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Abstract

Background

Agitation affects around 30% of people living with dementia (PLwD), increasing carer burden and straining care services.
Agitation screening typically relies on subjective clinical scales and direct patient observation, which are resource-
intensive and challenging to incorporate into routine care. Clinical applicability of data-driven methods for agitation
screening is limited by constraints such as short observational periods, data granularity, and lack of interpretability and
generalisability. Current interventions for agitation are primarily medication-based, which may lead to severe side effects
and lack personalisation. Understanding how real-world factors affect agitation within home settings offers a promising
avenue towards identifying potential personalised non-pharmacological interventions.

Methods

We used longitudinal data (32,896 person-days from n=63 PLwD) collected using in-home monitoring devices. Em-
ploying machine learning techniques, we developed a screening tool to determine the weekly risk of agitation. We
incorporated a traffic-light system for risk stratification to aid clinical decision-making and employed the SHapley Ad-
ditive exPlanations (SHAP) framework to increase interpretability. We designed an interactive tool that enables the
exploration of personalised non-pharmacological interventions, such as modifying ambient light and temperature.

Results

Light Gradient-boosting Machine (LightGBM) achieved the highest performance in identifying agitation with a sensi-
tivity of 71.32±7.38% and specificity of 75.28%. Implementing the traffic-light system for risk stratification increased
specificity by 15% and improved all metrics. Significant contributors to agitation included low nocturnal respiratory rate,
heightened alertness during sleep, and increased indoor illuminance, as revealed by statistical and feature importance
analysis. Using our interactive tool, we identified that adjusting indoor lighting levels and temperature were promising
and feasible interventions within our cohort.
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Conclusions

Our interpretable framework for agitation screening, developed using data from a dementia care study, showcases signif-
icant clinical value. The accompanying interactive interface allows for the in-silico simulation of non-pharmacological
interventions, facilitating the design of personalised interventions that can improve in-home dementia care.
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Introduction

Agitation is a neuropsychiatric symptom that affects more than 30% of people living with dementia (PLwD)1, and is
characterised by a 93% recursion rate2. It is defined by inappropriate verbal, vocal, or motor actions, unrelated to the
immediate needs of the individual3. Agitation episodes can range from non-aggressive behaviours, such as wandering
and repetition, to aggressive actions4,5. Such episodes are associated with adverse healthcare events, including fall-
related injuries and undiagnosed infections6. Agitation places a significant burden on carers and contributes to their
sustained stress levels7. Identification and treatment of agitation are essential for mitigating associated risks, lowering
healthcare expenses, and alleviating carer strain6.

Various clinical measures have been developed to assess agitation, which can be grouped into two main categories:
informant ratings, including the Cohen-Mansfield Agitation Inventory (CMA-I)4, and direct observational assessments
such as the Pittsburgh Agitation Scale8. Informant ratings, as noted by Cohen-Mansfield et al., can be unreliable due to
the personal bias of the informant, memory inaccuracies, and stress. Direct observational assessments are more objective;
however, they require trained staff to monitor behaviour, making these assessments resource-intensive and not applicable
to at-home settings9,10.

Applying machine learning (ML) methods to continuously collected remote monitoring data can address the above-
mentioned limitations11,12. Khan et al., proposed a model that detects agitation through motion and physiological sensor
data using a 1-minute time-window. Their study’s small cohort (n=2) and lack of longitudinal data (28 days) limit
the reliability of their findings. Moreover, the small data granularity (1-minute) restricts the exploration of long-term
agitation-driving factors, thereby impacting the model’s clinical applicability. In our previous work, we integrated activ-
ity and physiological data - from 46 PLwD, collected over 2 years - into a deep learning (DL) model to predict agitation
using a 6-hour window12. The model’s high false positive rate and the complexity of the DL model, providing limited
insights into the underlying factors, hindered its clinical utility. Hekmatiathar et al., incorporated interior ambient data
collected over 64 days, from the living environment of one participant in a DL model, to forecast agitation using a
rolling window of 30 minutes13. Their approach relied on frequent validation, thereby increasing the likelihood of false
positives, which could disrupt patients’ and carers’ routines. Moreover, their reliance solely on environmental data and
validation on only one participant limit the model’s clinical reliability. Overall, existing studies on the identification of
agitation lack generalisability due to small data sizes, while studies on agitation prediction lack clinical and care applica-
bility, as agitation antecedents are often unpredictable14. This highlights the need to shift towards agitation screening and
develop transparent and interpretable ML models that encompass a diverse range of variables and can capture broader
agitation patterns.

