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ABSTRACT 

Introduction: The current healthcare system relies largely on a passive approach toward disease 

detection, which typically involves patients presenting a “chief complaint” linked to a particular set of 

symptoms for diagnosis. Since all degenerative diseases occur slowly and initiate as changes in the 

regulation of individual cells within our organs and tissues, it is inevitable that with the current approach 

to medical care we are bound to discover some illnesses at a point in time when the damage is irreversible 

and meaningful treatments are no longer available. 

 

Methods: There exist organ-specific sets (or panels) of nucleic acids, such as microRNAs (miRNAs or 

miRs), which regulate and help to ensure the proper function of each of our organs and tissues. Thus, 

dynamic readout of their relative abundance can serve as a means to facilitate real-time health monitoring. 

With the advent and mass utilization of next-generation sequencing (NGS), such a proactive approach is 

currently feasible. Because of the computational complexity of customized analyses of “big data”, 

dedicated efforts to extract reliable information from longitudinal datasets is key to successful early 

detection of disease.  

 

Results: Here, we present our preliminary results for the analysis of healthy donor samples and drug-

naïve lung cancer patients. 

 

INTRODUCTION 

The cancer incidences and mortality rates worldwide demonstrate that for some cancers, such as lung, 

stomach, liver, esophagus, leukemia and pancreas cancer, the diagnosis is almost inevitably linked to a 

loss of life. The 5-years survival rate for patients with lung cancer, the “biggest killer”, is 47% for stage I 

and can be as low as 2% for stage IV, which underscores the importance of early detection (World Health 

Organization, 2017). Methods for the early detection of disease based on the analysis of body fluids have 
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become popular, however, the identification of biomarkers in urine is one of the few non-invasive 

approaches. At least 1,917 human miRNAs have been described in the literature (Kozomara and Griffiths-

Jones, 2014), and we have detected 947 of them in urine. The levels of miRNA change as a function of 

age and systematic differences exist between the two sexes (Ben-Dov et al., 2016). There are three main 

categories of degenerative diseases - cardiovascular (e.g., hypertension, coronary disease, myocardial 

infarction), neoplastic (tumors and cancers), and nervous system-related (e.g., Alzheimer’s disease and 

Parkinson’s disease). The etiology of these diseases typically involves some combination of aging and 

poor lifestyle choices. It is, therefore, conceivable that the collection and analysis of urinary miRNA 

panels longitudinally would allow to delineate changes in physiology associated with a particular disease 

in its early (asymptomatic) stage.  

 

MATERIALS AND METHODS 

Sample Processing 

Small RNA were extracted from de-identified urine samples by Norgen Biotek Corp., Thorold. Our 

primary methodology is to collect body fluids for analysis. To perform research and identify biomarkers 

for early detection of disease, every three months we collect body fluids and store them at negative 

temperatures with the objective to perform genetic sequencing and statistical analyses of longitudinal data. 

The urine voids are collected via specialized urine container 250 ml cups custom-manufactured by Norgen 

Biotek Corp. which are shipped at room temperature.   

 

There are approximately two thousand miRNAs that have been identified in the literature (Kozomara and 

Griffiths-Jones, 2014) and catalogued in the miRBase database (Kozomara and Griffiths-Jones, 2014). 

Most of these miRNAs have been associated with the function of specific human organs and tissues, and 

the dysregulation of many of them has been linked to cancers (Di Leva et al., 2014; Hayes et al., 2014), 

cardiovascular diseases (Wojciechowska et al., 2017), neurological disorders (Quinlan et al., 2017) and 
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other degenerative diseases. It has also been demonstrated that it is possible to discriminate between 

healthy individuals of different ages as well as between the two sexes based on the analysis of miRNAs 

isolated in urine samples (Ben-Dov et al., 2016). This work determined that the intra-individual variability 

is considerably smaller than inter-individual differences, which is important in the context of longitudinal 

analysis of healthy samples, and that the exact timing of urine collection minimally affects the urine 

miRNA transcriptome. Therefore, our hypothesis is that longitudinal changes in miRNA transcriptomes 

can be used to detect disease onset before manifestation of any symptoms. As a concrete preliminary 

analysis of disease-specific changes, we have chosen to highlight the specific case of lung cancer.  

 

The treatment of lung cancer is often hampered by late diagnosis (Del Ciello et al., 2017; Ellis and 

Vandermeer, 2011; Polanski et al., 2016). When discovered early, the disease is curable via surgical 

intervention as adenocarcinoma nodules can simply be resected (Lackey and Donington, 2013). For 

patients with locally advanced or metastatic disease, multiple drug treatment options are offered yet there 

are rarely curative regimens available (Socinski et al., 2018). Immunotherapy seems to be a promising 

approach for a curative therapy (Rizvi et al., 2015), but it too has its limitations as there are very few 

patients who respond to it and the associated toxicity is of considerable concern (Carbone et al., 2017). 

