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Abstract 31	

Deep brain stimulation (DBS) targeting the lateral habenula (LHb) is a promising 32	

therapy for treatment-resistant depression (TRD) but its clinical effect has been 33	

variable, which can be improved by adaptive DBS (aDBS) guided by a neural 34	

biomarker of depression symptoms. A clinically-viable neural biomarker is desired to 35	

classify depression symptom states, track both slow and fast symptom variations 36	

during the treatment, and respond to DBS parameter alterations, which is currently 37	

lacking. Here, we conducted a study on one TRD patient who achieved remission 38	

following a 41-week LHb DBS treatment, during which we assessed slow symptom 39	

variations using weekly clinical ratings and fast variations using daily self-reports. 40	

We recorded daily LHb local field potentials (LFP) concurrently with the reports 41	

during the entire treatment process. We then used machine learning methods to 42	

identify a personalized depression neural biomarker from spectral and temporal LFP 43	

features. The identified neural biomarker classified high and low depression symptom 44	

severity states with a cross-validated accuracy of 0.97. It further simultaneously 45	

tracked both weekly (slow) and daily (fast) depression symptom variation dynamics, 46	

achieving test data explained variance of 0.74 and 0.63, respectively. It finally 47	

responded to DBS frequency alterations. Our results hold promise to identify 48	

clinically-viable neural biomarkers to facilitate future aDBS for treating TRD. 49	

 50	
1. Introduction 51	

Major depressive disorder (MDD) is one of the most common neuropsychiatric 52	

disorders, affecting over 300 million individuals worldwide [1] . Approximately 30% 53	
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of MDD patients are treatment-resistant, meaning they do not respond adequately to 54	

at least two antidepressant trials [2]. Deep brain stimulation (DBS) is a neurosurgical 55	

procedure that allows targeted circuit-based neuromodulation [3]. It has emerged as a 56	

promising treatment option for patients with treatment-resistant depression (TRD) [4–57	

6], as shown by open-label studies targeting various brain structures involved in the 58	

brain’s “reward” system that mediates positive motivations. Such targets include the 59	

subcallosal cingulate cortex (SCC) [7], the ventral capsule/ventral striatum (VC/VS) 60	

[8], the medial forebrain bundle (MFB) [9], and the bed nucleus of the stria terminalis 61	

(BNST) [10]. However, several recent double-blinded clinical trials have shown that 62	

the effects of DBS targeting these brain structures are inconsistent across patients 63	

[11–15]. As a potential improvement over DBS, adaptive DBS (aDBS) optimizes 64	

DBS parameters in real-time by using neural signals as feedback for enhancing 65	

clinical efficacy [16]. A recent study implements aDBS targeting VC/VS in a TRD 66	

patient by triggering stimulation only when the local field potential (LFP) signal 67	

pattern indicates worsening of depression symptoms, achieving rapid alleviation of 68	

depression symptoms [17]. 69	

The lateral habenula (LHb) is a hub structure that plays a central role in the brain’s 70	

“anti-reward” system that mediates negative motivations [18–20]. Animal studies 71	

have systematically shown that the local bursting firing patterns in LHb are closely 72	

related to depression-like behaviors and that neuromodulation of LHb has significant 73	

antidepressant effects [21,22]. Several clinical studies have reported single-patient 74	

depression symptom alleviation following LHb DBS since 2010 [23–26]. On the 75	

other hand, two recent clinical studies on seven or six patients has shown more 76	

variable effects of LHb DBS across patients [27,28] Similar to other DBS targets, 77	
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aDBS for LHb also provides a promising path towards improved and more consistent 78	

treatment effects across TRD patients. 79	

A critical and fundamental requirement for developing LHb aDBS is the 80	

identification of an LHb neural biomarker of depression symptoms during the DBS 81	

treatment to provide the necessary feedback signal [29,30]. A population-level SCC 82	

LFP spectral power biomarker has been identified for tracking depression symptom 83	

recovery with SCC DBS in five TRD patients [31]. Personalized amygdala and BNST 84	

LFP gamma power biomarkers have been identified for optimizing VC/VS DBS [32]. 85	

For LHb DBS, LFP signals have been recorded before the DBS treatment starts but 86	

not during the multi-month-long treatment process [27,28,33] and several studies 87	

have found statistical correlations between pre-treatment LHb LFP spectral features 88	

and after-treatment depression symptom ratings [27,28,33]. However, it is unknown 89	

whether the identified LFP features can classify depression symptom severity states 90	

or track the temporal dynamics of depression symptom variations during the DBS 91	

treatment process. Therefore, a useful neural biomarker for realizing LHb aDBS is 92	

still lacking. 93	

A clinically-viable neural biomarker is desired to be able to track both the slow 94	

and fast temporal dynamics of depression symptom variations during DBS. This is 95	

because both natural and DBS-induced depression symptom changes can vary at 96	

different time scales, with both slow-changing dynamics over months or weeks [34–97	

38] and fast-changing dynamics over hours or days [9,39–42]. Existing neural 98	

biomarker studies have focused on tracking the temporal dynamics of either slow or 99	

fast symptom variations. The aforementioned SCC neural biomarker for SCC DBS 100	

tracks the temporal dynamics of the weekly symptom variations over 24 weeks [31]. 101	
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The aforementioned amygdala and BNST neural biomarkers for VC/VS DBS track 102	

the faster temporal dynamics of symptom variations within several days [17,32]. 103	