The National Institute of Health and Care Excellence (NICE) in the UK recommends prioritising non-pharmacological
interventions, such as sensory stimulation, as the primary strategy to address dementia-related agitation15. This is driven
by concerns surrounding potential side effects linked to medications and their limited long-term efficacy16. Light-
exposure17 and music-related interventions have shown promise for the treatment of agitation in dementia18. However,
existing studies for non-pharmacological interventions are limited by small sample sizes and inadequate reporting of
findings, preventing a comprehensive understanding of non-pharmacological interventions’ efficacy18. Optimal design
of such interventions requires a personalised study of individual patterns, symptoms and preferences19, an area which
remains under-explored.

Here, we used real-world data from the observational clinical study called Minder20 to develop an ML framework
that estimates and analyses the risk of agitation occurrence within a week. Using the passive monitoring data from
Minder, we integrated a diverse array of features, including sleep measures, activity levels, and environmental parameters,
into our model. Our dataset comprised data collected over 32,896 person-days from 63 PLwD, of which 4,096 were
labelled for agitation occurrence. Through the assessment of feature importance, we sought to provide information
on the model’s decision-making process. We developed a novel interactive tool, tailored for designing and validating
non-pharmacological interventions, based on real-world insights from personalised agitation driving factors.
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Results

Agitation episodes in Minder

Agitation status was determined through responses from a weekly clinical monitoring process conducted in the Minder
study. Most participants lived with carers or study partners (Table S1). During the weekly monitoring process, study
partners and/or participants were contacted to report the presence or absence of participants’ agitation symptoms regard-
ing the preceding week. For our analysis, the whole preceding week, including the day of the reporting itself (8 days),
was labelled as a binary target variable representing the presence or absence of agitation (see Data Collection section ).

Our approach (see Figure 1) included labelled data collected in the Minder study between July 15, 2021, and March
16, 2023. For the development of our machine learning model, we focused on individuals with verified episodes of
agitation or absence thereof, resulting in a final sub-cohort of 63 participants (41 males and 22 females). This sub-cohort
had a total of 242 weeks labelled as positive for agitation and 270 weeks labelled as negative S1.

Agitation episodes are accompanied by poor sleep quality and differences in light exposure

We conducted two-sided paired Student’s T-tests to compare extracted measures such as sleep, illuminance, and ambient
temperature from the Minder in-home monitoring sensors and the Visual Crossing weather API between agitated and
non-agitated weeks21. For the statistical analysis, we only included participants who had both positive and negative
agitation events (n=29) to allow for a paired comparison (Table S1).

Sleep, illuminance and temperature features, derived from the in-home PIR sensors and the sleep mat, alongside
outdoor ambient data, highlight differences between agitation and non-agitation weeks, showing their potential to be
used for agitation screening. During agitation weeks, the average awake ratio was significantly higher compared to
non-agitation weeks (0.27 ± 0.67 vs. -0.18 ± 0.40) (p− value = 9× 10−3), whereas the average minimum respiratory
rate was significantly lower (-0.33 ± 0.68 vs. 0.09 ± 0.33) (p− value = 2× 10−2) (Table S14). Furthermore, indoor
illuminance was significantly higher during agitation weeks compared to non-agitation weeks (0.10 ± 0.25 vs. -0.05 ±
0.19) (p− value = 4×10−2), while the indoor to outdoor illuminance (illuminance ratio) was significantly lower (-0.26
± 0.27 vs. 0.18 ± 0.26) (p− value < 10−3) (Table S16, S21).

This feature analysis showed that sleep patterns and environmental factors differed during agitation weeks, and could
be used in an ML model for screening of agitation episodes.

Light Gradient-Boosting Machine classifier can identify agitation using sensor data

We derived 114 variables, including sleep, activity, indoor and outdoor light exposure, indoor and outdoor temperature,
and seasonality, to be used in our machine learning pipeline to identify agitation(Table S3). Feature selection was
performed using the SHapley Additive exPlanation (SHAP)22 values, computed by a Random Forest Classifier (RF),
using 10 folds. This resulted in 20 features that were used for agitation screening. The investigated models include
SVM, LR, LightGBM, RF, XGBoost, ADABoost, and an MLP. Model evaluation focused on maximising sensitivity,
ensuring the model’s effectiveness as a sensitive screening tool.

The LightGBM yielded significantly higher sensitivity than logistic regression (p− value < ×10−3) and the other
examined tree-based models (p− value < 5× 10−3) (see Table S6). The LightGBM classifier also achieved higher
scores in most performance metrics compared to the examined models (see Table S5). The model showed robust results
in calibration (Figure S3), reliability (Figure S4), and bias analysis (Table S8, Table S9, Figure S2).

