1	Hot Spring Residency and Disease Association:
2	a Crossover Gene-Environment Interaction (GxE) Study in Taiwan
3	
4	Hsin-Yu Wu ^{a,b#} , Kao-Jung Chang ^{a,c,d,e#} , Wei Chiu ^{a,b*} , Ching-Yun Wang ^{f*} ,
5	Yu-Tien Hsu ^g , Yuan-Chih Wen ^{b,h,i} , Pin-Hsuan Chiang ^{a,j,k} , Yu-Hsiang Chen ^{a,b} ,
6	He-Jhen Dai ^{a,b} , Chia-Hsin Lu ^{a,b} , Yi-Cheng Chen ^{a,b} , Han-Ying Tsai ^{a,j,k} ,
7	Yu-Chun Chen ^{b,j,k,l,m} , Chih-Hung Hsu ^{n,o} , Ai-Ru Hsieh ^k , Shih-Hwa Chiou ^{a,d,p} ,
8	Yi-Ping Yang ^{a,q#} , Chih-Chien Hsu ^{a,b,d+}
9	# contributed equally, * contributed equally, + denotes the corresponding author
10	
11	^a Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2,
12	Shipai Rd., Beitou District, Taipei 11217, Taiwan
13	^b School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2,
14	Linong St. Beitou Dist., Taipei 112304, Taiwan
15	^c Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155,
16	Sec. 2, Linong St. Beitou Dist., Taipei 112304, Taiwan
17	^d Department of Ophthalmology, Taipei Veterans General Hospital, No.201, Sec. 2,
18	Shipai Rd., Beitou District, Taipei 11217, Taiwan
19	^e Department of Medical Education, Taipei Veterans General Hospital, No.201, Sec. 2,
20	Shipai Rd., Beitou District, Taipei 11217, Taiwan
21	^f Department of Medical Education, Taichung Veterans General Hospital, No. 1650,
22	Taiwan Boulevard Sect. 4, Taichung 407219, Taiwan
23	^g Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public
24	Health, 677 Huntington Ave, Boston, MA 02115, USA
25	^h Department of Occupational Medicine and Clinical Toxicology, Taipei Veterans
26	General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei 11217, Taiwan
27	ⁱ Institute of Environmental and Occupational Health Sciences, National Yang Ming
28	Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei 112304,
29	Taiwan.
30	^j Big Data Center, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd.,
31	Beitou District, Taipei 11217, Taiwan
32	^k Department of Statistics, Tamkang University, No.151, Yingzhuan Rd., Tamsui Dist.,
33	New Taipei 251301, Taiwan
34	¹ Institute of Hospital and Health Care Administration, National Yang Ming Chiao
35	Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei 112304, Taiwan
36	^m Department of Family Medicine, Taipei Veterans General Hospital, No.201, Sec. 2,
37	Shipai Rd., Beitou District, Taipei 11217, Taiwan
38	ⁿ Women's Hospital, The Fourth Affiliated Hospital, and Department of

- 39 Environmental Medicine, Zhejiang University School of Medicine, No. 866,
- 40 Yuhangtang Rd, Hangzhou 310058, China
- 41 ^o Zhejiang University School of Medicine, Hangzhou 310006 Institute of Genetics,
- 42 International School of Medicine, Zhejiang University, No. 866, Yuhangtang Rd,
- 43 Hangzhou 310058, China
- ⁴⁴ ^P Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec.
- 45 2, Linong St. Beitou Dist., Taipei 112304, Taiwan
- 46 ^q Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical
- 47 Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St.
- 48 Beitou Dist., Taipei 112304, Taiwan
- 49

50 E-mail Address of Each Author

- 51 Hsin-Yu Wu: hsinyucindy.md10@nycu.edu.tw
- 52 Kao-Jung Chang: michaelchang1109@gmail.com
- 53 Wei Chiu: alv320429@gmail.com
- 54 Ching-Yun Wang: wertherwang@gmail.com
- 55 Yu-Tien Hsu: yuh599@mail.harvard.edu
- 56 Yuan-Chih Wen: ck990595@gmail.com
- 57 Pin-Hsuan Chiang: s94120506@gmail.com
- 58 Yu-Hsiang Chen: ha2martinchen6050@gmail.com
- 59 He-Jhen Dai: janet527126@gmail.com
- 60 Chia-Hsin Lu: annabeth.lu.md12@nycu.edu.tw
- 61 Yi-Cheng Chen: cyc1214.md12@nycu.edu.tw
- 62 Han-Ying Tsai: hanvvww@gmail.com
- 63 Yu-Chun Chen: ycchen22@vghtpe.gov.tw
- 64 Chih-Hung Hsu: ch_hsu@zju.edu.cn
- 65 Ai-Ru Hsieh: airudropbox@gmail.com
- 66 Shih-Hwa Chiou: shchiou@vghtpe.gov.tw
- 67 Yi-Ping Yang: molly0103@gmail.com
- 68 Chih-Chien Hsu: chihchienym@gmail.com
- 69
- 70 Correspondence:
- 71 Chih-Chien Hsu, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217 Taipei City,
- 72 Taiwan; chihchienym@gmail.com, +886-02-28757325

Abstract

74 Background

73

75 The advent of genetic biobanking has powered gene-environment interaction (GxE) 76 studies in various disease contexts. Therefore, we aimed to discover novel GxE 77 effects that address hot spring residency as a risk to inconspicuous disease 78 association.

79 Methods

80 A complete genetic and demographic registry comprising 129,451 individuals was 81 obtained from Taiwan Biobank (TWB). Geographical disease prevalence was 82 analyzed to identify putative disease association with hot-spring residency, 83 multivariable regression and logistic regression were rechecked to exclude 84 socioeconomic confounders in geographical-disease association. Genome-wide 85 association study (GWAS), gene ontology (GO), and protein-protein interaction (PPI) 86 analysis identified predisposing genetic factors among hotspring-associated diseases. 87 Lastly, a polygenic risk score (PRS) model was formulated to stratify environmental 88 susceptibility in accord to their genetic predisposition.

89 Results

90 After socioeconomic covariate adjustment, prevalence of dry eye disease (DED) and 91 valvular heart disease (VHD) was significantly associated with hot spring distribution. 92 Through single nucleotide polymorphisms (SNPs) discovery and subsequent PPI 93 pathway aggregation, CDKL2 and BMPR2 kinase pathways were significantly 94 enriched in hot-spring specific DED and VHD functional SNPs. Notably, PRS predicted disease well in hot spring regions (PRS_{DED}: AUC=0.9168; PRS_{VHD} 95 96 AUC=0.8163). Hot spring and discovered SNPs contributed to crossover GxE effect 97 on both DED (relative risk $(RR)_{G+E}=0.99$; $RR_{G+E+}=0.35$; $RR_{G+E+}=2.04$) and VHD 98 $(RR_{G+E}=0.99; RR_{G+E}=0.49; RR_{G+E}=2.01).$

99 Conclusion

We identified hot-spring exposure as a modifiable risk in the PRS predicted GxEcontext of DED and VHD.

