 11. In all panels, a threshold of 𝑀 = 100 was used when 383 

computing the TER and the overall population size was assumed to be 𝑁 = 1,000 individuals. In all 384 

panels, the inset shows 𝑅1(𝑡) = 𝛽(𝑡)/𝛾(𝑡) as a function of 𝑡. 385 

 386 

Having established that the TER provides a more appropriate characterisation of the risk 387 

posed by an invading seasonal pathogen than the CER, we considered the sensitivity of 388 

the TER to the precise threshold number of infections, 𝑀, chosen (Fig 4). Specifically, 389 

we considered both the value of the TER and the duration of the year for which the TER 390 

is above a particular value, 𝑧 (in Fig 4, 𝑧 = 0.1). For the transmission parameter values 391 

used in Fig 4 (𝛽! = 4, 𝛽' = 5 and 𝛾 = 4.9 month-1), we found that the duration of the year 392 

in which the TER exceeds 𝑧 = 0.1 was relatively similar for a range of dilerent values of 393 

𝑀. For example, if 𝑀 = 200 was used (corresponding to 20% of the host population), 394 

then the TER exceeded 𝑧 = 0.1 for 5.36 months per year, whereas if instead 𝑀 = 400 395 

was used (corresponding to 40% of the host population), then the TER exceeded 𝑧 = 0.1 396 

for 4.60 months per year. We repeated this analysis for dilerent values of 𝑧 in Fig S1.3, 397 

and found similar results. 398 
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 399 

Figure 4. Sensitivity of the TER to the value of 𝑴 chosen for the stochastic SIR model with seasonal 400 

transmission. A. The TER (obtained by solving systems of equations (11) numerically) for a range of 401 

diRerent values of the threshold number of infections, 𝑀. The blue shaded region shows the period of the 402 

year for which the TER exceeds 𝑧 = 0.1 for the baseline value of 𝑀 = 100. B. The duration of the year for 403 

which the TER exceeds 𝑧 = 0.1, shown as a function of 𝑀. In both panels, 𝛽1 = 4, 𝛽2 = 5 and 𝛾 = 4.9 404 

month-1. The overall population size was assumed to be 𝑁 = 1,000 individuals. 405 

 406 

3.2 Chikungunya transmission model 407 

To demonstrate the application of our framework for inferring the risk posed by an 408 

invading seasonal pathogen to a real-world case study, we estimated the TER for 409 

chikungunya in the town of Feltre, Italy, using daily mean temperature data from 2014 410 

and 2015. The risk that an imported case will initiate a local outbreak varies during the 411 

year in that setting due to the seasonal dynamics of the Ae. albopictus vector 412 

population. 413 

First, we fitted equation (4) to the temperature data from Feltre from 2014 (Fig S1.4A) 414 

and 2015 (Fig S1.4B). We then used these fitted temperature values to determine the 415 

number of adult female vectors per hectare throughout the year, initially by numerically 416 

A B
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solving system of equations (3) to obtain the number of adult female vectors at the start 417 

of each month (blue dots in Fig S1.4C,D) and then by fitting equation (5) to those 418 

monthly values (blue lines in Fig S1.4C,D). Finally, we computed the TER in 2014 (Fig 5A) 419 

and 2015 (Fig 5B) using model simulations, for a range of dilerent values of the 420 

threshold number of infections defining a major outbreak, 𝑀. In addition to plotting the 421 

TER, we computed the CER and found that the CER was zero throughout each year due 422 

to the inevitable extinction of the pathogen during seasons in which environmental 423 

conditions are not conducive to transmission. Specifically, outside the summer 424 

months, low temperatures drive the vector population size down to a low level, making 425 

sustained transmission of Chikungunya impossible. This again highlights the 426 

importance of using the TER, rather than the CER, to quantify seasonal outbreak risks. 427 

 428 

Figure 5.  Calculation of the TER for chikungunya in Feltre, northern Italy, in 2014 and 2015. A. The 429 

TER for 2014 (and early 2015), shown for a range of values of the threshold number of infections, 𝑀. The 430 

CER is also shown (obtained using system of equations (9) – black line). B. Analogous to panel A, but for 431 

2015 (and early 2016). In both panels, to compute the CER we ran 10,000 simulations of the stochastic 432 

model (using the simulation approach described in Section 2.1.2) for each date of introduction 433 

considered, and the host population size was assumed to be 𝑁 = 5,000 individuals (based on the 434 

population density in Feltre [44], this corresponds to an area of 80 Ha; the numbers of adult female 435 

A B

C D

A B
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vectors were also scaled up from their per Ha values shown in Fig S1.4C,D). In both panels, the inset 436 

shows 𝑅1(𝑡) as a function of 𝑡 (equation (7)). 437 

 438 

4. Discussion 439 

For many infectious diseases, quantifying the risk that imported cases will initiate a 440 

“major outbreak” driven by local transmission is of vital importance for public health 441 

policy. This is especially pertinent for seasonal pathogens that are not present at certain 442 

times of year, since pathogen reintroduction leading to sustained local transmission is 443 

necessary for large numbers of cases to arise. Identification of high risk locations and 444 

time periods allows policy-makers to target surveillance and control interventions 445 

appropriately. 446 

Previous studies have provided a range of methods for calculating the probability of a 447 

major outbreak. For directly transmitted pathogens for which the parameters governing 448 

transmission do not vary temporally, the probability of a major outbreak starting from a 449 

single infected individual can be approximated by 1 − 1/𝑅! (whenever 𝑅! > 1), in which 450 