Several other studies have also identified resting-state (without DBS) neural 104	

biomarkers of relatively fast depression symptom variations within several days using 105	

multisite intracranial electroencephalography (iEEG) [43–45]. However, to date, 106	

identifying a neural biomarker that can simultaneously track the temporal dynamics 107	

of both slow and fast depression symptom variations, in particular during LHb DBS 108	

treatment, remains elusive. 109	

Moreover, the neural biomarker needs to reflect the dose effect of different DBS 110	

parameters for optimizing stimulation parameters in aDBS. Since the DBS 111	

mechanism for treating TRD is largely unknown [46], only few studies have 112	

experimentally explored the dose effect of different DBS amplitudes on human neural 113	

signals [17,31,32]. On the other hand, DBS frequency also has been shown to play a 114	

key role in altering TRD symptoms [4–6,47]. However, how different LHb DBS 115	

parameters, especially stimulation frequencies, alter neural signals or neural 116	

biomarkers in TRD patients remains unknown. 117	

Here, to close the above gaps, we conducted LHb DBS on one TRD patient where 118	

we evaluated the patient’s symptoms and concurrently collected daily LHb LFP 119	

signals during the entire 41-week long treatment process (Figure 1A). With this 120	

unique dataset and by using machine learning techniques, we identified a clinically-121	

viable neural biomarker from spectral and temporal LHb features that (1) accurately 122	

classified high and low depression symptom severity states; (2) significantly tracked 123	

the temporal dynamics of weekly (slower) and daily (faster) depression symptom 124	

variations during the DBS treatment; (3) reflected the depression symptom changes 125	
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in response to DBS frequency alterations. Together, our results have implications for 126	

identifying clinically-viable neural biomarkers to facilitate future LHb aDBS 127	

developments for treating TRD. 128	

2. Materials and Methods 129	

2.1 Participant 130	

This study included a male TRD patient aged 36-40 years old (see Note S1 for detailed 131	

patient medical information) participating in a clinical trial of LHb DBS treatment 132	

starting in October 2021. The patient provided informed consent for participation in 133	

the clinical trial. This study received approval from the Ethics Committee of Zhejiang 134	

University School of Medicine Second Affiliated Hospital (protocol number 135	

20210218). It was registered at www.clinicaltrials.gov (NCT05716555), where 136	

detailed information regarding the inclusion and exclusion criteria can be accessed. 137	

At the beginning of the clinical trial, two independent psychiatrists evaluated the 138	

patient’s psychotic symptoms using the 17-item Hamilton Depression Rating Scale 139	

(HAMD), the Montgomery Asberg Depression Scale (MADRS), and the Hamilton 140	

Anxiety Rating Scale (HAMA) as baseline assessments. In addition to the psychiatric 141	

assessments, the patient underwent a comprehensive physical examination, various 142	

mental scale assessments, and a magnetic resonance imaging (MRI) examination. We 143	

carefully ensured that other psychiatric diagnoses outlined in the Diagnostic and 144	

Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) were excluded. 145	
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 146	

Figure 1. Study framework and experiment design. (A) During the LHb DBS treatment of one 147	
TRD patient, we used weekly clinical ratings and daily self-reports to evaluate the symptom 148	
variations, where we simultaneously collected daily LFP signals from LHb. Using machine 149	
learning models, we identified a neural biomarker that classified high and low depression 150	
symptom states during the DBS treatment. Using data not used in neural biomarker 151	
identification, we evaluated the neural biomarker in terms of 1) simultaneously tracking the 152	
temporal dynamics of weekly slow and daily fast variations of depression symptoms; 2) 153	
reflecting symptom changes when DBS frequencies were altered. (B) MRI visualization 154	
showing the DBS lead placement within the patient's LHb. The shaded blue area indicates the 155	
volume of tissue activated (VTA) by the DBS. (C) Temporal dynamics and spectrum of 156	
example epochs of LFP signals after preprocessing. (D) LHb DBS Treatment Timeline. The 157	
entire treatment process consisted of six stages. LFP signal collection began after the activation 158	
of 1 Hz stimulation. 159	

2.2 Surgical procedure 160	

A standard DBS implantation procedure was employed. Bilateral quadripolar 161	

electrodes (1200-40, SceneRay, Suzhou, China) were surgically implanted in the LHb 162	
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under local anesthesia (Figure 1B). The DBS electrodes had a diameter of 1.27 mm 163	

and a lead length of 400 mm. Each electrode’s four contacts measured 1.5 mm in 164	

length with a spacing of 0.5 mm. The LHb targeting was guided by preoperative MRI 165	

sequences. After confirming the absence of stimulation side effects through 166	

intraoperative testing, an implantable pulse generator (SR1101, SceneRay) was 167	

placed under general anesthesia. The DBS device was also capable of recording and 168	

wireless transmitting LFP signals (Figure 1C). 169	

2.3 DBS treatment process and symptom evaluations 170	

During the bilateral DBS treatment process, we made multiple adjustments to the 171	

stimulation parameters to achieve the best therapeutic effect. We divided the treatment 172	

process into six stages based on the alterations of stimulation parameters (Figure 1D): 173	