We enhanced our model’s clinical value by implementing a traffic-light risk stratification system, categorising agita-
tion predictions into high (Red), moderate (Amber), and low (Green) risk groups. Incorporating a risk stratification via
a traffic-light system increased sensitivity and specificity by 15% and improved all metrics. The inclusion of the Amber
group reduced the false alerts, increasing the model’s clinical applicability. Refer to Table 1 for a comparison of metrics
before and after risk stratification, and see Figure S7 for visual representations of the receiver operating characteristic
(ROC) and precision-recall (PR) curves. More details on stratification are provided in section S1.4.3.
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Data pre-processing

1. Data exploration & statistical analysis
 

2. Alignment of environmental data with 
activity, sleep, door sensors data

 
3. Personalised missing values imputation

 
4. Personalised feature scaling 

 Machine learning model training

1.  Evaluation and comparison of tree-based 

models on dataset with 114 features

2.  Performing feature selection using best 

performing classifier based on sensitivity

3.  Evaluation of linear and non-linear classifiers on 

dataset with selected features and selection of best 

performing classifier based on sensitivity

High risk of agitation

Medium risk of agitation

Low risk of agitation

Traffic light-based stratification system 

Non-pharmacological personalised
 in-silico interventions

Clinician-friendly interactive interface

Clinical value

Model evaluation

1. Fairness analysis
 

2. Calibration analysis

3. SHAP values computation

Z ZZ

Data

Clinical decision-making

Figure 1: Overview of approach. The data processing and analysis pipeline are shown, illustrating the specific steps followed. Our
two strategies for enhanced clinical value are showcased: an interactive interface for personalised in-silico intervention experiments
and a traffic-light system to minimise false alerts. Figure was created with Biorender.
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Table 1: Performance comparison before and after risk stratification. The traffic-light system optimised the thresholds for
decision-making, creating Green (low agitation risk), Amber (medium agitation risk), and Red (high agitation risk) groups. The
performance metrics from the 10-Fold cross-validation are reported as mean ± standard deviation. Metrics include accuracy, F1-
score, precision, sensitivity, specificity, PR AUC (area under the precision-recall curve), ROC AUC (area under the receiver operating
characteristic curve)

Metric Binary classification Traffic-light system

Accuracy 71.36±7.21 78.87±6.88
F1 Score 71.12±7.28 76.70±7.52
Precision 71.81±7.94 80.06±7.73
Sensitivity 71.32±7.38 76.36±7.45
Specificity 75.28±10.43 90.33±7.55
PR AUC 78.60±7.57 81.42±9.99
ROC AUC 77.63±6.59 80.73±9.37

Low respiratory rate and high indoor artificial illuminance contribute the most to agitation risk

To increase the clinical value of the presented model, we investigated feature importance via SHAP values.
Figure 2 demonstrates the contribution of each feature’s high (red) and low (blue) values to the model prediction.

The most important features for agitation identification were low respiratory rate, high awake ratio, extreme values of
visibility and indoor illuminance (both high and low), low illuminance ratio, high temperature ratio and low indoor
temperatures.

Interactive online tool allows simulation of personalised non-pharmacological interventions

The SHAP framework allows further analysis of the features contributing to an individual prediction. Figure 3 shows
two examples of one positive and one negative event from the same PLwD. Such insights can identify personalised
interventions.

To improve the clinical applicability of such analyses, we designed an interactive tool that allows clinicians to inves-
tigate the effect of contributing features at an individual level. The tool provides a visualisation of the predicted agitation
risk and each feature’s contribution to the estimated risk (Figure 4).

We used this interactive interface to perform in-silico experiments by exploring the effect of non-pharmacological
interventions on the estimated risk of agitation. Through sliding bars, modifications of features can be simulated. The
set of modifiable features investigated included 4 features on room temperature and 4 features on light exposure. By
changing the values of these features, the model is re-run with the updated data, leading to a new agitation risk prediction.
Exemplary, we demonstrated that by only modifying the evening indoor temperature in the bathroom from 18.77 to 22,
the agitation risk for a participant who was initially identified as high risk (Red) changed from 81% to 48%, shifting
them to medium risk (Amber) (Figure 4). Similarly, for a PLwD whose afternoon kitchen illuminance was identified
as a risk factor (Figure S8), reducing the illuminance from 257.7 to 100 resulted in a risk decrease from 77% to 23%
(Figure S9) shifting the risk from medium (Amber) to low (Green). Such in-silico experiments enable clinicians to
investigate personalised interventions.

Discussion

We used a unique dataset from an in-home monitoring dementia care study to identify and investigate the risk of agitation
in PLwD. A LightGBM classifier was employed to ascertain weekly agitation risk. Integration of feature importance anal-
ysis alongside a traffic-light system significantly increased the clinical utility of this ML framework. The development of
an interactive online platform facilitated a comprehensive in-silico examination of non-pharmacological interventions.