102

103 Keywords

- 104 Gene-environment association, Hot spring, Dry eye disease, Valvular heart disease,
- 105 Genome-wide association study, Taiwan biobank

107 **1. Introduction**

108	Gene-environment interaction (GxE) embodies a pathogenic context in which the
109	impact of environmental exposures modifies our susceptibility to genetic mutations
110	(Hunter 2005). Although the GxE risk addition effects are reported to be potent and
111	widely existed, GxE effects are often hard to discover and therefore overlooked from
112	the scope of general pathophysiology. To this end, the advent of big data and the genetic
113	biobanking era has enabled diverse GxE studies in the development of complex disease
114	(McAllisteret al. 2017). While environmental stimuli such as ultraviolet radiation, air
115	pollutants (such as PM2.5, CO, and sulfates), and environmental toxins have been
116	extensively studied in the context of GxE mechanisms (Virolainenet al. 2022), scant
117	attention has been paid to the environmental effect of hot spring exposure-which
118	allegedly can bring forth health benefits, hence we set goal to understand the hot-spring
119	related GxE interactions.
120	Throughout ancient cultures ranging across the empire of Rome, China, Japan, and

the islanders of Austronesian, hot springs bathing was deemed to improve health, gain cosmetic benefit, and expand life. Recent scientific studies have gathered complementary evidence indicating that hot spring bathing could prevent diseases, alleviate musculoskeletal discomfort, modulate nerve and endocrine systems, and promote immunity against chronic diseases (such as whip syndrome, rheumatoid

126 arthritis (RA), cancer, hemorrhoids, and skin diseases) (Bidondeet al. 2014; 127 Verhagenet al. 2015). Moreover, Onsen therapy was certified by the Japanese Society 128 for Complementary and Alternative Medicine (JCAM) (Serbulea and 129 Payyappallimana 2012), and was subsidized by health insurance in European 130 countries (such as France, Germany, and Italy). 131 Hot spring is a geothermal heated water body that exerts indirect health influences 132 through remodeling the local atmosphere and local hydrology. Bioactive gaseous substances such as H₂S generally range between 1.0 and 3.0 μ g/m³ in urban areas, 133 whereas the H₂S level spiked as high as 1500 μ g/m³ in the residential vicinity of 134 135 geothermal (Goriniet al. 2020). The exact effect of these bioactive geothermal-released 136 substances was not fully understood, but independent pilot studies had reported 137 positive association between H_2S exposure and hospitalization events related to 138 circulatory systems (Standardized Hospitalization Ratios (SHR)=1.04; 95% 139 CI=1.01–1.07) (Nuvoloneet al. 2019). Consistently, another geothermal epidemiology 140 study in Italy also showed that the increased H_2S exposure in men could result in higher 141 cardiovascular mortality rates (odds ratio (OR)=1.22, 90% CI=1.03-1.44) (Nuvoloneet 142 al. 2020). Furthermore, a cohort study in Rotorua (New Zealand) showed that dwelling 143 in geothermal emission areas was associated with increased malignancy rate and a 1.26 144 (95% CI=1.14–1.38) standardized incidence ratio (SIR) for cataract.(Bateset al. 1998)

145	While hot spring bathing was reported to bring folk-healing benefits to musculoskeletal
146	diseases, hot spring residency was also linked to cardiovascular threats, therefore the
147	health influence of hot spring exposure remains controversial to date.
148	In this study, we set goal to investigate the crossover effect between hot spring
149	residency and genetic predisposition. To be specific, we performed a three-component
150	study that included environmental association discovery, variant-disease association
151	discovery, and GxE interaction analysis to delineate the environmental effects of hot
152	spring exposure on orthopedic, ophthalmic, and cardiopulmonary diseases.
153	

154 **2. Materials and Methods**

155 2.1.Study Design

This is a three-component study that includes environmental association discovery (demographic analysis and logistic regression model), variant-disease association discovery (exposure stratified GWAS, protein □ protein interaction-network analysis and polygenic risk score), and the GxE interaction analysis (crossover GxE effects and multivariate accumulative analysis).

161

162 2.2.Study Population

163 Nation-wide TWB1 and TWB2 (https://www.twbiobank.org.tw/) participant registry

164	was obtained. The 129451 individuals were enrolled from the general population by
165	TWB1 and TWB2 between 2016 to 2023. At the time of entering the cohort, all
166	participants were cancer-free and were obligated to complete a structured questionnaire
167	that documented: sociodemographic characteristics, lifestyle, dietary habits,
168	environmental exposures, and major medical histories (Fanet al. 2008). The disease
169	case labels in TWB were self-reported, and control cases were designated by
170	disease-free individuals that were above 60 years old.
171	
172	2.3.Outcomes of Interest
172 173	2.3.Outcomes of Interest The primary outcomes of interest of this study was set on hot-spring related orthopedic
172 173 174	2.3.Outcomes of InterestThe primary outcomes of interest of this study was set on hot-spring related orthopedicdiseases (osteoporosis, arthritis, gout), ophthalmic diseases (cataracts, glaucoma, dry
172 173 174 175	2.3.Outcomes of InterestThe primary outcomes of interest of this study was set on hot-spring related orthopedicdiseases (osteoporosis, arthritis, gout), ophthalmic diseases (cataracts, glaucoma, dryeye disease; DED, retinal detachment; RD, floaters, blindness, color vision deficiency;
172 173 174 175 176	 2.3.Outcomes of Interest The primary outcomes of interest of this study was set on hot-spring related orthopedic diseases (osteoporosis, arthritis, gout), ophthalmic diseases (cataracts, glaucoma, dry eye disease; DED, retinal detachment; RD, floaters, blindness, color vision deficiency; CVD and age-related macular degeneration; AMD), cardiopulmonary diseases (asthma,
172 173 174 175 176 177	 2.3.Outcomes of Interest The primary outcomes of interest of this study was set on hot-spring related orthopedic diseases (osteoporosis, arthritis, gout), ophthalmic diseases (cataracts, glaucoma, dry eye disease; DED, retinal detachment; RD, floaters, blindness, color vision deficiency; CVD and age-related macular degeneration; AMD), cardiopulmonary diseases (asthma, valvular heart disease; VHD, coronary artery disease; CAD, arrhythmia,
172 173 174 175 176 177 178	 2.3.Outcomes of Interest The primary outcomes of interest of this study was set on hot-spring related orthopedic diseases (osteoporosis, arthritis, gout), ophthalmic diseases (cataracts, glaucoma, dry eye disease; DED, retinal detachment; RD, floaters, blindness, color vision deficiency; CVD and age-related macular degeneration; AMD), cardiopulmonary diseases (asthma, valvular heart disease; VHD, coronary artery disease; CAD, arrhythmia, cardiomyopathy, congenital heart disease, hyperlipidemia, hypertension, stroke,

180

181 **2.4.Exposure of Interest**

182 The exposure of interest in this study includes hot spring area residency and

183 polygenetic underlying with adjustment of socioeconomic confounder.

184	For which we divided hot-spring and non-hot-spring residential areas by the
185	proclaiment of the National water resource department. The hot spring definitions were:
186	water body heated above 30 celsius with total dissolved solid >500 mg/L and meeting
187	one additional minor criterions in category (I-a) $HCO_3^- > 250 \text{ mg/L}$ (I-b) $SO_4^{2-} > 250$
188	mg/L (I-c) Cl $^{-}$ and other halides >250 mg/L , or (II-a) free CO $_{2}$ >250 mg/L (II-b) total
189	sulfide >0.1 mg/L (II-c) total Fe ²⁺ and total Fe ³⁺ >10 mg/L (II-d) Radium >10 ⁻⁸ curie/L.
190	The polygenetic underlying was primarily assessed through variant-disease association
191	(VDA), which identified disease-associated SNPs through GWAS. Secondly,
192	independent polygenic risk score (PRS) models were established based upon the
193	GWAS summarized SNP lists, whereon each PRS predicts the corresponding disease
194	risk for hot spring residents and non-hot spring residents. The functional PRS SNP
195	genes were further analyzed with gene ontology (GO), co-expressed signaling
196	pathways, and protein D protein interaction (PPI) network analysis.