1) the “Preop” stage, the time before the DBS electrode implantation; 2) the “Off-1” 174	

stage, patient recovery with DBS turned off; 3) the “1 Hz” stage, activation of 1 Hz 175	

stimulation; 4) the “Off-2” stage, DBS turned off because of unnoticed power off; 5) 176	

the “20 Hz” stage, re-activation of 20 Hz stimulation; 6) the “130 Hz” stage, 177	

activation of 130 Hz stimulation. More details can be found in Note S2. The entire 178	

duration of DBS treatment spanned 41 weeks (starting from DBS electrode 179	

implantation). 180	

The efficacy of DBS treatment was evaluated from two perspectives: clinician 181	

evaluation and self evaluation. For clinician evaluation, a psychologist blinded to the 182	

current stimulation parameters and their adjustments evaluated the patient’s 183	

depression and anxiety symptoms on a weekly basis using standardized rating scales 184	

(HAMD, MADRS, HAMA). Response is defined as a 50% or greater improvement 185	
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on the HAMD score from the pre-treatment baseline. Remission is defined as 186	

achieving a HAMD score of 7 or less. The psychologist also evaluated the patient’s 187	

emotional blunting and cognitive functioning during the treatment (see Note S3). For 188	

self evaluation, the patient used the Visual Analogue Scale (VAS) for depression 189	

(VAS-D) and anxiety (VAS-A) to self-report the symptom severity. Self-reported 190	

VASA and VAS-D had been used to assess the rapid effects of antidepressants [48]. 191	

To facilitate daily data collection, we established an online questionnaire system 192	

where the patient could conveniently complete the self-reports via the smartphone or 193	

computer. 194	

2.4 LFP signal recording, signal processing, and feature 195	

extraction 196	

After activating the 1 Hz stimulation, we collected daily LFP signals (30 minutes per 197	

day) concurrent with daily self-reported VAS-D and VAS-A (details in section 2.3). 198	

LFP signals were recorded at a sampling rate of 1000 Hz. Notably, stimulation was 199	

deactivated during the signal acquisition process. We reconstructed the electrode 200	

positions using MRI and selected two contacts in the left hemisphere for bipolar 201	

recording of a single LFP channel. The patient was instructed to attempt daily LFP 202	

recording and VAS-D/VAS-A reporting. Throughout the entire 41-week (287-day) 203	

treatment, the patient was able to activate LFP recording and report VAS-D and VAS-204	

A on 122 days distributed across 26 weeks. Therefore, the subsequent analyses 205	

focused on the LFP signals, VAS-D, and VAS-A scores recorded from these 122 days, 206	

and the HAMD, MADRS, and HAMA scores recorded for the 26 weeks. 207	
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Custom MATLAB scripts (MathWorks Inc., Natick, MA, USA) were used to 208	

preprocess the LFP signals. The LFP signals were first band-pass filtered from 1 to 209	

30 Hz using a Butterworth filter of order 12 to avoid the noise observed in higher 210	

frequency bands. Then, we divided the daily 30-minute LFP signals into 10-second 211	

epochs with a 50% overlap. Next, we used a standard procedure (details in Note S4) 212	

to remove bad epochs from daily LFP signals (example temporal traces and spectrum 213	

of preprocessed LFP epochs were shown in Figure 1C). 214	

For each remaining LFP epoch, we computed its spectral domain (SD) and 215	

temporal domain (TD) features. SD features included PSD of the four bands (δ (1-4 216	

Hz), θ (4-8 Hz), α (8-12 Hz), and β (12-30 Hz)) and phase-amplitude coupling (PAC) 217	

for six specific pairs of coupling. TD features included fourteen temporal domain 218	

features used in previous study [49], e.g., Hjorth mobility, singular value 219	

decomposition (SVD) Fisher information, Hurst exponent, etc. These features capture 220	

the temporal properties of LFP from probabilistic distribution and information theory 221	

perspectives and have been widely used in brain signal analyses [50,51]. As a result, 222	

we obtained 24 features, comprising 10 SD features and 14 TD features for each LFP 223	

epoch. Details of these 24 features are included in Table S1 and Note S4. Finally, we 224	

averaged each feature across LFP epochs within the same day and obtained a single 225	

averaged 24-dimensional LFP feature vector. Our subsequent analyses were based on 226	

the daily LFP features as computed above. 227	

2.5 Identification of neural biomarker 228	

We first conducted Spearman’s rank correlation analyses between LFP features and 229	

symptoms. For each day, we correlated each daily LFP feature with the daily VAS-D 230	
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and VAS-A self-reports. For each week, we computed the average of LFP features 231	

across the days that belonged to this week, resulting in weekly LFP features; we then 232	

correlated each weekly LFP feature with the weekly clinical evaluation scales HAMD, 233	

HAMA, and MADRS. Bonferroni correction was used to adjust for multiple 234	

comparisons. 235	

Next, we used a data-driven method to identify an LHb neural biomarker of 236	

depression symptoms, where we built a machine learning model to use LFP features 237	

to classify high and low depression symptom states. 238	

First, we defined the high and low depression symptom states of the patient by k-239	

means clustering the weekly depression scales HAMD and MADRS similar to prior 240	

work [17]. Among the total 26 weeks (122 days) of LFP data, 7 weeks (29 days) of 241	

LFP data belonged to the low depression symptom state (labeled 0), 4 weeks (22 days) 242	

of LFP data belonged to the high depression symptom state (labeled 1). The remaining 243	