The retrospective analysis of weekly agitation risk, a novel approach within our study, provides opportunities to
explore the underlying factors contributing to agitation. When comparing our model performance with existing literature,
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Figure 2: Model interpretability through feature importance analysis. The feature importance calculated using SHAP on
the test sets from the 10-Fold cross-validation is shown in a summary plot. The colour represents the scaled feature value (red
corresponding to higher values, blue to lower). The position of the x-axis represents the contribution of each normalised feature
value to the positive prediction of agitation.

it is crucial to consider that our aim differed from that of previous models, which focused on detecting the onset of
agitation. Khan et al.11 achieved a higher ROC-AUC score compared to our model (77.63% vs. 86.20%). However, their
study had limited data available (n=2, labelled person-days=28) compared to ours (n=63, labelled person-days=4,096).
Compared to our previous study by Palermo et al.12, our proposed model achieved lower sensitivity (71.36% vs. 79.78%)
but higher precision and F1-score. This suggests a decrease in false alerts in our current model, increasing its clinical
applicability. Our proposed model balanced both high sensitivity and specificity, ensuring sensitive screening, while
reducing unnecessary alerts (Table 1, Figure S7).

Addressing fairness and bias, our analysis indicates an absence of bias towards specific groups within our cohort
(see Table S8, Table S9, Figure S2), likely attributable to the personalised pre-processing employed. A large body
of ML research currently focuses on developing accurate methods for personalised pre-processing23. Here, we scaled
each feature to the baseline of each individual participant to accommodate underrepresented groups within our dataset.
By considering individual baselines, we aimed to ensure that normal variations between groups were appropriately
accounted for, without being conflated as indicators of agitation. This is the first study on ML applications for agitation
that investigates model bias and model fairness. By doing so, we offer objective insights into this automated screening
process.

Through rigorous feature analysis, our model’s interpretability and, by extension, its clinical utility have been sig-
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Figure 3: Personalised investigation of modifiable features. Examples from a positive (a) and a negative (b) event from PLwD A
are shown using the SHAP framework. The colour of the arrow corresponds to the contribution: red contributes to agitation presence
and blue contributes to agitation absence. Positive SHAP values contributed to positive predictions (agitated), while negative SHAP
values contributed to negative predictions (non-agitated). The size of the arrow represents the absolute SHAP value, indicating the
magnitude of each feature’s contribution. The number within the arrow corresponds to the normalised feature value.

nificantly enhanced. Previous ML applications for agitation lacked insights into agitation-driving factors due to their
more complex models. By incorporating a wide range of longitudinal data, including sleep, activity, and importantly,
indoor and outdoor environmental factors, which have not been extensively investigated, our model revealed significant
agitation indicators that are not captured in routine clinical practice. Agitation periods in our study exhibited a notably
higher awake ratio during sleep, suggesting heightened alertness and decreased sleep quality. Additionally, we observed
a significantly lower minimum nocturnal respiratory rate, potentially indicating nocturnal breathing cessations (Figure 2,
Table S14). Extreme levels of light exposure, both high and low, were prevalent during agitation periods, alongside a
significantly low illuminance ratio indicative of poor light quality (Figure 2, Table S21). Low temperatures in the bath-
room were also present during agitation periods (Figure 2, Table S20). Our findings are consistent with previous clinical
studies suggesting a link between sleep-disordered breathing and frequent awakenings with agitation24,25. Similarly, our
observations align with prior research reporting associations of extremely low illuminance levels at night with falls and
hallucinations in older adults, potentially exacerbating agitation symptoms26,27. Our finding of reduced light quality influ-
encing agitation risk corresponds to an observational study reporting lower illuminance ratios in areas where PLwD tend
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Example.csv 3.7 KB 
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Agitated 81%
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Figure 4: In-silico Experiment: Adjusting Temperature via an Interactive Interface The interactive interface is shown, which
accepts the input data as a CSV file. The tool provides sliding bars for the modifiable features and presents the predicted risk and
associated probabilities, and a feature importance plot using SHAP values. In the feature importance plot, red bars correspond
to features that contributed towards positive agitation prediction and blue bars correspond to features that predict the absence of
agitation. Each bar is annotated with the corresponding normalised feature value. The user can save the combinations of modifi-
cations they have made to the modifiable parameters. a. Anonymised data from a participant. b. The results after modifying one
of the parameters, morning indoor illuminance in the kitchen. An online version with a synthetic patient data generator is hosted
on huggingface. (see https://huggingface.co/spaces/marirena/AgitationScreening). Access to the tool is currently
restricted. Upon publication of our work, access will become open.
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to become agitated28. Our observation that significantly higher illuminance values contribute to agitation is supported by
studies indicating that high illuminance can cause discomfort due to age-related eye sensitivity29. However, other studies
that administered bright light therapy (BLT) to PLwD have shown mixed effects of high illuminance on agitation30–32.
Notably, illuminance levels during agitation weeks in our study remained relatively dim, with the highest average being
455.18 lux (Table S15), contrasting with BLT protocols that often exceed 1000 lux30–32. Our study showed that lower
indoor temperatures were correlated with agitation, which relates to a previous finding where a deviation from an optimal
temperature of 22.6°C increased agitation behaviours33. Overall, our model identified several known sleep, illuminance
and ambient temperature features associated with agitation, including nighttime disturbances25, sleep-disordered breath-
ing24, poor light quality28 and low ambient temperature33. We further identified features that have not been previously
associated with agitation in the literature, including extreme levels of outdoor visibility, pronounced differences between
indoor and outdoor temperatures, as well as room and time-period specific illuminance and temperature measures, as
illustrated in Figure 2.