197

198 **2.5.**Adjusted Covariates for Hot spring Exposure and Disease Outcome

We first performed descriptive analysis. Continuous data are presented as means with standard deviation, and categorical data are presented as proportions. Our study used the Student's t-tests (normally distributed data) or Wilcoxon tests (non-normally

202 distributed data) for continuous variables and chi-squared tests or fisher exact test for

203	categorical va	riables between	two grou	ups (hot sj	pring resid	lents vs controls).
-----	----------------	-----------------	----------	-------------	-------------	---------------------

204	To find hot spring exposure related diseases, odds ratio (OR) and logistic regression
205	were conducted to detect disease association with hot spring residency, a subsequent
206	multivariate analysis was performed to solidify disease association under the
207	consideration of covariate adjustments. Since hot springs are mainly distributed in
208	townships with deviated sex ratios, imbalanced age composition, sparse medical
209	institutes, and less income, these socioeconomic and demographic covariates may
210	confound with the relationship between hot spring exposure (E) and the disease
211	outcome (D) (Supplementary Table 1 and Figure 1).
212	To specify the data source of the adjusted covariates: the demographic covariates,
213	including age, sex ratio and total resident counts, were recorded from the
214	Directorate-General of Budget, Accounting and Statistics. Total comprehensive income
215	was collected from the released tolls of the Ministry of Finance
216	(https://www.mof.gov.tw/). Accessible medical resources were estimated by health
217	insurance index (sum of health insurance benefits spent among all the hospitals in the
218	township) and medical visit index (sum of annual medical visits among all the hospitals
219	in the township) from the auditory releases of the Ministry of Health and Welfare
220	(https://data.gov.tw/dataset/39280). Continuous variables that did not follow a normal

221	distribution were provided with the mean±standard deviation (SD) and quartile-based
222	(min, Q1, Q2, Q3, and max) categorical conversion. The first category was pinned as
223	reference, then the effect of covariates was evaluated by univariable and multivariable
224	logistic regression models.
225	Univariate logistic regression analyses were used to show the significant and
226	independent role of the different variables in determining outcome (including arthritis,
227	floaters, DED, and VHD) effects. Multivariate logistic regression analyses were used to
228	control for confounding variables. All variables were then used for a multivariate
229	logistic regression model with stepwise selection for constructing prediction models.
230	Since in logistic regressions, estimated coefficients cannot be interpreted as a measure
231	of the contribution of the effect, we have also calculated marginal effects. The marginal
232	effect reflects the association between a small change in a variable and the alteration in
233	probabilities across each outcome. These marginal effects were computed while
234	keeping all other variables constant at the mean of the entire sample. Subsequently,
235	multivariable logistic regression analyses were employed to investigate potential
236	gene-environment interactions, utilizing the most suitable genetic model available. The
237	predictive performance of the constructed predictive models was evaluated using
238	sensitivity, specificity, and areas under the receiver operating characteristic (ROC)
239	curves, the AUC value. All statistical analyses were performed using R version 4.1.1.

240 The tests were $2\square$ tailed, and *p*-value $\square < 0.05$ was taken as statistically significant.

241

242 **2.6.Variant-disease Association Discovery**

243 All SNPs discoveries were performed on PLINK (version 1.9 downloaded from 244 http://zzz.bwh.harvard.edu/plink/). SNPs quality control was conducted with the 245 following criteria: (i) SNPs missing in more than 2% of participants (ii) individuals 246 missing more than 5% SNP data (iii) SNPs with minor allele frequency (MAF) under 247 0.05 (iv) SNPs deviating from Hardy–Weinberg equilibrium (p-value <0.05) (v) 248 individuals with identity by descent (IBD) over 0.125. 249 GWAS identified disease-specific SNPs for populations living in townships with and 250 without hot springs. SNPs were further screened by pairwise squared correlation (r^2) 251 less than 0.01 that linkage disequilibrium (LD) was estimated with a window size of 252 4000 bp. Functional SNP genes were labeled as GA for significant SNPs from all 253 populations, G_N for significant SNPs from non-hot spring populations; G_H for 254 significant SNPs from hot spring populations, and G_h indicated hot spring-specific 255 functional SNP genes G_H that did not overlap in G_A and G_N . Furthermore, based upon 256 the GWAS summarized SNP lists, each PRS predicts the corresponding disease risk for 257 hot spring residents and non-hot spring residents.

258 The functional PRS SNP genes were further analyzed on Enrichr (Chenet al. 2013;

259	Kuleshovet al. 2016; Xieet al. 2021) to attribute gene ontology (GO) and the ARCHS4
260	Kinases Coexp library was applied to identify co-expressed signaling pathways.
261	Protein \Box protein interaction (PPI) network analysis of G_h was further evaluated in the
262	Search Tool for Retrieval of Interacting Genes/Proteins (STRING version 11.5
263	download from http://string-db.org/)(Szklarczyket al. 2018) with a confidence level of
264	0.400 (medium) based on the find of: experiments, databases, co-expression,
265	neighborhood, gene function, and co-occurrence. Then, the activated pathways in the
266	selected PPI network were further calculated with the Reactome 2022 database.
267	
268	2.7.GxE Interaction Analysis
269	Crossover GxE effects between environmental conditions and individual genetic
270	variants were assessed by relative risk (RR) with hot spring and PRS score as binary

271 variables: living in township with/without hot spring and high/low PRS score.

Visualized by nomogram, multivariate accumulative analysis based on logistic regression model estimated predictability of confounders (sex) and GxE effect. Decision curve analysis (DCA) was performed to evaluate a clinical "net benefit" for nomogram prediction models in comparison to default strategies of treating all or no patients. Net benefit is calculated across a range of threshold probabilities, defined as the minimum disease risk at which further intervention would be warranted.

- 278 Net benefit = sensitivity \times prevalence $(1 \text{specificity}) \times (1 \text{prevalence}) \times w$
- where w is the odds at the threshold probability.(Vickerset al. 2019)

280

281 **3. Results**

- 282 **3.1.Finding Hot Spring Associated Disease**
- 283 This study included 129,451 participants with 4517 individuals dwelled in the
- townships with hot spring outcrops; their demographic characteristics were detailed as
- 285 in Table 1.

	Hot spring residents (n=4517)	Control (n=124934)	Number (%)	<i>p</i> -value
Age (years)	48.56±10.94	49.76±10.96	129451 (100.0)	< 0.001
Body mass index(kg/m ²)	24.03±3.40	24.00±3.40	126783 (97.9)	0.682
Water daily intake (ml)	1286.80±633.15	1255.12±685.91	21735 (16.8)	0.07
Sex				
Male (%)	1658 (36.7)	45066 (36.1)	120451 (100.0)	0.202
Female (%)	2859 (63.3)	79868 (63.9)	129431 (100.0)	0.392
Alcoholism				
No or seldom (%)	4122 (91.3)	114134 (91.4)		
Abstain (%)	111 (2.5)	3268 (2.6)	129338 (99.9)	0.578
Yes (%)	282 (6.2)	7421 (5.9)		
Smoking experience				
Yes (%)	3213 (71.2)	90795 (72.7)	120404 (100.0)	0.025
No (%)	1301 (28.8)	34095 (27.3)	129404 (100.0)	0.025
Water origin				
Tap water (%)	77 (1.7)	2716 (2.2)		
Shallow well water (%)	0 (0.0)	13 (0.0)		
Deep well water (%)	9 (0.2)	126 (0.1)	21058 (17.0)	0.018
Mineral water (%)	35 (0.8)	1125 (0.9)	21730 (17.0)	0.016
Filtered water (%)	390 (8.6)	15934 (12.8)		
Other (%)	49 (1.1)	1484 (1.2)		

Table 1: Demographic Information of the Participants.

288 Among the included disease spectrum, four diseases (arthritis, floaters, dry eye

289 disease and valvular heart disease) showed higher prevalence in hot-spring areas.

290 (Figure 1a and 1b). However, the coefficient of determination of these diseases were

291 not significantly associated with hot spring distribution (Figure 1c; R^2 =4.40% in

arthritis, 2.51% in floaters, 1.54% in DED, and 4.53% in VHD)

293

294 Figure 1: Demographic Analysis Finding Environmental (E) Effect.

(a) Comparing the disease prevalence between hot spring region and non-hot spring region. The dashed
line indicated the same disease prevalence in both regions. (b) Odds ratio (OR) indicating associations
between hot spring geology and disease prevalence with 95% confidence interval (CI). The dashed line
indicated OR=1.0 (c) Prevalence distribution of hot spring-related disease. The dots indicated the
location of the hot spring outcrop. DED, dry eye disease; RD, retinal detachment; CVD, color vision
deficiency; AMD, age-related macular degeneration; VHD, valvular heart disease; CAD, coronary
artery disease; GD, gestational diabetes (GD); T1D, type 1 diabetes; and T2D, type 2 diabetes.