15 weeks (71 days) were unlabeled and used as test data for subsequent biomarker 244	

tracking evaluation (see next section). 245	

Second, based on the labeled data, we built a machine learning model to use the 246	

LFP features to classify high and low depression symptom states. We constructed six 247	

machine learning models: logistic regression (LR), multilayer perceptron (MLP), 248	

adaptive boosting (AdaBoost), support vector machine (SVM), random forest (RF), 249	

and linear discriminant analysis (LDA). We trained and tested these models using 5-250	

fold cross-validations that were repeated 200 times, where we computed the averaged 251	

cross-validated classification accuracy, specificity, sensitivity, F1 score, and Receiver 252	

Operating Characteristic (ROC) Area Under the Curve (AUC) score as the 253	
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performance metrics. The model with the highest accuracy was selected for further 254	

analysis. 255	

Third, the chosen model was retrained with all labeled data, leading to a “neural 256	

biomarker model”. This model takes the LFP feature as input and outputs the decision 257	

variable as the neural biomarker value (e.g., in the LR model, the decision variable 258	

was computed from the decision probability via the inverse sigmoid function). This 259	

allows us to compute a neural biomarker value for any given LFP feature. Higher 260	

neural biomarker values indicate more severe depression symptoms. 261	

In essence, our identified neural biomarker aggregates spectral and temporal 262	

domain features from the LHb LFP signal to classify high and low depression states 263	

during DBS treatment. 264	

2.6 Evaluation of the neural biomarker 265	

We evaluated the identified neural biomarker in terms of (1) tracking the temporal 266	

dynamics of weekly symptom variations; (2) tracking the temporal dynamics of daily 267	

symptom variations; (3) reflecting changes in symptom variations induced by DBS 268	

frequency alterations. 269	

First, we investigated tracking the temporal dynamics of weekly depression and 270	

anxiety symptom scales that were not used in neural biomarker identification. We 271	

took the daily LFP features as inputs to the neural biomarker model and computed the 272	

output daily neural biomarkers. We then averaged the daily neural biomarkers 273	

belonging to the same week to compute the weekly neural biomarkers. We next 274	

correlated the weekly neural biomarker values with the weekly HAMD, MADRS, and 275	

HAMA scores, respectively, using Spearman’s rank correlation analysis with 276	
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explained variance (EV) as an estimation. We further analyzed the temporal dynamics 277	

in the neural biomarker and symptoms, using the dynamic time warping (DTW) 278	

distance [52] to measure the temporal tracking ability of the neural biomarker. Both 279	

the neural biomarker values and the symptom scales were normalized to a range of 0 280	

to 1. We used a size three Sakoe–Chiba warping window in the DTW analysis 281	

following prior work [17,53]. A smaller DTW distance represents better temporal 282	

tracking. To determine the significance of the computed DTW distance, we randomly 283	

shuffled the temporal sequence of the neural biomarker 10,000 times and used the 284	

corresponding shuffled DTW distances as the null hypothesis distribution for 285	

computing the P value. 286	

Second, we investigated tracking the temporal dynamics of the daily VAS-D and 287	

VAS-A self-reports, which were also not used in neural biomarker identification. 288	

Similar to the weekly case, daily LFP features were used to generate daily neural 289	

biomarkers, which were then correlated with daily VAS-D and VAS-A reports. DTW 290	

was again used to assess the temporal tracking of daily depression symptom variations. 291	

Third, we qualitatively compared trends in weekly neural biomarkers and 292	

depression ratings across three DBS frequency alterations (1 Hz to Off-2, Off-2 to 20 293	

Hz, 20 Hz to 130 Hz). We used the two-sided Wilcoxon rank-sum test to check whether 294	

there was a significant difference between the two stages before and after alteration. 295	

We also averaged the neural biomarker values and depression ratings across five time 296	

periods for each case: 1) from the beginning of this stage to two weeks before the 297	

alteration week; 2) during the week before the alteration week; 3) during the alteration 298	

week; 4) during one week after the alteration week; 5) averaged from two weeks after 299	

the alteration week to the end of this stage. 300	
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 301	
 Figure 2. Changes of weekly and daily symptom scores during the LHb DBS treatment and 302	

their correlations with LFP temporal and spectral domain features. (A) Changes of weekly 303	
clinical ratings during the treatment. The vertical dashed lines represent different treatment 304	
stages indicated by the x-axis labels. (B) Changes of daily self-reports during the treatment. 305	
The vertical dashed lines represent different treatment stages indicated by the x-axis labels. (C) 306	
Heatmap of the correlation coefficients. Each cell shows the correlation coefficient (CC) value 307	
between one LFP feature (y-axis) and one symptom score (x-axis), and cells marked with * 308	
indicate the coefficients that are significantly different from zero (Bonferroni corrected p<0.05). 309	
(D) Positive and negative correlation examples with the weekly HAMD score and daily VAS-310	
D score as shown by the yellow boxes in (C). 311	

3. Results 312	

3.1 LHb DBS improved the patient’s clinical symptoms, which 313	

were significantly correlated with LHb LFP features 314	

We first examined the TRD patient’s symptom changes throughout the LHb DBS 315	

treatment process. At the beginning of treatment, the patient’s baseline HAMD score 316	
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was 20, MADRS score was 25, and HAMA score was 16. In terms of the weekly 317	

clinical ratings (Figure 2A), the patient responded at week 14 (HAMD score dropped 318	

to 10; MADRS score dropped to 19; HAMA score dropped to 8) and achieved 319	

remission by the end of the 41-week treatment (HAMD score was 7; MADRS score 320	

was 9; HAMA score was 6). The daily self-reports followed a similar decreasing trend 321	