Our interpretable ML framework enables the exploration of non-pharmacological strategies to mitigate agitation and
improve the quality of life for PLwD. Such strategies include the diagnosis and treatment of coexisting sleep disorders,
particularly disordered breathing. Additionally, minimising nighttime disturbances is vital for alleviating carer distress,
thereby supporting patients to remain at home and avoid institutionalisation34. Our findings, along with current litera-
ture, suggest that modifiable parameters such as light exposure35 and temperature33 can be tailored for each PLwD to
reduce the risk of agitation. Specifically, relying on natural light or adjusting artificial lighting to mimic natural light
could improve light quality and alleviate agitation symptoms35. Furthermore, maintaining indoor temperatures within
a moderate range33 and avoiding significant fluctuations could enhance comfort and help mitigate agitation episodes.
Interventions targeting lighting levels in kitchen and lounge areas (Figure 4) and adjustments to bathroom and kitchen
temperature could prove beneficial in our cohort (Figure 2).

This study highlighted ways to increase the clinical value of ML models through the inclusion of a traffic-light
system and the development of an interactive interface, facilitating the exploration of personalised interventions. Iden-
tification of risk groups through a traffic-light system enables the effective management of urgent alerts (Red group),
while minimising false alerts. The traffic-light system represents a comprehensive approach beyond binary predictions,
a method not previously explored in other agitation screening models. This approach aligns with the NICE guidelines
for monitoring serious diseases, highlighting its potential applicability in clinical practice36. The development of the first
-to our knowledge- interactive tool for personalised intervention experimentation for agitation in dementia represents a
significant advancement for dementia care. It aligns with current literature advocating for person-centred approaches to
managing agitation in dementia19. By utilising this tool, clinicians can offer practical instructions to study partners for
managing agitation.

The findings of this study are subject to limitations. Firstly, data quality may be compromised as participants reside
with study partners (Table S1), potentially leading to the partners’ behaviour confounding the collected data. Future
studies should use participant-specific data collection methods and investigate the role of study partners in assessing
and managing agitation in PLwD. Secondly, the investigation of the potential effect of light exposure on behaviour is
limited by only including illuminance data. Additional parameters such as spectral irradiance, bandwidth, and position of
individuals relative to the light source have also been reported to influence behaviour37. Thirdly, due to the uncontrolled
environment, other external parameters that are not captured by our data collection could be affecting the behaviour.

Despite the model’s fairness towards specific demographics within our cohort (Figure S2), it is crucial to acknowledge
the lack of diversity in our dataset (Table S1). Addressing this limitation in future studies by recruiting participants from
diverse demographic groups would not only ensure the fairness and generalisability of our framework across different
populations but also allow for the external evaluation of our model.

Further limitations arise from the use of a weekly risk assessment approach. The labels derived from weekly reports
might be inaccurate due to subjective and incomplete recollections of events. Nonetheless, our results demonstrate
that employing ML models carefully and analysing longitudinal patterns allowed us to establish a reliable measure for
identifying agitation patterns and episodes.

A further remark should be made on implied causality. Given our weekly approach to agitation detection, factors
leading to agitation, alongside agitation behaviours, are included in the data. This could potentially render the identified
markers epiphenomena rather than indicators of causality. To establish a causal relationship between environmental and
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sleep features, and agitation, controlled clinical intervention studies are needed. Our interface facilitates the identification
of potential interventions to investigate.