302 After univariate and multivariate logistic regression, DED (multivariable: OR=0.78,

303 95% CI=0.65-0.92; stepwise: OR=0.81, 95% CI=0.679-0.961) and VHD

304 (multivariable: OR=1.56, 95% CI=1.20-2.03; stepwise: OR=1.52, 95% CI=1.20-1.91)

305	stood out as the two remaining hot spring-associated diseases (<i>p</i> -value<0.05); whereas
306	the hot spring association with arthritis (p-value=0.0589 for multivariable;
307	<i>p</i> -value=0.1496 for stepwise) and floaters (<i>p</i> -value=0.6807 for multivariable;
308	p-value=0.9935 for stepwise) were not statistically significant after adjusting for
309	social environmental factors (Figure 2). In these multivariate regression models, the
310	average marginal effects (AMEs) of hot spring were statistically significant for both
311	DED (AME=-0.23, 95% CI=-0.40 -0.07, p-value=0.0060) and VHD (AME=0.41,
312	95% CI=0.17-0.64, p-value=0.0008). Moreover, the incorporation of hot spring
313	exposure information enhanced the stepwise logistic regression model performance in
314	DED and VHD prediction (Table S2). These statistic results indicated a robust
315	association between disease (DED and VHD) risk modification and hot spring
316	distribution.

317 ""

318 Figure 2: Logistic Regression Models Evaluating Socioeconomic (S) Confounding Effects.

The dashed line indicated odds ratio (OR)=1.0 DED, dry eye disease; and VHD, valvular heart disease.

321 **3.2.Variant-disease Association Discovery**

322 We applied GWAS (SNP list: Supplementary Table 3-8) and Manhattan plot to 323 visualize the genetic predisposition of the DED and VHD. Interestingly, from the 324 designated subgroup analysis, we noted that the significant (*p*-value $<10^{-5}$) SNPs from 325 non-hot spring subgroup were partial overlay with the parental all participants (for 326 instance, DED: AAK1 rs6755439, rs60177156, rs7131682, rs78027155, rs10438549, 327 *EPIC1* rs62227770, and so on; VHD: rs78714474 and *FOXO3* rs3813498) but were 328 distinct to the hot spring subgroup findings. This SNP discovery discrepancy indicated 329 a potential GxE effect (Figure 3).

Figure 3: Manhattan Plots of Genome-wide Association Studies (GWASs) among "All",
"Non-hot Spring", and "Hot Spring" Gene Sets.

- (Figure 4a). At *p*-value < 0.005, the predict AUC for DED hot spring and VHD hot
- spring subgroup were 0.92 and 0.82 respectively. However, in the non-hot spring
- subgroup, the model does not gain AUC increment over the enrolled SNPs.
- 338 After adjusting LD threshold ($r^2 < 0.01$) and genome-wide significance threshold
- 339 (*p*-value $< \Box 0.005$) (Supplementary Figure 2), the VDA results were aggregated and

Blue lines represented p-value = 10^{-4} while red lines represented p-value= 10^{-5} .

We then calculated the predict AUC with the derived SNPs list at different significance

340	annotated as G_A , G_N , and G_H for "all", "non-hot spring", and "hot spring" subgroup
341	respectively. 73 functional DED SNPs and 19 functional VHD SNPs among G_A , G_N ,
342	and G _H were overlapped (Supplementary Figure 3). After pathway discovery, there
343	were 15 and 4 significant ARCHS4 human kinase pathways in the G_{A} of DED and
344	VHD respectively (adjusted p-value<0.05) (Figure 4b). However, CDKL2 kinase
345	pathway was the only significant hit for G_h subgroup (Overlapped ratio: 21/299 with
346	GABARAPL2, C110RF87, CXADR, DOCK3, ANKRD46, DDX25, PTPRO, ANK2,
347	NALCN, LRP1B, MYO16, TRIM9, PCLO, CACNB4, DLG2, TRIM2, PSD3, TP53BP1,
348	CTNNA2, SRGAP3, CDH18; OR=2.79, adjusted p-value=0.00698). Meanwhile,
349	BMPR2 kinase pathway was the only significantly hit in the VHD G_h (Overlapped ratio:
350	17/299 with RBFOX1, EPAS1, CACNA2D1, CRIM1, PTPRM, PARVA, ZDHHC21,
351	LAMB1, ATP2B2, KALRN, HIPK2, SIPA1L1, AKT3, EDIL3, CLASP1, KCNH1,
352	<i>OPCML</i> ; OR=3.51, adjusted <i>p</i> -value=0.01066).
353	

354

355 Figure 4: Signaling Pathways of Co-expressed Genes based ARCHS4 Kinases Coexp Library.

356(a) Screening single nucleotide polymorphisms (SNPs) based on genome-wide significance level357threshold (*p*-value< \Box 0.005). AUC, Area Under Curve. (b) Comparing signaling pathways of358co-expressed genes between gene set from all population (G_A) and hot spring-specific gene set (G_h). The359dashed line indicated *p*-value<0.05.</td>

To investigate the putative molecular interaction in the derived G_h hits, we conducted Reactome pathway detection in the PPI after filtering and clustering G_h based on protein crosstalk in DED and VHD respectively. Consisting of 158 genes with *RYR2*, *CACNA1C*, *TGF* β *1*, and *MAPK8* as four central hub genes, activated pathways in PPI network of DED were related to proposed DED-related pathomechanisms, such as

365 O-linked glycosylation of mucins (R-HSA-913709), Interleukin (IL)-4 and IL-13

366	signaling (R-HSA-6785807), and interaction between L1 and ankyrins
367	(R-HSA-445095)(Figure 5a and 5b). Consisting of 39 genes with PARP1, GRM1,
368	NRXN2, and GRIA4 as four central hub genes, activated pathways in one of PPI
369	network of VHD were related to proposed VHD-related pathomechanisms, such as
370	Calcium (Ca ²⁺) channel opening (R-HSA-112308), YAP1- And WWTR1
371	(TAZ)-stimulated gene expression (R-HSA-2032785), thrombin signaling
372	(R-HSA-456926), cardiac conduction (R-HSA-5576891),Runt-related transcription
373	factor 2 (Runx-2) (R-HSA-8939243), mitogen-activated protein kinase (MAPK)
374	pathway (R-HSA-5674135), interaction between RAF1 and BRAF (R-HSA-5683057),
375	and signaling by GPCR (R-HSA-112308)(Figure 5c-1 and 5d-1). Comprised 6 genes
376	(CNOT7, CPEB3, CNOT2, UBXN7, EPAS1, and COMMD10), activated pathways in
377	another of PPI network of VHD were related to proposed VHD-related
378	pathomechanisms, such as autophagy (R-HSA-9612973) and hypoxia
379	(R-HSA-1234174) (Figure 5c-2 and 5d-2).

380

Figure 5: Activated Pathways of Functional Genes within Protein□protein Interaction (PPI)
Network of Hot Spring-specific Gene Set (G_b) based on Reactome 2022.

(a) PPI of dry eye disease (DED). (b) Activated pathways of DED. (c) PPI of valvular heart disease
(VHD). (d) Activated pathways of VHD. PARS, proteinase activated receptors; HIF1α,
hypoxia-inducible factor-1α; MAPK, mitogen-activated protein kinase; and R-HAS, Reactome Homo

386 sapiens.