(Figure 2B). Such a consistent trend was confirmed by the strong positive correlation 322	

between the daily self-reports and weekly clinical ratings (Spearman’s 𝜌	 > 	0.5, 𝑃	 <323	

	0.05 for all pair-wise correlations; see Table S2 and Figure S1 for details). Besides 324	

alleviating the symptoms based on the weekly clinical ratings and daily self-reports, 325	

we also found improvement in emotional blunting and cognitive functioning (Note 326	

S3 and Tables S3-S5). 327	

During the LHb DBS treatment process, we recorded daily LHb LFP signals. 328	

Therefore, we investigated how the LFP features correlated with the patient’s 329	

symptom changes. We found that many of the temporal and spectral domain LHb LFP 330	

features were significantly correlated with the weekly clinical ratings and daily self-331	

reports (Figure 2C). For example, Hurst exponent exhibited the strong correlations 332	

with both weekly HAMD scores (Figure 2D, Spearman’s 𝜌	 = 	−0.85, Bonferroni 333	

corrected 𝑃	 = 	4.7 × 10!") and daily VAS-D scores (Figure 2D, Spearman’s 𝜌	 =334	

	−0.76, Bonferroni corrected 𝑃	 = 	3.8 × 10!##). These results show that LHb LFP 335	

temporal and spectral domain features were strongly correlated with weekly and daily 336	

depression symptom scores, indicating that it is feasible to identify an LHb neural 337	

biomarker of depression symptoms from the LFP temporal and spectral domain 338	

features. 339	
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3.2 Accurate classification of high and low depression symptom 340	

severity states led to the identification of an LHb neural 341	

biomarker 342	

We next used the LFP temporal and spectral features to identify a neural biomarker 343	

that can classify high and low depression symptom severity states. We started by 344	

defining a state of high symptom severity and a state of low symptom severity via 345	

clustering the weekly depression scales HAMD and MADRS (Figure 3A). The high 346	

symptom state (7 weeks) had an average HAMD score of 12.8 and an average 347	

MADRS score of 22.5, while the low symptom state (4 weeks) had an average HAMD 348	

score of 6.3 and an average MADRS score of 9.0. We then used LFP temporal domain 349	

and spectral domain features from these 11 weeks to classify the high and low 350	

symptom severity states via six machine learning models in cross-validation. Among 351	

these six models, the LR model performed better than other more complicated models 352	

(Figure 3B and table S6). Specifically, for the LR model, the cross-validated 353	

classification accuracy was 0.973 ± 0.002  (Mean ±  SEM), the specificity was 354	

0.961 ± 0.003, the sensitivity was 0.988 ± 0.002, the F1-score was 0.970 ± 0.002, 355	

and  the AUC score was 0.974 ± 0.001, which were all significantly higher than 356	

other models (Wilcoxon rank sum test, Bonferroni corrected P < 0.05 for all 357	

comparisons), suggesting that the LR model was best suited for classifying the 358	

collected data. We thus selected the LR model for further analysis. Then, we retrained 359	

the LR model using all labeled data, resulting in the neural biomarker model. The 360	

neural biomarker model takes the LFP features as input and outputs the model 361	
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decision value as the identified neural biomarker, with higher values indicating worse 362	

depression symptoms. 363	

 364	
Figure 3. Accurate classification of high and low depression symptom severity states by the 365	
identified neural biomarker. (A) Clustering of depression symptom severity states. We clustered 366	
the HAMD and MADRS scores to obtain two distinct symptom states: a high depression 367	
symptom severity state (shaded in red) and a low depression symptom severity state (shaded in 368	
blue). Each point represents data of a week. The average HAMD and MADRS scores of the 369	
two clusters are also indicated in the figure. (B) Classification performance of different 370	
classifiers. The bar represents mean and the whiskers represent the 95% confidence interval. 371	
Six classification models (different colors) were compared in terms of five performance 372	
matrices (different x-axis groups): accuracy, specificity, sensitivity, F1-Score and AUC. The 373	
best model was indicated by a yellow star for each metric. Classification model names and 374	
abbreviations: logistic regression (LR), multilayer perceptron (MLP), adaptive boosting 375	
(AdaBoost), support vector machine (SVM), random forest (RF), and linear discriminant 376	
analysis (LDA). (C) Classification accuracy of individual features and all LFP features by the 377	
logistic regression model. The individual SD features are in green, and their indices are ordered 378	
based on classification accuracy. The individual TD features are in blue, and their indices are 379	
ordered by classification accuracy. The combination of all LFP features is in brown. The best 380	
individual feature was indicated by a yellow star for each domain. (D) The absolute coefficients 381	
of each feature in the logistic regression model trained with all LFP features. The individual 382	
feature indices are the same as in (C). 383	
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We further investigated how different features contributed to identifying the 384	

neural biomarker by performing separate classifications for each feature (Figure 3C). 385	

The best temporal domain feature was the Hurst exponent, with a cross-validated 386	

classification accuracy of 0.932. While the best spectral domain feature was the PSD 387	

of the β band, with an average accuracy of 0.803. Overall, temporal domain features 388	