While current research efforts in the area of drug development have focused on identifying biomarkers 

for immunotherapy susceptibility (Ayers et al., 2017; Cristescu et al., 2018; Gettinger et al., 2018), our 

approach to improving the standard of care in lung cancer treatment is to identify biomarkers for early 

detection of the disease when curative surgery is still a viable option.  To begin to build a repository of 

patient samples, we will ask participants to contribute body fluids samples (which will be stored in a 

biobank) and to complete health-related questionnaires every three months. This specific sampling interval 

is selected because it corresponds to the longest time interval during which new disease can be expected 

to remain at surgically resectable levels (Quint, 2003).  
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Approximately 190 miRNAs have been linked to lung cancer based on transcriptomic data of specimens 

derived from primary tumors and/or blood. The top 19 most common markers have been identified in at 

least three independent screens and some are listed in as many as six or more, suggesting that they are 

disease markers of high fidelity. The fidelity of markers will also be based on whether they have been 

identified in both the primary tumors and in blood samples as well as the impact factor of the journal in 

which the results are published. We will start the health monitoring of lung cancer by accumulating 

statistics on these 190 markers with a special emphasis on the top 19 most established ones. In addition to 

establishing this miRNA biomarker panel for lung cancer, we have also identified similar but smaller (i.e., 

based on fewer established blood biomarkers) panels for colorectal and prostate cancer (in males); breast, 

uterus, cervical, and colorectal cancer (in females); as wells as urinary pancreatic cancer biomarkers 

(Debernardi et al., 2015). The necessity to consider different sets of biomarkers for males and females, 

depending on age will be discussed in the next section. The biomarker lists will be updated as new 

literature becomes available and whenever our own work allows for the identification of novel markers. 

 

During the initial data-aggregation phase when we will rely on a medical diagnosis to establish an 

endpoint, each participant will be expected to provide information from their general practitioner in regard 

to the type of diagnosed disease. We anticipate this initial stage to last about two to three years during 

which 7% of the participants of age 45 to 75 are expected to develop a degenerative disease. During this 

stage our focus will be on identifying biomarkers for early disease detection. If we assume ten thousand 

participants, based on statistics obtained from hospitals (personal communication), within two years 695 

participants will develop degenerative diseases of which roughly 220 participants will be diagnosed with 

a cancer, 436 participants will be diagnosed with a cardiovascular disease and 39 participants will develop 

a neurological disorder. The longitudinal datasets with a disease diagnosis endpoint will allow for the 

discovery of biomarkers for early detection. Furthermore, the continued collection of samples from these 

participants will allow for accumulation of datasets for the evaluation of drug efficacy and provide 
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prognostic and predictive value. In the long run, this will empower those participants who develop disease 

by providing additional information to their treating physicians. The remaining participants (93%) 

providing healthy samples will continue participation beyond the initial phase of two years and, once early 

disease biomarkers are discovered and validated, will be offered the chance to participate in our phase two 

health monitoring service. Our expectation is that this health monitoring service will alert the participants 

of the emergence of a particular disease, create the impetus to discuss this alert with her/his physician, and 

ultimately take appropriate prophylactic action, e.g., to make lifestyle changes or to elect to undergo early 

treatment. Our central hypothesis is that urinary biomarker panels could serve as personalized health 

monitoring readouts by virtue of periodic measurements. Furthermore, we hypothesize that gradual 

changes in urinary nucleic acids will indicate the onset of disease by changes compared to a baseline 

healthy state that could reveal the type of disease by exhibiting changes in specific biomarkers for each 

disease. Ultimately, this approach will allow for overall health monitoring and early detection of the onset 

of any disease, and might also allow for screening for other deviant processes such as physiological 

disorders. 

 

Data Analysis 

All data analysis programs and graphical representation of the results were developed in R and Matlab. 

The computer code is available for download at: https://github.com/amatov/DiseaseDetectionUrine. 

Using computational topology software (Perseus (Tyanova and Cox, 2018)), we analyzed longitudinal 

data of healthy donors taken every two months for three different time points. PCA analysis grouped data 

points of the same individuals together in triplets, which was an expected result, but we were also able to 

detect trends in how the values for every individual change with time. This illustrates the transient nature 

of the miRNAs levels and the importance of understanding normal biological noise / fluctuations in 

miRNA levels across the lifespan of healthy individuals. 
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RESULTS 

Figure 1 shows an example of the miRNAs detection in the urine of a healthy individual. Not all of the 

miRNAs we detected in urine are present in all subjects for each of the time points. We aimed at 

discovering personalized biomarker panels, which would allow anyone to make informed decisions and 

alert about the need for lifestyle changes or to seek medical advice. In this context, we sought to identify 

meaningful patterns and predictive trends in miRNA levels present in patient urine and blood specimens. 