387	PRS models were constructed for different environmental conditions (all, non-hot
388	spring, hot spring) based on the associated SNPs discovered from the TWB (G_A , G_N ,
389	and G _H). The mean PRS was higher among the cases compared to the controls across
390	all models in both diseases but more significant in $G_{\rm H}$ (AUC: 0.9168 for DED and
391	0.8153 for VHD) (Figure 6a). With MAF>0.05 and p-value of Hardy-Weinberg
392	equilibrium >0.05, SNPs used in PRS model were not rare variants and were
393	independent of environmental conditions (E). However, PRS models with $G_{\rm H}$ could
394	not predict disease risk well in populations without hot spring exposed (AUC: 0.5015
395	in DED and 0.5066 in VHD), indicating significant GxE relationship. The GxE
396	relationship demonstrated a dose-response effect (Figure 6b). Compared to the
397	participants with PRS in min-Q1, participants with PRS in Q2-Q3 demonstrated 29.11
398	times odds of developing DED (95% CI=10.36-81.76, p-value<0.001) while the
399	individuals with PRS in Q3-max demonstrated 390.81 times odds (95%
400	CI=130.93-1166.52, p-value<0.001) (Figure 6c). Compared to the participants with
401	PRS in min-Q1, participants with PRS in Q2-Q3 demonstrated 14.339 times odds of
402	developing VHD (95% CI=6.475-31.754, p-value<0.001) while the individuals with
403	PRS in Q3-max demonstrated 34.162 times odds (95% CI=14.842-78.63,
404	<i>p</i> -value<0.001) (Figure 6c).

405

406

407 Figure 6: Polygenic Risk Score (PRS) Models Evaluating Gene-environment interactions (GxE).

408 (a) Density distribution among PRS score. After adjusted for linkage disequilibrium (LD) clumping 409 threshold ($r^2<0.01$) and genome-wide significance level threshold (*p*-value< $\Box 0.005$), variant-disease 410 association (VDA) results were depicted as G_A, G_N, and G_H for "all", "non hot spring", and "hot spring" 411 gene sets. (b) Percentage of case and control in each PRS quartile. (c) Odds ratio (OR) of each PRS 412 quartile. The dashed line indicated OR=1.0 (d) Area Under Curve (AUC) of different combinations of 413 gene set (G) and environmental condition (E). DED, dry eye disease; and VHD, valvular heart disease.

414 **3.3.GxE Interaction Analysis**

415	While participants with different environmental conditions showed similar density
416	profiles of G _H PRS (Figure 7a), the disease ratio was significantly different with
417	significant GxE interaction indicated by logistic regression model (p -value<10 ⁻¹⁶),
418	showing crossover GxE effect (Figure 7b). Since disease ratio almost remained
419	unchanged across G _H PRS, GxE effect was calculated based on risk in non-hot spring
420	region as reference. RR tables between different environmental conditions and
421	G _H PRS indicated hot spring as effect modifier (Figure 7c). Therefore, we enrolled
422	gender and GxE effect to construct DED and VHD predict nomograms (Figure 7d).
423	The DCA curve was performed to demonstrate high clinical net benefit between
424	threshold probability of 20%-48% for DED and 18%-39% for VHD (Figure 7e).
425	

427 Figure 7: Net Benefit of Identifying the Risk of Gene-environment Interactions (GxE).

(a) Density profile of G_H polygenic risk score (PRS). (b) Multivariate logistic regression evaluating the
GxE effect. (c) Relative risk (RR) with 95% confidence interval (CI) between different environmental
conditions and G_HPRS. (d) Nomogram results estimating predictability of GxE. (e) Decision curve
analysis (DCA) assessing net benefit of identifying GxE risk. PRS, polygenic risk score; Mo, mode;
Md, median; G_H, gene set from "hot spring"; DED, dry eye disease; and VHD, valvular heart disease.

433

434 **4. Discussion**

435 By employing multimodal analysis based on genetic data in Taiwan biobank and DA in

436 Opendata platform, we conducted environmental association discovery, variant-disease

- 437 association discovery, and the GxE interaction analysis to reconstitute GxE effect on
- 438 DED and VHD. This context dependent GxE interactions were discussed as below:
- 439

440 **4.1.Hot Spring and Disease Correlation**

441	In the environmental association discovery, residency in hot spring areas was
442	associated with a lower prevalence of dry eye (OR=0.81) and a higher prevalence of
443	valvular heart disease (OR=1.52).

444

445 4.1.1. Hot Spring-related Factors in DED

446 Dry eye is a result of increased osmolarity of the tear film and inflammation of the 447 ocular surface (Pflugfelder and de Paiva 2017). It can be influenced by external factors 448 such as desiccating environment and wind exposure (Tsubotaet al. 2017). In previous 449 air pollutants studies, higher humidity levels were associated with improved corneal 450 fluorescein staining and tear breakup time (TBUT) (Berget al. 2020), while participants 451 residing in areas with increased relative humidity were less likely to develop DED 452 (Hwanget al. 2016). Given that hot spring water vapor may increase humidity levels in 453 the immediate vicinity (Nordstromet al. 2005), it is possible that residing near hot 454 springs were less likely to develop dry eyes. To the best of our knowledge, there are no 455 studies publicly available to study the atmospheric CO₂ H₂S and N₂O influence on 456 DED, future research avenue in the atmospheric (SO₂, CO₂ H₂S, N₂O) effect on DED 457 occurrence.

459 4.1.2. Hot Spring-related Factors in VHD

460	Regarding VHD, research has demonstrated that environmental factors, specifically
461	Legionellosis outbreaks in regions such as Taiwan (Hsuet al. 2006) and Japan (ITOet al.
462	2002), have been linked to the transmission of Legionella through hot springs. The
463	Legionella bacteremia often result from pulmonary sources and may cause endocarditis
464	and valvular infections (Brusch 2017). Additionally, other microorganisms, such as
465	Acanthamoeba spp. and Microspora, have also been associated with hot spring-related
466	transmission and could potentially lead to cardiac complications (Filhoet al. 2009). The
467	positive correlation of hot spring distribution and valvular heart disease may be due to
468	ambient pollutants emitted from water or infectious disease spreading through the
469	hydrosphere.

470

471 **4.2.Genetic Effects in DED and VHD**

In variant-disease association discovery, we demonstrated that co-expression of kinase
pathways (CDKL2 for DED and BMPR2 for VHD) and disease-related reactome
pathways were significantly enriched in hot-spring specific functional SNPs.

475

476 4.2.1. Hot Spring-specific SNP Genes Co-expressed Kinase Pathway–CDKL2 in DED

477 Cyclin-dependent kinase-like 2 (CDKL2) belongs to the family of CDC2-related

478	serine/threonine protein kinases. CDKL2 was identified as a target related to Sjögren's
479	syndrome (Xiaet al. 2023) and rheumatoid arthritis (RA) was the most enriched term in
480	the KEGG analysis of CDKL2 methylation geneset (Chenet al. 2021). These studies
481	supported the association between CDKL2 and DED, as dry eye is the most frequent
482	ocular manifestation in patients with Sjögren's syndrome (>90%) and RA (46.7%)
483	(Kosrirukvongset al. 2012). The co-expression of CDKL2/CDKL3 (Traceyet al. 2003)
484	and interleukins (IL-15RA, IL-7, IL-1RAPL1, and IL-11) also suggested correlation
485	between CDKL2 and DED as Sjögren's syndrome, RA, and DED are known to be
486	mediated by cytokine-mediated systemic inflammation. Additionally, CDKL2
487	expression was detected in DED-involved ocular segments such as the lacrimal gland,
488	cornea, and eyelid, according to the Human Eye Transcriptome Atlas (Traceyet al.
489	2003). Although a direct link between CDKL2 mutation and DED was not found in
490	current research, we postulate that the effect of CDKL2 on DED is context-dependent
491	and influenced by additional environmental cues.
492	

493 4.2.2. Activated Pathway in G_h SNPs of DED

Activated pathways in the PPI network of DED included O-linked glycosylation of
mucins, IL-4 and IL-13 signaling, and interaction between L1 and ankyrins.
Transmembrane mucins (such as MUC1, MUC4, and MUC16) (Uchino 2018), large

497	glycoproteins with heavily glycosylated glycans, were revealed to be essential for
498	maintaining ocular surface epithelium lubrication, wettability, and epithelial
499	glycocalyx barrier. In response to inflammatory stimulation of DED, goblet cells and
500	corneal/conjunctival epithelial cells express receptors for inflammatory cytokines such
501	as IL-13 (Baudouinet al. 2019), inducing an important transcriptional factor in
502	epithelial differentiation and goblet cell formation. Activation of transient receptor
503	potential ankyrin 1 (TRPA1) resulted in calcium influx, tear reduction, increased eye
504	blink, and forelimb eye wipe behavior.(Ashoket al. 2023) These G _h -related pathways
505	implied the underlying pathomechanisms of GxE in DED.