(average accuracy: 0.781) outperformed spectral domain features (average accuracy: 389	

0.705). Notably, combining all the LFP features yielded superior performance 390	

compared to individual features. Consistently, by investigating the logistic regression 391	

coefficients of the neural biomarker model (Figure 3D), we found that the features 392	

with better classification accuracy also had larger coefficients in the neural biomarker 393	

model. These results show that the temporal domain and spectral domain features had 394	

supplementary information that both contributed to the identification of the neural 395	

biomarker, with temporal features having a stronger influence. 396	

3.3 The identified neural biomarker simultaneously tracked the 397	

temporal dynamics of weekly and daily depression symptom 398	

variations during LHb DBS treatment 399	

After identifying the neural biomarker of depression symptoms, we evaluated its 400	

ability to track the temporal dynamics of slow (weekly) and fast (daily) depression 401	

symptom variations during the LHb DBS treatment. For slow weekly variations, we 402	

used the identified neural biomarker model to compute weekly neural biomarker 403	

values (see Methods section 2.6 for details). We used the weekly neural biomarker 404	

values to predict the associated weekly clinical ratings, where we strictly excluded 405	

the weekly data that were used to identify the neural biomarker (i.e., the prediction 406	
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 407	

Figure 4. Accurate tracking the temporal dynamics of weekly depression symptom variations 408	
by the identified neural biomarker. (A) Left: correlation between the identified neural 409	
biomarker values and the weekly HAMD scores unseen in neural biomarker identification. EV: 410	
Explained variance. Middle: neural biomarker tracking of the weekly HAMD score dynamics 411	
over time. Right: the DTW distance analysis result for evaluating the significance of tracking 412	
in the middle panel. Smaller DTW distance represents better tracking. Note that we normalized 413	
both the neural biomarker values and the symptom scales to a range of 0 to 1 using min-max 414	
normalization for better visualization. (B) same as (A) but for the weekly MADRS scores. (C) 415	
same as (A) but for the weekly HAMA scores. 416	
was based on new unseen data not used in training the neural biomarker model). We 417	

found that the weekly neural biomarker values significantly predicted the HAMD 418	

scores (Figure 4A, EV=0.74, 𝑃	 = 	1.1	 ×	10!$). Further, considering the temporal 419	

dynamics in detail by using the DTW distance analysis (see Methods section 2.6), we 420	

found that the weekly neural biomarker significantly tracked the temporal dynamics 421	

of weekly HAMD score variations (random shuffle P = 0.00001). Consistently, the 422	

weekly neural biomarker values significantly predicted the MADRS scores (Figure 423	

4B, EV=0.34, 𝑃	 = 	0.039), and tracked the temporal dynamics in the DTW distance 424	

analysis with marginally significant statistics (random shuffle P = 0.1079). Converse- 425	
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 426	
Figure 5. Accurate tracking the temporal dynamics of daily depression symptom variations by 427	
the identified neural biomarker. (A) Left: correlation between the identified neural biomarker 428	
values and the daily VAS-D scores unseen in neural biomarker identification. EV: Explained 429	
variance. Middle: neural biomarker tracking of the daily VAS-D score dynamics over time. 430	
Right: the DTW distance analysis result for evaluating the significance of tracking in the middle 431	
panel. Smaller DTW distance represents better tracking. (B) same as (A) but for the daily VAS-432	
A scores. 433	

ly, the weekly neural biomarker values did not predict the HAMA scores (Figure 4C, 434	

EV=0.03, 𝑃	 = 	5.2 × 10!%) or tracked the temporal dynamics (random shuffle P = 435	

0.5865). 436	

For fast daily variations, we used the identified neural biomarker model to 437	

compute daily neural biomarker values and used the daily neural biomarker values to 438	

predict the associated daily self-reports (again, data not used in training the neural 439	

biomarker model). We found that the daily neural biomarker values significantly 440	

predicted the VAS-D scores (Figure 5A, EV=0.63, 𝑃	 = 	1.3 × 10!#&) and showed 441	

significant tracking of VAS-D dynamics (random shuffle P = 0.0001). By contrast, 442	

while the daily neural biomarker values predicted the VAS-A scores (Figure 5B, 443	

EV=0.51, 𝑃	 = 	5.3	 ×	10!%") but the daily neural biomarker did not track VAS-A 444	

dynamics (random shuffle P = 1.00). 445	

In summary, the results show that the identified neural biomarker significantly 446	

tracked the temporal dynamics of both weekly and daily variations in depression 447	
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symptoms during the LHb DBS treatment and specifically tracked depression 448	

symptoms rather than anxiety symptoms. 449	

3.4 The identified neural biomarker reflected changes of 450	

depression symptoms in response to DBS parameter 451	

alterations 452	

A useful neural biomarker for DBS also needs to reflect the effect of different DBS 453	

parameters. We thus finally evaluated if the identified neural biomarker could reflect 454	

changes in depression symptoms in response to DBS parameter alterations. We 455	

applied three different DBS frequencies during the treatment: 1 Hz, 20 Hz, and 130 456	