𝑅! is the basic reproduction number of the pathogen [50]. When transmission 451 

parameter values vary temporally, a more complex calculation is required, and an 452 

established method [29,34–41] gives rise to the quantity that we term the CER here. The 453 

CER has previously been calculated for a range of models, including the stochastic SIR 454 

model with seasonally varying transmission [29,34–41], host-vector models [29,40], 455 

and models that account for varying susceptible population sizes [15,20]. 456 

As we have shown, when sustained transmission is possible all year around, the CER 457 

provides a useful measure of the risk that an introduced case will initiate local 458 
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transmission (Figs 2A, 3F). However, when sustained transmission cannot occur for 459 

substantial periods of the year (e.g. over winter, as is the case for vector-borne 460 

pathogens in temperate climates), then the CER can underestimate the true risk of a 461 

substantial outbreak occurring, including scenarios in which outbreaks with large 462 

numbers of cases can occur yet the CER takes the value zero (Figs 2B, 3A,B). For this 463 

reason, we have proposed a new quantity that can be calculated for assessing the 464 

probability of a major outbreak. Specifically, the TER represents the probability that 465 

introduced cases initiate an outbreak with more than 𝑀 infections prior to outbreak 466 

extinction. 467 

The risk of an outbreak with more than a threshold number of cases occurring has been 468 

considered before for pathogens for which transmission parameters remain constant in 469 

time [30]. In that scenario, the TER tends to match classic estimates for the probability 470 

of a major outbreak for a range of values of 𝑀, at least when 𝑅! is suliciently larger than 471 

one. In contrast, for seasonal pathogens, as noted above there are scenarios in which 472 

substantial outbreaks can occur but the CER is zero, demonstrating a clear mismatch 473 

between standard estimates for the probability of a major outbreak and estimates with 474 

clear practical meaning such as the TER.  475 

Although we found that the precise value of 𝑀 chosen did not always alect the 476 

calculated value of the TER substantially (Fig 4), the value of 𝑀 may be chosen by 477 

policy-makers in a context specific fashion. For example, for a pathogen such as the 478 

dengue virus in Italy, even relatively small outbreaks would be considered substantial. 479 

Since 2010, each dengue outbreak in Europe has resulted in fewer than 100 reported 480 

cases [51]. Therefore, even outbreaks with tens of cases might be considered large in 481 
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that setting, suggesting that a value of 𝑀 of that order of magnitude might be 482 

appropriate. In practice, if mathematical modellers undertake calculation of the TER, 483 

then we contend that this should be done for any specific outbreak in consultation with 484 

policy-makers, to ensure that an appropriate value of 𝑀 is used. Alternatively, the TER 485 

could be computed for a range of values of 𝑀, so that estimates of the risk of outbreaks 486 

of a range of dilerent sizes are obtained.  487 

As we showed by applying our approach to the case-study of chikungunya in northern 488 

Italy (Fig 5), the methodology presented here is particularly relevant in the context of 489 

vector-borne diseases in locations that experience seasonal outbreaks. Going forwards, 490 

the risk of vector-borne disease outbreaks is expected to increase in some locations 491 

due to climate change [52,53]. Calculation of the TER across a range of places and at 492 

dilerent times of year can provide insights into changes in the spatio-temporal risk of 493 

outbreaks and support the adoption of preventive measures [44]. 494 

In addition to demonstrating that the CER does not provide an appropriate assessment 495 

of the risk of seasonal outbreaks in a real-world scenario, three features are particularly 496 

noticeable from our TER calculations in Fig 5. First, relatively small dilerences in 497 

temperature between years (Fig S1.4A,B) can drive more substantial dilerences in the 498 

vector population size (Fig S1.4C,D), and therefore in the risk posed by outbreaks (Fig 5). 499 

Second, the choice of value of 𝑀 alects the time of pathogen introduction at which the 500 

TER is maximised. Specifically, larger values of 𝑀 require longer outbreaks for the 501 

threshold number of infections to be exceeded. As a result, larger values of 𝑀 tend to 502 

lead to earlier peak values of the TER, in order for there to be sulicient time left in the 503 

transmission season for such large outbreaks to occur. Third, and relatedly, the level of 504 
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variation in the TER between dilerent values of 𝑀 can change during the year. In Fig 5B, 505 

for example, early in the transmission season the TER was similar across the range of 506 

values of 𝑀 considered. This is because simulated outbreaks tended to either fade out 507 

with few infections or large numbers of infections (more than 100) occurred. In contrast, 508 

later in the transmission season, because of the limited time period remaining until 509 

sustained transmission became impossible, outbreaks of a range of dilerent sizes 510 

could arise. This highlights the need to consider the value of 𝑀 used when calculating 511 

the TER carefully in some scenarios. 512 

In summary, we have developed a novel framework for seasonal pathogens that can be 513 

used to compute the probability that an initial infected case (or cases) initiates a “major 514 

outbreak”. Rather than basing our approach on the mathematical theory of branching 515 

processes, which can lead to unrealistic assessments of seasonal outbreak risks, we 516 

calculate the TER (i.e., the probability that the number of infections will exceed a pre-517 

specified threshold value) directly. For simple stochastic epidemic models that account 518 

for seasonality, the TER can be calculated numerically. For more complex models, the 519 

TER can be estimated using model simulations, enabling it to be determined for any 520 

epidemiological system for which repeated model simulation is possible. Going 521 

forwards, we hope that our flexible approach will be used by epidemiological modellers 522 

to obtain policy-relevant outbreak risk assessments for a range of seasonal pathogens. 523 
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