507 4.2.3. Hot Spring-specific SNP Genes Co-expressed Kinase Pathway–BMPR2 in VHD 508 Bone morphogenic receptor 2 (BMPR2) gene encode a transmembrane 509 serine-threonine kinase receptor that governs SMAD signaling pathways. While 510 SMAD signal cascade was associated with aortic dilation (Balintet al. 2022), 511 dysregulation of the upstream BMPR2 kinase pathways may hold valuable study 512 directions in GxE VHDs. BMPR2 loss of function SNPs were discovered in heritable 513 pulmonary arterial hypertension (PAH) and idiopathic PAH (Chenet al. 2019), these 514 two PAH conditions concurs in 15-60% VHD patients (Magneet al. 2015). Li et al. was 515 the first to report BMPR2 may cause VHD by DNA hypermethylation through

516	down-regulation of BMPR2 expression (Liet al. 2021). In echo to this report, our result
517	identified BMPR2 pathway as a prominent functional SNP pathway in the hot
518	spring-VHD patients, whereas BMPR2 pathway was not evident in general VHD
519	patients.
520	
521	4.2.4. Activated Pathway in G_h SNPs of VHD
522	Activated pathways in the PPI network of VHD included Ca ²⁺ channel opening, YAP1-
523	And WWTR1 (TAZ)-stimulated gene expression, Runx-2, and MAPK pathway.
524	Recently, combining 2 GWAS studies in 474 and 486 cases from Canada and France, a
525	meta-analysis confirmed the role of RUNX2 and CACNA1C as susceptibility genes of
526	aortic valve stenosis (AS), belonging to the Ca ²⁺ signaling pathway (Guauque-Olarteet
527	al. 2015). Moreover, YAP1 has been reported to regulate endothelial to mesenchymal
528	transition (EMT) through modulation of TGF β -Smad signaling and proliferative
529	activity during cardiac cushion development. MAPK pathway influences calcification,
530	being linked to the expression of a contractile phenotype in valvular interstitial cells.
531	These G _h -related pathways implied the potential mechanisms of GxE in VHD.
532	

533 **4.3.GxE Interaction and Clinical Prospect**

534 In this study, we reported that hot spring residency and underlying polygenetic

535	conjointly modified the disease risk of DED and VHD, whereupon we gathered
536	multi-angle evidence to strengthen the significance of GxE interaction. Although it is
537	generally accepted that both genetic and environmental factors contribute to the
538	development of complex diseases, few GxE examples were replicated, biologically
539	plausible, and methodologically sound interaction with proven clinical relevance and
540	application in daily clinical routines. Therefore, the term "GxE interaction" was often
541	used to express that several factors contribute to disease risk without excluding the
542	possibility of complete independence. To be specific, biological GxE interaction is the
543	joint effect of both genetic and environmental factors that act together in a direct
544	physical or chemical reaction or in the same causal mechanism of disease development
545	(Yang and Khoury 1997) while statistical GxE interaction is defined as "departure from
546	additivity of effects on a specific outcome scale (Rothman and Greenland 1998)." That
547	is, the effect of one factor depends on the level of the other factor. The interaction could
548	be defined as crossover effect or nonremovable interaction only when the interaction
549	remained in any monotone transformation (Thompson 1991). In this study, the
550	interaction of hot spring residency and the level of GH PRS well complied to the
551	requirements of statistical GxE interaction (Figure 7b). However, neither long-term
552	residency effects nor diseases-specific effects have been thoroughly investigated with
553	hot spring. Therefore, we struggled to interpret the biological GxE interaction via GO,

co-expressed signaling pathways, and PPI network analysis. Overall, we proposed a
novel GxE interaction in hot spring-associated diseases, whereby we suggest further
studies are warranted to elucidate the benefits and harms of long-term hot spring
residency in human health.

558

559 4.4.Study Limitation

560 Despite the favorable results, there are several study limitations in this study. First, the 561 acquisition of VHD and DED disease labels relied on self-reported questionnaires; the 562 definitive diagnosis records and degree of disease severity were intrinsically absent 563 from the biobank data. The hot spring exposure was determined by participant 564 residencies, the exact exposure duration and intensity cannot be estimated and studied 565 from existing accessible data. Although multi-angle evidence supported the GxE 566 interaction in hot spring-related DED and VHD, the concise pathomechanism cannot 567 be inferred from statistical and epidemiological studies. Together, this study served as 568 a pilot study that highlights potential research avenues for GxE effects in hot 569 spring-related diseases.

570

571 **5. Conclusion**

572 Our findings validate the pivotal role of GxE interactions in the epidemiology of DED

- 573 and VHD within Taiwan's hot spring regions, underscored by the enhanced disease
- 574 prediction through PRS models. The study emphasizes the complex interdependencies
- 575 between genetics and environmental exposures in disease manifestation, reinforcing
- the need for integrative risk assessments in environmental health studies.

577 **Statements**

578 Ethics approval and consent to participate

- 579 Ethical approvals were obtained from the Institutional Review Board (IRB) of the 580 Taipei Veterans General hospital with reference numbers 2023-01-006AC. All 581 participants provided written informed consent. This study was conducted in 582 compliance with the Helsinki Declaration.
- 583

584 Data Sharing

585 All data is published in this manuscript, the cited manuscripts, or the supplementary 586 appendix. Data can be provided upon request to corresponding authors, and in 587 agreement of terms. The datasets generated and/or analyzed during the current study 588 are available in the Nation-wide Taiwan Biobank1 and Taiwan Biobank2 589 (https://www.twbiobank.org.tw/), Directorate-General of Budget, Accounting and 590 Statistics (https://eng.dgbas.gov.tw) Ministry of Finance (https://www.mof.gov.tw/), 591 Ministry of Health and Welfare (https://data.gov.tw/dataset/39280, 592 https://data.gov.tw/dataset/39281, https://data.gov.tw/dataset/39282, 593 https://data.gov.tw/dataset/39283) repository.

594

595 Declaration of Interests

596 The authors declare that they have no competing interest.

597

598 Authors' Contributions

- 599 HYW, KJC and YPY were responsible for the conceptualization and were actively
- 600 involved in the planning of methodology, investigation, and project administration.
- 601 PHC and HYT contributed to the formal analysis. HYW, KJC, WC, CYW participated
- by validation, visualization, writing original draft, reviewing, and editing. YTH,
- 603 YCW, YCC, CHH, ARH, SHC and CCH provided critical advice. YHC, HJD, CHL,
- and YCC accessed and verified the underlying data reported in the manuscript. All
- authors had full access to all the data and responsibility for the decision to submit for
- 606 publication.

607

608 Acknowledgements

This study is based in part on data from the Big Data Center, Taipei Veterans General
Hospital (BDC, TPEVGH). The interpretations and conclusions contained herein do
not represent the position of Taipei Veterans General Hospital. The authors thank
Department of Statistics, Tamkang University for technological support.