Hz. For the DBS alteration from 1 Hz to stimulation off (Off-2, the DBS device shut 457	

down due to unnoticed power off), there was a trend of increasing for the neural 458	

biomarker, HAMD, and MADRS while the statistical tests were not significant due 459	

the limited sample size (Figure 6A, 1Hz v.s. stimulation off, normalized mean±s.e.m., 460	

neural biomarker: 0.912 ± 0.055 v.s. 0.956 ± 0.026, P=0.35; HAMD: 0.562 ± 0.062 461	

v.s.  0.688 ± 0.036, P=0.16; MADRS: 0.656 ± 0.031 v.s.  0.734 ± 0.053, P=0.35), 462	

which indicated a rebound trend of depression symptoms due to the disruption of DBS 463	

treatment. For the DBS alteration from stimulation off (Off-2) to 20 Hz stimulation 464	

(Figure 6B), the neural biomarker, HAMD, and MADRS consistently decreased 465	

(Figure 6B, stimulation off v.s. 20 Hz, neural biomarker: 0.905 ± 0.095 v.s.  0.545 ± 466	

0.059, P=0.04; HAMD: 0.875 ± 0.125 v.s.  0.375 ± 0.072, P=0.05; MADRS: 0.875 467	

± 0.000 v.s.  0.606 ± 0.061, P=0.08). Specifically, the neural biomarker, HAMD and 468	

MADRS scores all decreased at the week of DBS frequency alteration, further 469	

decreased one week after the alteration and continued to decrease with more obvious  470	
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 471	
Figure 6. The consistent trend between the neural biomarker and the depression symptom 472	
changes when DBS frequencies were altered. (A) DBS frequency was altered from 1 Hz to Off-473	
2. Top: comparison of the values of the biomarker, HAMD scores and MADRS scores between 474	
the 1Hz stage and Off-2 stage. Two-sided Wilcoxon rank-sum test was used for significance 475	
test. Row two: changes in the identified neural biomarker time-locked to the DBS frequency 476	
alteration week (vertical dashed line). Row three: changes in HAMD time-locked to the DBS 477	
frequency alteration week. Bottom: changes in MADRS time-locked to the DBS frequency 478	
alteration week. (B) same as (A) but for DBS frequency alteration from Off-2 to 20 Hz. (C) 479	
same as (A) but for DBS frequency alteration from 20 Hz to 130 Hz. 480	

changes after week two. For the DBS alteration from 20 Hz to 130 Hz stimulation 481	

(Figure 6C), the neural biomarker, HAMD, and MADRS also consistently decreased 482	

(Figure 6C, 20 Hz v.s. 130 Hz, neural biomarker: 0.524 ± 0.060 v.s.  0.088 ± 0.029, 483	

P=0.001; HAMD: 0.323 ± 0.054 v.s.  0.042 ± 0.026, P=0.004; MADRS: 0.573 ± 484	

0.056 v.s.  0.062 ± 0.016, P=0.001). More specifically, the neural biomarker, HAMD 485	

and MADRS scores already showed a trend of decreasing before the DBS frequency 486	

alteration, and the alleviated symptoms stayed relatively stable during the alteration 487	

week, at week one after the alteration, and the same stable trend continued after week 488	

two. The results suggested that the 1 Hz DBS did not induce an obvious change in 489	

depression symptoms, while the 20 Hz and 130 Hz DBS had more meaningful effects. 490	
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The results further demonstrated that the identified neural biomarker indeed reflected 491	

the different change patterns in depression symptoms when the DBS frequencies were 492	

altered. 493	

4. Discussion 494	

4.1 A data-driven LHb neural biomarker for tracking slow and 495	

fast depression symptom variations during DBS treatment 496	

A mechanism-driven neural biomarker for depression is currently lacking mainly 497	

because the neural circuitry underlying depression has not been clearly delineated 498	

[54]. Therefore, current neural biomarkers of depression symptoms for tracking DBS 499	

effects have largely used data-driven machine learning methods to map LFP features 500	

to depression symptom ratings [17,31,32]. The usefulness of data-driven neural 501	

biomarkers critically depends on the data used to identify the neural biomarker. For 502	

example, a recent work [31] focused on a cingulate neural biomarker that was trained 503	

with and accordingly predicted longer-term (on the time scale of weeks) clinical 504	

ratings. On the other hand, another recent work [17] only trained and tested a neural 505	

biomarker with shorter-term (on the time scale of minutes) self-reports. Our work is 506	

unique in that while we identified our LHb neural biomarker based on weekly clinical 507	

ratings, we demonstrated that the neural biomarker predicted not only weekly clinical 508	

ratings (data not used in identification) but also daily self-reports (data again not used 509	

in identification). The results suggested that our LHb neural biomarker could track 510	

the temporal dynamics of both slow and fast depression symptom variations, which 511	

was useful for developing new aDBS strategies that are robust across different time 512	
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scales. It is worth noting that our LHb neural biomarker specifically tracked the 513	

temporal dynamics of weekly and daily depression symptom scores but not the 514	

anxiety symptom scores. It suggests that despite the overlapping of depression-related 515	

and anxiety-related brain networks [55], LHb neural activity is mainly related to 516	

depression, which is supported by prior animal studies [21,22]. 517	

Both population-level and personalized neural biomarkers of depression 518	

symptoms have been identified for tracking DBS effects. Population-level neural 519	

biomarkers are derived from data collected from several patients and have the benefits 520	

of being directly applicable to a new patient and robust interpretability of the neural 521	