Our next research phase involves conducting a clinical study to implement non-pharmaceutical interventions for ag-
itation within our cohort, leveraging the developed model and tool. By employing this clinical decision-making support
tool, we aim to assess its efficacy and clinical utility, while examining the effectiveness of the identified personalised
interventions in managing agitation in dementia over the long term.

Methods

Study design and population

The Minder study was initiated in collaboration with Imperial College London, the University of Surrey and Surrey
and Borders Partnership NHS Trust20. Eligible study participants included adults older than 50 years with a clinically
ascertained diagnosis of dementia or mild cognitive impairment and current or previous treatment at a psychiatric unit.
In total, 127 participants have been recruited (Table S1). Most participants live with carers or study partners who attend
clinical assessments with them. More details on the study design are available in subsection S1.1.

Data collection

Demographic data were collected during the baseline assessment. In-home monitoring data was continuously col-
lected using low-cost sensors placed in the participants’ homes. These devices include passive infrared sensors (PIR),
sleep mats, and door and kitchen appliance sensors. Here, we included data from the PIR sensors, comprising of
activity, indoor light, and indoor temperature. We also integrated data from the sleep mat, which is placed under-
neath the mattress of each participant and monitors respiratory and heart rates, and nighttime events. Additionally,
we included outdoor light, outdoor temperature, and weather data sourced from the Visual Crossing Weather API
https://www.visualcrossing.com, specifically for the Surrey area where most enrolled participants resided. Lux
illuminance units for outdoor light were derived from solar irradiance values, directly available on Visual Crossing,
using the conversion factor of 12238. For a layout of all sensors used refer to Figure S1.

Clinical psychometric and cognitive assessment tools, including the Neuropsychiatric Inventory (NPI), were admin-
istered within the Minder study, to gather behavioural and cognitive data during regular (3-month) visits. Additionally, a
weekly behavioural monitoring questionnaire process was implemented. During this weekly monitoring process, study
partners and/or participants were contacted to report the presence or absence of participants’ behavioural symptoms
regarding the preceding week. This included symptoms such as agitation, delusions, hallucinations, depression, and
anxiety.

Data labelling

In our study, agitation status was determined in a two-stage verification method, through the responses from the weekly
monitoring process. Trained research staff, having completed both NIHR Good Clinical Practice (GCP) and Valid
Informed Consent training, compiled unstructured notes based on their weekly interactions with carers/ participants
and labelled the weeks for each participant as presence or absence of agitation. We conducted a review to confirm the
correspondence of the notes with the labels (see Table S2). The whole preceding week, including the day of the reporting
itself (8 days), was labelled as a binary target variable representing the presence or absence of agitation. An 8-day rolling
window was applied to consistently extract 8 days of data preceding an event even if the time between events was smaller
than 8. This approach was chosen to accurately simulate the model’s operation in real-world use. The weekly nature
of the labels allowed for the observation of the period surrounding agitation episodes, facilitating the identification of
broader agitation patterns and factors contributing to agitation. The weekly monitoring responses were chosen over the
more detailed NPI ones, due to the weekly granularity enabling us to use the labels in association with passively collected
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sensor data. Using weekly labels further has the potential to reduce participant burden by minimising the frequency of
contact for agitation events’ verification and questionnaire administration.

For our experimentation (Figure 1), we used the labelled data collected in the Minder study, from 15/07/2021 to
16/03/2023. To develop the ML model, we included individuals for whom the presence or absence of agitation episodes
was recorded, leading to a final sub-cohort of 63 (41 male and 22 female participants) with a total of 242 positive and
270 negative agitation-labelled weeks. The demographics of the agitation sub-cohort are provided in Table S1.

Data exploration and pre-processing

To determine which source of light and temperature (indoor and outdoor) data to include at different times during the day,
we used PIR, door sensors, and the sleep mat to determine the location of the subject. Only indoor light and temperature
values that corresponded to simultaneous (resolution = 1 hour) activity data from PIR sensors were retained. Outdoor
values (daily averages) were retained only for days when there was an indication that the participant was not indoors.
This was confirmed by only retaining days for which there was use of the front or back door and otherwise inactivity in
the house. Indoor light, indoor temperature, and activity data were aggregated over time windows of 6 hours, representing
different periods of the day: morning, afternoon, evening, and night, to capture fluctuations in environmental variables
and activity signatures in the house throughout the day.

In our exploratory analysis, we conducted two-sided paired Student’s T-tests to compare various extracted measures
describing sleep, illuminance and ambient temperature between agitation and non-agitation weeks. For this, we only
included participants who had both positive and negative agitation events (n=29) (Table S1).