614 This work was supported by the Taiwan National Science and Technology Council

- 615 [grant numbers NSTC 112-2321-B-A49-007, NSTC 111-2320-B-A49-028-MY3,
- 616 NSTC 112-2124-M-038-001, and NSTC 112-2314-B-032-001]; and Taipei Veterans
- 617 General Hospital [grant number V113C-201, V112C-026 and 112VACS-007].

618

619 **Reference**

- 620 Ashok, N.; Khamar, P.; D'Souza, S.; Gijs, M.; Ghosh, A.; Sethu, S.; Shetty, R. Ion
- 621 channels in dry eye disease. Indian Journal of Ophthalmology 2023;71:1215-1226.
- 622 <u>https://doi.org/10.4103/IJO.IJO_3020_22</u>
- Balint, B.; Federspiel, J.; Kollmann, C.; Teping, P.; Schwab, T.; Schäfers, H.-J.; Balint, B.;
- 624 Federspiel, J.; Kollmann, C.; Teping, P.; Schwab, T.; Schäfers, H.-J. SMAD3 contributes
- 625 to ascending aortic dilatation independent of transforming growth factor-beta in
- 626 bicuspid and unicuspid aortic valve disease. Scientific Reports 2022;12:15476.
- 627 https://doi.org/10.1038/s41598-022-19335-w
- 628 Bates, M.N.; Garrett, N.; Graham, B.; Read, D. Cancer incidence, morbidity and
- 629 geothermal air pollution in Rotorua, New Zealand. Int J Epidemiol 1998;27:10-14.
- 630 <u>https://doi.org/10.1093/ije/27.1.10</u>
- Baudouin, C.; Rolando, M.; Benitez Del Castillo, J.M.; Messmer, E.M.; Figueiredo, F.C.;
- 632 Irkec, M.; Van Setten, G.; Labetoulle, M. Reconsidering the central role of mucins in
- 633 dry eye and ocular surface diseases. Prog Retin Eye Res 2019;71:68-87.

634 <u>https://doi.org/10.1016/j.preteyeres.2018.11.007</u>

635	Berg, E.J.; Ying, G.S.; Maguire, M.G.; Sheffield, P.E.; Szczotka-Flynn, L.B.; Asbell, P.A.;
636	Shen, J.F.; Group, D.S.R. Climatic and Environmental Correlates of Dry Eye Disease
637	Severity: A Report From the Dry Eye Assessment and Management (DREAM) Study.
638	Transl Vis Sci Technol 2020;9:25. <u>https://doi.org/10.1167/tvst.9.5.25</u>
639	Bidonde, J.; Busch, A.J.; Webber, S.C.; Schachter, C.L.; Danyliw, A.; Overend, T.J.;
640	Richards, R.S.; Rader, T. Aquatic exercise training for fibromyalgia. Cochrane Database
641	Syst Rev 2014;2014:CD011336. <u>https://doi.org/10.1002/14651858.CD011336</u>
642	Brusch, J.L. Legionnaire's Disease. Infectious Disease Clinics 2017;31:69-80.
643	https://doi.org/10.1016/j.idc.2016.10.006
644	Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma'ayan,
645	A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.
646	BMC Bioinformatics 2013;14:128. <u>https://doi.org/10.1186/1471-2105-14-128</u>
647	Chen, Y.; Ye, C.; Chen, J.; Lin, D.; Wang, H.; Wang, S. Association of the gene
648	polymorphisms of BMPR2, ACVRL1, SMAD9 and their interactions with the risk of
649	essential hypertension in the Chinese Han population. Biosci Rep

- 650 2019;39:BSR20181217. <u>https://doi.org/10.1042/BSR20181217</u>
- 651 Chen, Z.; Lv, Y.; He, L.; Wu, S.; Wu, Z. Decreased CDKL2 Expression in Clear Cell Renal
- 652 Cell Carcinoma Predicts Worse Overall Survival. Front Mol Biosci 2021;8:657672.

653 <u>https://doi.org/10.3389/fmolb.2021.657672</u>

- 654 Fan, C.-T.; Lin, J.-C.; Lee, C.-H. Taiwan Biobank: a project aiming to aid Taiwan's
- 655 transition into a biomedical island. Pharmacogenomics 2008;9:235-246.
- 656 https://doi.org/10.2217/14622416.9.2.235
- 657 Filho, M.M.; Ribeiro, H.B.; Paula, L.J.C.; Nishioka, S.A.D.; Tamaki, W.T.; Costa, R.;
- 658 Siqueira, S.r.F.; Kawakami, J.T.; Higuchi, M.L. Endocarditis Secondary to Microsporidia:
- 659 Giant Vegetation in a Pacemaker User. Circulation 2009;119:e386-e388.
- 660 https://doi.org/10.1161/CIRCULATIONAHA.108.817312
- 661 Gorini, F.; Bustaffa, E.; Chatzianagnostou, K.; Bianchi, F.; Vassalle, C. Hydrogen sulfide
- and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies
- 663 in geothermal areas. Sci Total Environ 2020;743:140818.
- 664 https://doi.org/10.1016/j.scitotenv.2020.140818
- 665 Guauque-Olarte, S.; Messika-Zeitoun, D.; Droit, A.; Lamontagne, M.;
- 666 Tremblay-Marchand, J.; Lavoie-Charland, E.; Gaudreault, N.; Arsenault, B.J.; Dubé,
- 667 M.-P.; Tardif, J.-C.; Body, S.C.; Seidman, J.G.; Boileau, C.; Mathieu, P.; Pibarot, P.; Bossé,
- 668 Y. Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With
- 669 Calcific Aortic Valve Disease. Circulation: Cardiovascular Genetics 2015;8:812-822.
- 670 https://doi.org/10.1161/CIRCGENETICS.115.001145
- 671 Hsu, B.M.; Chen, C.H.; Wan, M.T.; Cheng, H.W. Legionella prevalence in hot spring

- 672 recreation areas of Taiwan. Water Res 2006;40:3267-3273.
- 673 <u>https://doi.org/10.1016/j.watres.2006.07.007</u>
- 674 Hunter, D.J. Gene-environment interactions in human diseases. Nat Rev Genet
- 675 2005;6:287-298. <u>https://doi.org/10.1038/nrg1578</u>
- 676 Hwang, S.H.; Choi, Y.H.; Paik, H.J.; Wee, W.R.; Kim, M.K.; Kim, D.H. Potential
- 677 Importance of Ozone in the Association Between Outdoor Air Pollution and Dry Eye
- 678 Disease in South Korea. JAMA Ophthalmol 2016;134:503-510.
- 679 https://doi.org/10.1001/jamaophthalmol.2016.0139
- 680 ITO, I.; NAITO, J.; KADOWAKI, S.; MISHIMA, M.; ISHIDA, T.; HONGO, T.; MA, L.; ISHII, Y.;
- 681 MATSUMOTO, T.; YAMAGUCHI, K. Hot Spring Bath and Legionella Pneumonia: an
- 682 Association Confirmed by Genomic Identification. Internal Medicine
- 683 2002;41:859-863. <u>https://doi.org/10.2169/internalmedicine.41.859</u>
- 684 Kosrirukvongs, P.; Ngowyutagon, P.; Pusuwan, P.; Koolvisoot, A.; Nilganuwong, S.
- 685 Prevalence of dry eye syndrome and Sjogren's syndrome in patients with rheumatoid
- 686 arthritis. J Med Assoc Thai 2012;95 Suppl 4:S61-69.
- 687 Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.;
- 688 Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; McDermott, M.G.; Monteiro,
- 689 C.D.; Gundersen, G.W.; Ma'ayan, A. Enrichr: a comprehensive gene set enrichment
- 690 analysis web server 2016 update. Nucleic Acids Research 2016;44:W90-W97.