biomarker’s biophysical mechanism across patients [31]. By contrast, personalized 522	

neural biomarkers are derived from data collected from an individual patient, which 523	

is more powerful in capturing the unique characteristics of depression symptoms in 524	

each patient, especially given the large inter-individual variability in depression-525	

related brain networks [56]. With the emerging capability of recording more data 526	

within a single patient using mobile devices, personalized neural biomarker models 527	

can be more accurate in tracking the temporal dynamics of depression symptom 528	

variations. With such trends, a personalized neural biomarker has been identified and 529	

used for realizing aDBS targeting VC/VS [17]. Our study identified a personalized 530	

neural biomarker that achieved accurate classification and tracking of depression 531	

symptom variations during the DBS treatment targeting LHb, confirming the 532	

usefulness of personalization. Nevertheless, population-level and personalized neural 533	

biomarkers can complement each other. For example, one can leverage a large amount 534	

of population data to train an interpretable population-level neural biomarker model, 535	
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followed by fine-tuning with personalized data to further improve its accuracy, which 536	

is an important future research direction. 537	

4.2 Importance of fusing LFP temporal domain and spectral 538	

domain features to identify the neural biomarker 539	

Previous studies have exclusively used LFP spectral domain features to identify the 540	

neural biomarker for depression [17,31,32]. By contrast, we found that both the LFP 541	

temporal domain and spectral domain features contributed to our neural biomarker 542	

and that the temporal domain features contributed relatively more than the spectral 543	

domain features. The main contributing temporal domain feature was the Hurst 544	

exponent. The Hurst exponent measures “long-term memory” in temporal dynamics 545	

and is associated with the autocorrelation of a time series [57]. Our results suggest 546	

that the LHb LFP signal’s auto-correlations might change during DBS. The main 547	

contributing (top 2) spectral domain feature was the PSD of the β band. The LHb β 548	

band oscillation was also found to correlate with depression symptoms before DBS 549	

treatment in a previous study [27]. These findings highlight the significance of the β 550	

band oscillations in LHb as related to depression. Both the Hurst exponent and the β 551	

band oscillation features reflect the abnormal synchronization of LHb neural 552	

ensembles underlying depression and might be related to the abnormal burst spiking 553	

phenomena of LHb neurons found in rodents exhibiting depression-like behaviors 554	

[21,22]. The mechanism underlying the contributing LFP temporal domain and 555	

spectral domain features requires further investigation by future research. 556	
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4.3 DBS frequency deferentially modulates the depression 557	

symptom and neural biomarker 558	

Prior studies have shown that DBS frequency can significantly influence the treatment 559	

efficacy for TRD, e.g., high-frequency DBS has generally yielded better treatment 560	

outcomes than low-frequency DBS [23,58,59]. Consistently, we discovered that a 561	

very low DBS frequency of 1 Hz was not effective in alleviating the depression 562	

symptoms in our patient, but higher frequencies of 20 Hz and 130 Hz were more 563	

effective. Beyond the depression symptom ratings, we additionally found that the 564	

neural biomarker was also consistently modulated by the different DBS frequencies. 565	

DBS frequency might influence the release of neurotransmitters in depression-566	

targeted pathways [60], thus modulating the neural biomarker and the depression 567	

symptoms. However, similar to other DBS targets, the optimal DBS frequency at LHb 568	

is still also an open question that requires further research. 569	

5. Limitations 570	

Our study has several limitations. First, our study had a limited sample size (n-of-1); 571	

further studies with more patients are needed to confirm our findings on LHb neural 572	

biomarkers. Second, despite its powerful classification and tracking performance, our 573	

neural biomarker was identified using only one channel of LFP signals. Incorporating 574	

multi-channel LFP signals in future studies would allow for finding neural biomarkers 575	

with even better performance and a more comprehensive understanding of the neural 576	

mechanism underlying neural biomarker identification. Third, due to the high-577	

frequency recording noise of our DBS device, we filtered the LFP signal below 30 Hz 578	

to ensure noise rejection. Future work with better recording capability should 579	
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investigate how higher-frequency LFP temporal and spectral domain features 580	

contribute to the identification of neural biomarkers. Finally, our LFP signals were 581	

recorded with the stimulation temporarily turned OFF to eliminate stimulation 582	

artifacts. While this approach ensured clean LFP signals, it is important to consider 583	

using LFP signals during stimulation to identify neural biomarkers, but this requires 584	

high-performance stimulation artifact removal, which remains challenging [61]. 585	

6. Conclusion 586	

One patient with TRD reached remission after 41 weeks of LHb DBS treatment. With 587	

a unique data collection of concurrent daily and weekly depression symptom scores 588	

and LHb LFP signals during the entire treatment process, we used machine learning 589	

to identify an LHb neural biomarker of depression symptoms. We demonstrated that 590	

our LHb neural biomarker accurately classified high and low depression symptom 591	

severity states, simultaneously tracked the temporal dynamics of weekly (slow) and 592	

daily (fast) depression symptom variations during the DBS treatment process, and 593	

reflected the depression symptom changes in response to DBS frequency alterations. 594	

Our methods and results hold promise in identifying clinically-viable neural 595	

biomarkers to facilitate future adaptive DBS developments for treating TRD. 596	

 597	

Data availability 598	

The data supporting this study’s findings are available from the corresponding author 599	

upon reasonable request. 600	
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