We handled each data modality separately, which involved retaining only those events for which data across all
modalities were available. Missing indoor light, indoor temperature, sleep, and activity labelled data were imputed with
the k-nearest neighbours algorithm (k = 5) separately for each participant. For missing values that remained, iterative
imputation was performed using Bayesian Linear Ridge regression and initial strategy the median, with 10 iterations on
unlabelled data from all participants. For the outdoor light and temperature data, when there was no outdoor activity
suggested from the data due to challenges in integrating data from the different sources (activity, sleep, and door sensor),
we used the average outdoor values from the entire week instead.

Z-score normalisation was performed to scale each participant’s data according to their individual baseline. This in-
volved computing the individual baseline mean and standard deviation (SD), by considering both labelled and unlabelled
data (32,896 person-days) collected from each participant throughout their entire participation in the Minder study. This
scaling procedure was undertaken to mitigate potential individual differences among participants and ensure a standard-
ised and fair comparison across the dataset. 7 participants in total lacked sufficient weekly data to compute reliable
statistical properties for specific combinations of time-period and room features (e.g. Bathroom night illuminance or
Kitchen night temperature). The missing data varied among participants, with each individual exhibiting gaps in differ-
ent features. This variability stemmed from differences in home signature, behaviour, and duration of study participation
among participants. To address this, we substituted the missing average or SD feature value with the average statistical
properties derived from other participants.

Feature Selection

We derived 114 variables from the sensor data, including sleep, activity, indoor and outdoor light exposure, indoor
and outdoor temperature, and seasonality (Table S3). Feature selection was performed using the SHapley Additive
exPlanation (SHAP)22 values, computed by a Random Forest Classifier (RF), using 10 folds. All data splits were stratified
and were performed with a grouping strategy based on individual participant ID (ID-grouping), preventing data leakage.
This resulted in 20 selected features considered for further modelling. More information on feature selection can be
found in section S1.3.1.

Machine learning models

To detect agitation, we compared the performance of RF39, Light Gradient-Boosting Machine (LightGBM)40 Extreme
Gradient Boosting (XGBoost)41, Adaptive Boosting (ADABoost)42, Support Vector Machine (SVM)43, Logistic Regres-
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sion (LR)44 and a multilayer-perceptron (MLP). Details are provided in subsections S1.2, S1.3.
The hyperparameters for the models were tuned using grid search on stratified 5-Fold train/validation splits, with the

model achieving the highest sensitivity on the validation data selected as the most suitable model (Details on hyperpa-
rameters are provided on Table S7). Model performance was evaluated using stratified, ID-grouping 10-Fold train/test
splits. Sensitivity was prioritised as the primary metric to enhance the model’s capability to sensitively detect instances
of agitation, as desired for medical applications. Performance of the 7 models on the 10 test sets, was compared using
two-sided paired T-tests (N=10). The best-performing model (LightGBM) was identified and used for further analysis.

Risk stratification

To further assist clinical decision-making, a traffic-light-based system was developed, which separated the agitation risk
into three categories based on thresholds: Green (low risk), Amber (medium risk), and Red (high risk).

The thresholds were determined via a 10-fold nested stratified cross-validation approach on the LightGBM, incor-
porating ID-grouping to ensure that participants used to determine the thresholds were distinct from those used for
evaluation. The inner 10-fold cross-validation determined thresholds based on validation set performance, while the
outer 10-fold cross-validation evaluated model performance on independent test sets post-threshold application.

We optimised the traffic light model to have a balanced inclusion ratio between the Amber, Green and Red groups.
By expanding the boundaries of the Amber group, the false alerts would be decreased and sensitivity would be increased.
However, a disproportionate allocation of the results to the Amber group would decrease the specificity of the model.

To avoid this, we focused on jointly increasing sensitivity and specificity, by maximising Youden’s J index45. To
achieve this, we varied the stratification thresholds with a resolution of 10% and computed the sensitivity and specificity
of the predictions on the Green (no agitation predicted) and Red groups (agitation predicted) in the validation sets
(Figure S5). To inform the range of the thresholds, we used a source different from the weekly labels used for model
development to avoid circularity. Specifically, we used the NPI questionnaire responses, administered to the entire
Minder cohort from July 2020 to March 2023, every three months (Table S10, subsection S1.4.3). The rate of Red (Rr)
alerts was determined based on the agitation frequency domain reported in the NPI by the carers. The rate of Green alerts
(Gr) was defined, due to agitation episodes being less frequent than their absence (see section S1.4.3). The thresholds
were filtered based on the following criteria:

• Ensuring that the Rr is:
15% ≤ Rr ≤ 25%

• Ensuring that the Gr is:
Gr ≥ 25%

• Maximising Youden’s J index, defined as Sensitivity + Specificity — 1

When considering all thresholds adhering to these criteria on the validation sets, each average threshold was com-
puted, resulting in 10 averages. During model evaluation on the test sets, the threshold from each respective validation
set was used.