691 <u>https://doi.org/10.1093/nar/gkw377</u>

- 692 Li, N.; Zhu, L.; Zhu, C.; Zhou, H.; Zheng, D.; Xu, G.; Shi, H.; Gao, J.; Li, A.J.; Wang, Z.;
- 693 Sun, L.; Li, X.; Shao, G. BMPR2 promoter methylation and its expression in valvular
- 694 heart disease complicated with pulmonary artery hypertension. Aging (Albany NY)
- 695 2021;13:24580-24604. https://doi.org/10.18632/aging.203690
- 696 Magne, J.; Pibarot, P.; Sengupta, P.P.; Donal, E.; Rosenhek, R.; Lancellotti, P.
- 697 Pulmonary hypertension in valvular disease: a comprehensive review on
- 698 pathophysiology to therapy from the HAVEC Group. JACC Cardiovasc Imaging
- 699 2015;8:83-99. <u>https://doi.org/10.1016/j.jcmg.2014.12.003</u>
- 700 McAllister, K.; Mechanic, L.E.; Amos, C.; Aschard, H.; Blair, I.A.; Chatterjee, N.; Conti,
- D.; Gauderman, W.J.; Hsu, L.; Hutter, C.M.; Jankowska, M.M.; Kerr, J.; Kraft, P.;
- 702 Montgomery, S.B.; Mukherjee, B.; Papanicolaou, G.J.; Patel, C.J.; Ritchie, M.D.; Ritz,
- 703 B.R.; Thomas, D.C.; Wei, P.; Witte, J.S. Current Challenges and New Opportunities for
- 704 Gene-Environment Interaction Studies of Complex Diseases. Am J Epidemiol
- 705 2017;186:753-761. https://doi.org/10.1093/aje/kwx227
- 706 Nordstrom, D.K.; Ball, J.W.; McCleskey, R.B. Ground water to surface water: Chemistry
- 707 of thermal outflows in Yellowstone National Park. Geothermal biology and
- 708 geochemistry in Yellowstone National Park 2005:73-94.
- 709 Nuvolone, D.; Petri, D.; Biggeri, A.; Barbone, F.; Voller, F.; Nuvolone, D.; Petri, D.;

- 710 Biggeri, A.; Barbone, F.; Voller, F. Health effects associated with short-term exposure
- to hydrogen sulfide from geothermal power plants: a case-crossover study in the
- 712 geothermal areas in Tuscany. International Archives of Occupational and
- 713 Environmental Health 2020;93:669-682.
- 714 https://doi.org/10.1007/s00420-020-01522-9
- 715 Nuvolone, D.; Petri, D.; Pepe, P.; Voller, F. Health effects associated with chronic
- 716 exposure to low-level hydrogen sulfide from geothermoelectric power plants. A
- residential cohort study in the geothermal area of Mt. Amiata in Tuscany. Sci Total
- 718 Environ 2019;659:973-982. <u>https://doi.org/10.1016/j.scitotenv.2018.12.363</u>
- 719 Pflugfelder, S.C.; de Paiva, C.S. The Pathophysiology of Dry Eye Disease: What We
- 720 Know and Future Directions for Research. Ophthalmology 2017;124:S4-S13.
- 721 <u>https://doi.org/10.1016/j.ophtha.2017.07.010</u>
- 722 Rothman, K.J.; Greenland, S. Modern epidemiology.2nd ed^eds. Philadelphia, PA:
- 723 Lippincott-Raven; 1998
- 724 Serbulea, M.; Payyappallimana, U. Onsen (hot springs) in Japan—Transforming
- 725 terrain into healing landscapes. Health & place
- 726 2012;18<u>https://doi.org/10.1016/j.healthplace.2012.06.020</u>
- 727 Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic,
- 728 M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, Christian v. STRING v11:

- 729 protein-protein association networks with increased coverage, supporting functional
- 730 discovery in genome-wide experimental datasets. Nucleic Acids Research
- 731 2018;47:D607-D613. <u>https://doi.org/10.1093/nar/gky1131</u>
- 732 Thompson, W.D. Effect Modification and the Limits of Biological Inference from
- 733 Epidemiologic Data. J Clin Epidemiol 1991;44:221-232. https://doi.org/Doi
- 734 10.1016/0895-4356(91)90033-6
- 735 Tracey, L.; Villuendas, R.; Dotor, A.M.; Spiteri, I.; Ortiz, P.; Garcia, J.F.; Peralto, J.L.;
- T36 Lawler, M.; Piris, M.A. Mycosis fungoides shows concurrent deregulation of multiple
- 737 genes involved in the TNF signaling pathway: an expression profile study. Blood
- 738 2003;102:1042-1050. <u>https://doi.org/10.1182/blood-2002-11-3574</u>
- 739 Tsubota, K.; Yokoi, N.; Shimazaki, J.; Watanabe, H.; Dogru, M.; Yamada, M.; Kinoshita,
- 740 S.; Kim, H.M.; Tchah, H.W.; Hyon, J.Y.; Yoon, K.C.; Seo, K.Y.; Sun, X.; Chen, W.; Liang, L.;
- Li, M.; Liu, Z.; Asia Dry Eye, S. New Perspectives on Dry Eye Definition and Diagnosis:
- 742 A Consensus Report by the Asia Dry Eye Society. Ocul Surf 2017;15:65-76.
- 743 https://doi.org/10.1016/j.jtos.2016.09.003
- 744 Uchino, Y. The Ocular Surface Glycocalyx and its Alteration in Dry Eye Disease: A
- 745 Review. Investigative Ophthalmology & Visual Science 2018;59:DES158-DES162.
- 746 <u>https://doi.org/10.1167/iovs.17-23756</u>
- 747 Verhagen, A.P.; Bierma-Zeinstra, S.M.; Boers, M.; Cardoso, J.R.; Lambeck, J.; De Bie, R.;

- 748 De Vet, H.C. Balneotherapy (or spa therapy) for rheumatoid arthritis. An abridged
- version of Cochrane Systematic Review. Eur J Phys Rehabil Med 2015;51:833-847.
- 750 Vickers, A.J.; van Calster, B.; Steyerberg, E.W. A simple, step-by-step guide to
- interpreting decision curve analysis. Diagnostic and Prognostic Research 2019;3:18.
- 752 <u>https://doi.org/10.1186/s41512-019-0064-7</u>
- 753 Virolainen, S.J.; VonHandorf, A.; Viel, K.C.M.F.; Weirauch, M.T.; Kottyan, L.C.;
- 754 Virolainen, S.J.; VonHandorf, A.; Viel, K.C.M.F.; Weirauch, M.T.; Kottyan, L.C.
- 755 Gene-environment interactions and their impact on human health. Genes &
- 756 Immunity 2022;24:1-11. <u>https://doi.org/10.1038/s41435-022-00192-6</u>
- 757 Xia, L.-y.; Luo, Z.; Xu, H.-p.; Liu, L.; Huai, W.-y.; Xia, J.; Yin, Q.-z.; Zhang, T.-e.; Chen, Y.-h.
- 758 Decoding Hippophae rhamnoides' action of mechanism in Sjögren's syndrome: A
- 759 network pharmacology and molecular docking study. Quality Assurance and Safety of
- 760 Crops & Foods 2023;15:207-250. <u>https://doi.org/10.15586/qas.v15i1.1210</u>
- 761 Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.;
- 762 Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; Jeon, M.;
- 763 Ma'ayan, A. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 2021;1:e90.
- 764 <u>https://doi.org/10.1002/cpz1.90</u>
- 765 Yang, Q.; Khoury, M.J. Evolving methods in genetic epidemiology. III.
 766 Gene-environment interaction in epidemiologic research. Epidemiol Rev

767 1997;19:33-43. https://doi.org/10.1093/oxfordjournals.epirev.a017944

С

odds ratio

average age sex ratio population health insurance index medical visit index health insurance index per capita

medical visit index per capita median total comprehensive income

hot spring - Hot spring Sex average age population and IQR 4nd IQR health insurance index medical visit index health insurance index per capita medical visit index per capita median total comprehensive income

odds ratio

stepwise

d-1

b

а

TEKT3

EXO1

TP53BP1

c-1

RPA3

XRCC1

RAD51D

POLD3