First, we performed a literature search and identified a panel of 25 high fidelity lung cancer biomarkers, 

based on miRNAs each previously linked to lung cancer development, progression and drug resistance in 

multiple (between three and eight) papers on the analyses of blood of lung cancer patients and primary 

lung tumors. Lung cancer is the leading cause of cancer-related deaths and claims more lives each year 

than all other major cancers combined. Lung cancers are generally diagnosed at an advanced stage because 

patients lack symptoms in the early stages of the disease. We measured an increase in the levels of 16 of 

 
 

Figure 1. Expression levels (logarithmic scale) of 947 miRNAs sequenced by NGS from urine samples for one 

of the 15 healthy individuals over three time points. Example of visualization of urine data based on 947 miRNAs 

plotted on the X-axis versus miRNA expression levels (in arbitrary units) as plotted on the Y-axis. Time point 1 

levels are displayed in red, time point 2 levels are displayed in blue and time point 3 levels are displayed in green.  
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these 25 miRNAs for one of the healthy individuals in our baseline cohort (Fig. 2). The most commonly 

published biomarkers of lung cancer, which we found to have an increase longitudinally are miRNA-21-

3p, miRNA-140-3p and miRNA-93-3p. We did not consider those miRNAs for which there have been 

reports in the literature of a downregulation in disease, because their levels might appear decreased in 

urine for other physiological reasons than cancers. After establishing that it was feasible to identify 

published cancer miRNAs in urine, we sought to investigate whether healthy donors retain similar patterns 

in their miRNA profiles longitudinally via principal component analysis (Fig. 3). To this end, we 

processed samples of 15 healthy individuals collected every two months for three time points, i.e., 45 

 
 

Figure 2. Longitudinal changes of lung cancer-related urinary miRNAs in a healthy individual. An example of up-

regulation of 16 urinary biomarkers within a panel of 25 high fidelity lung cancer biomarkers, based on miRNAs each 

previously linked to lung cancer development, progression and drug resistance in multiple (between three and eight) papers 

on the analyses of blood of lung cancer patients and primary lung tumors. X-axis, list of the biomarkers: from left to right: 

(1) miRNA-21-3p, (2) miRNA-21-5p, (3) miRNA-140-3p, (4) miRNA-140-5p, (5) miRNA-155, (6) miRNA-200b-3p, (7) 

miRNA-200b-5p, (8) miRNA-223-3p, (9) miRNA-223-5p, (10) miRNA-221-3p, (11) miRNA-221-5p, (12) miRNA-145-

3p, (13) miRNA-145-5p, (14) miRNA-150-3p, (15) miRNA-150-5p, (16) miRNA-200a-3p, (17) miRNA-200a-5p, (18) 

miRNA-205-3p, (19) miRNA-205-5p, (20) miRNA-210-3p, (21) miRNA-210-5p, (22) miRNA-339-3p, (23) miRNA-339-

5p, (24) miRNA-93-3p, (25) miRNA-93-5p. Y-axis, abundance levels; we performed data normalization using the quantile 

normalization method recommended for next-generation sequencing data based on single color experiments. 
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samples in total. This analysis showed that even if there is a certain level of variability, (i) each three 

longitudinal samples from the same healthy individual cluster together - at least for two of the three time 

points - and (ii) the longitudinal sample triplets for each of the different healthy individuals form separate 

clusters (see on Fig. 3 sample triplets per individual color-coded in the same color – pink for donor #1, 

red for donor #2, cyan for donor #3, blue for donor #4, brown for donor #5, yellow for donor #6, orange 

for donor #7, etc.). This demonstrates that, in normal physiology, urinary miRNA panels can identify the 

same person longitudinally.  

 

 
 

Figure 3. Longitudinal analysis of 45 samples from 15 healthy donors; X-axis Component 1 (21.4%), Y-axis 

Component 2 (13.1%). PCA analysis of longitudinal data of healthy donors taken at three different time points 

demonstrates the transient nature of the miRNAs levels. The panel consists of 15 healthy donors which provided void 

urine samples in the Netherlands. Each triplet 1-2-3 in the same color on the PCA scatter plot belong to the same healthy 

individual over three time points. The time step at which these samples were collected and sequenced was two months. 