The average thresholds from all 10 folds were:

• Green: [0.00, 32.25]

• Amber: [32.25, 78.14]

• Red: [78.14, 100.00]
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Interactive interface

We created an interactive interface using the Gradio library46. The developed tool allows uploading patient data as a CSV
file to compute weekly agitation risk based on the trained ML model. The corresponding risk group from the traffic-
light system is displayed and feature contributions are shown using the SHAP values. We defined a set of modifiable
factors: {Kitchen afternoon and night illuminance, Lounge night illuminance, illuminance ratio (average indoor:average
outdoor), Kitchen morning temperature,Kitchen night temperature, Bathroom evening temperature, temperature ratio
(average indoor:average outdoor}. These can be adjusted on the interface using sliding bars enabling a simulation of
the effect of non-pharmacological interventions in a personalised framework. The user can download their applied
modifications to facilitate the design of interventions. For our in-silico experimentation within this paper, we utilise the
tuned and trained model from the corresponding fold to which the participant examined belongs in the test set. The tool
is hosted on huggingface. The online version employs the LightGBM model tuned and trained on all data available from
the 63 participants (https://huggingface.co/spaces/marirena/AgitationScreening). To ensure data privacy,
we include a synthetic data generator in the online version. (Access to the tool is currently restricted. Upon publication
of our work, access will become open.)
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Data pre-processing

1. Data exploration & statistical analysis
 

2. Alignment of environmental data with 
activity, sleep, door sensors data

 
3. Personalised missing values imputation

 
4. Personalised feature scaling 

 Machine learning model training

1.  Evaluation and comparison of tree-based 

models on dataset with 114 features

2.  Performing feature selection using best 

performing classifier based on sensitivity

3.  Evaluation of linear and non-linear classifiers on 

dataset with selected features and selection of best 

performing classifier based on sensitivity

High risk of agitation

Medium risk of agitation

Low risk of agitation

Traffic light-based stratification system 

Non-pharmacological personalised
 in-silico interventions

Clinician-friendly interactive interface

Clinical value

Model evaluation

1. Fairness analysis
 

2. Calibration analysis

3. SHAP values computation

Z ZZ

Data

Clinical decision-making
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Number of transitions

Bathroom evening temperature
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Final Risk: 81%
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Use via API · Built with Gradio

Weekly agitation screening toolWeekly agitation screening tool

Change the modifiable parameters to see how agitation risk changes

Return to original patient data Save these combinations of parameters

Upload patient data

Example.csv 3.7 KB 

Light exposure

140.08

305.10

19.722

0.0451

Ambient temperature

19.5793

17.2916

22

1.639958

Screen patient for agitation

Show each feature's contribution for this prediction

Non-agitated

Non-agitated 52%

Agitated 48%

There is a medium risk that the patient was agitated the past week. During the previous week:
The temperature in the bathroom in the evening was higher than usual.
The time of sunset was earlier than usual.
The indoor light exposure in the kitchen in the a�ernoon was lower than usual.

Patient screening

Interpretation

Mean a�ernoon illuminance in kitchen

Mean night illuminance in kitchen

Mean night illuminance in lounge

Ratio (indoor:outdoor illuminance)

Mean morning temperature in kitchen

Mean night temperature in kitchen

Mean evening temperature in bathroom

Ratio (indoor:outdoor temperature)

23/07/2024, 22:35 Gradio

127.0.0.1:7872 1/1

Use via API · Built with Gradio

Weekly agitation screening toolWeekly agitation screening tool

Change the modifiable parameters to see how agitation risk changes

Return to original patient data Save these combinations of parameters

Upload patient data

Example.csv 3.7 KB 

Light exposure

140.08

305.10

19.722

0.0451

Ambient temperature

19.5793

17.2916

18.7679

1.639958

Screen patient for agitation

Show each feature's contribution for this prediction

Agitated

Agitated 81%

Non-agitated 19%

There is a high risk that the patient was agitated the past week. During the previous week:
The sky visibility was lower than usual.
The temperature in the kitchen at night was lower than usual.
The variability in the minimum respiratory rate through the week was lower than usual

Patient screening

Interpretation

Mean a�ernoon illuminance in kitchen

Mean night illuminance in kitchen

Mean night illuminance in lounge

Ratio (indoor:outdoor illuminance)

Mean morning temperature in kitchen

Mean night temperature in kitchen

Mean evening temperature in bathroom

Ratio (indoor:outdoor temperature)

23/07/2024, 22:33 Gradio

127.0.0.1:7872 1/1

a
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