One of the triplets is labeled 2-3-4 because the first sample was not processed correctly and that required the collection 

of another one at a later, fourth, time point.  
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One of our aims has been to discover personalized disease-specific miRNAs biomarker panels based on 

significant changes in organ or tissue regulation in disease. As a first step in this regard, we aimed at 

discovering population-based panels of biomarkers. The small sizes of our preliminary datasets preclude 

utilization of standard methods, e.g., differential expression analysis (Robinson et al., 2010), so we opted 

to perform information theory-based computation to identify biomarkers. As the size of our datasets 

increases, so will our ability to make meaningful biomarker identifications. For the selection of disease-

specific panels, several approaches are available for feature selection, for instance, by maximization of 

mutual information (Jiao et al., 2015) or applying the “maximum of the minimum criterion” (Bennasar 

M., 2015). The preliminary methodology we utilized for computation of relative entropy via Kullback-

Leibler (KL) divergence is based on an adaptive minimax rate-optimal estimator (Han et al., 2016) of the 

changes in disease from healthy state(s) to cancerous lesion(s) and malignant tumor(s). Consider the KL 

divergence as: 

 

𝐷(𝑃||𝑄) ≜ {
∑ 𝑝𝑖𝑙𝑛

𝑝𝑖

𝑞𝑖
 𝑖𝑓 𝑃 ≪ 𝑄,𝑆

𝑖=1

+∞              otherwise,
             (1) 

 

where two patient cohorts are considered, 𝑃 = {𝑝1, … , 𝑝s} and 𝑄 = {𝑞1, … , 𝑞s}, over a common set of 

miRNAs of length S (S=947 miRNAs for this dataset). Testing this approach for significant feature 

selections on a small cohort of 13 stage IV lung cancer patients’ urine samples, we selected miRNAs by 

computing Eq. (1). We set our threshold at 1.2 bits divergence empirically and this allowed us to identify 

20 biomarkers discriminative of lung cancer (Fig. 4). All 20 biomarkers have previously been published 

in the literature on lung cancer based on analyses of primary lung tumors and blood from lung cancer 

patients (Bao et al., 2018; Wan and Zheng, 2021; Wang et al., 2014). This selection demonstrates the 

suitability and ability of this method for the identification and selection of disease-specific biomarkers. 

Even if this computation is based on small sample cohorts and it is not patient-specific, it indicates the 
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possibility to detect lung cancer in urine samples. Our objective will be to provide every individual with 

the option to make data-driven decisions in the context of the prevention of the progression of degenerative 

diseases.  

 

DISCUSSION 

The cancer incidences and mortality rates worldwide demonstrate that for some cancers, such as lung, 

stomach, liver, esophagus, leukemia and pancreas cancer, the early diagnosis is of critical importance. We 

will develop algorithmic solutions to facilitate the longitudinal analyses of transcriptomic miRNA 

datafrom tens of thousands of patients (about 1,917 miRNAs have been described in the literature and we 

 
 
Figure 4. Kullback-Leibler divergence between drug-naïve lung cancer patients and healthy individuals. miRNAs 

levels in a cohort of 28 participants (13 stage IV drug-naïve lung cancer patients and 15 healthy individuals) allowed 

for the selection of a panel of 20 discriminative biomarkers out of 947 detected by next-generation sequencing in urine 

samples: (1) miRNA-891a-5p, (2) miRNA-196a-5p, (3) miRNA-200a-5p, (4) miRNA-577, (5) miRNA-141-3p, (6) 

miRNA-29c-3p, (7) miRNA-95-3p, (8) miRNA-29b-3p, (9) miRNA-361-5p, (10) miRNA-429, (11) miRNA-335-5p, 

(12) miRNA-421, (13) miRNA-628-3p, (14) miRNA-660-5p, (15) miRNA-29a-3p, (16) miRNA-4454, (17) miRNA-

330-3p, (18) miRNA-194-5p, (19) miRNA-532-3p, (20) miRNA-1271-5p. All 20 biomarkers have previously been 

published in the literature on lung cancer based on analyses of primary lung tumors and blood from lung cancer patients. 
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have detected 947 of them in urine) and the early detection of disease. To achieve this end, we will use 

multivariate data and multi-dimensional clustering analyses as well as information theory approaches 

based, for instance, on entropy computation and feature selection using joint mutual information 

maximization. Our overall objective is to significantly improve the quality of life in the last three to four 

decades of living. 

 

The methodology we propose may allow the development of molecular diagnostics tests based on nucleic 

acid markers for monitoring of cardiovascular, neoplastic, and diseases of the nervous system based on 

the longitudinal analyses of body fluids. Further, the approach may provide novel ways for treatment 

evaluation. Correlation between changes in biomarker levels and treatment responses will allow for the 

early detection of a lack of response after treatment and ultimately for optimal drug selection. It will also 

facilitate the discovery of biomarkers for the prediction of disease relapse. In the long run, longitudinal 

analysis of nucleic acids will allow for the development of novel targeted drugs. Recent literature has 

described many examples of miRNAs that could be targeted in disease (Duygu et al., 2016; Kim et al., 

2017; Singh and Sen, 2017). Therefore, monitoring of their levels in healthy individuals and patients 

undergoing disease treatment will likely provide valuable datasets for the pharmaceutical industry as well 

as for practicing physicians, ultimately allowing them to select the most efficacious treatment sequence 

and drug combination for each patient.  
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