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Abstract

Large Language Models (LLMs) have gained significant attention and are increasingly

used by researchers. Concurrently, publicly accessible datasets containing

individual-level health information are becoming more available. Some of these datasets,

such as the recently released Artificial Intelligence Ready and Equitable Atlas for

Diabetes Insights (AI-READI) dataset, include individual-level data from digital wearable

technologies. The application of LLMs to gain insights about health from wearable sensor

data specific to diabetes is underexplored. This study presents a comprehensive

evaluation of multiple LLMs, including GPT-3.5, GPT-4, GPT-4o, Gemini, Gemini 1.5 Pro,

and Claude 3 Sonnet, on various diabetes research tasks using diverse prompting
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methods to evaluate their performance and gain new insights into diabetes and glucose

dysregulation. Notably, GPT-4o showed promising performance across tasks with a

chain-of-thought prompt design (aggregate performance score of 95.5%). Moreover,

using this model, we identified new insights from the dataset, such as the heightened

sensitivity to stress among diabetic participants during glucose level fluctuations, which

underscores the complex interplay between metabolic and psychological factors. These

results demonstrate that LLMs can enhance the pace of discovery and also enable

automated interpretation of data for users of wearable devices, including both the

research team and the individual wearing the device. Meanwhile, we also emphasize the

critical limitations, such as privacy and ethical risks and dataset biases, that must be

resolved for real-world application in diabetes health settings. This study highlights the

potential and challenges of integrating LLMs into diabetes research and, more broadly,

wearables, paving the way for future healthcare advancements, particularly in

disadvantaged communities.

Introduction

Large language models (LLMs) like GPT1, Gemini2, and Claude3 are being widely adopted

due to their exceptional abilities in natural language processing, data analysis, and

generating insightful and coherent text, enabling more efficient and accurate analysis of

complex datasets across various domains4,5. These models are frequently updated based

on user data, feedback, and design improvements, enhancing their capabilities over time.

Their remarkable potential to adapt to various domains and uncover new insights, which

can be more facile and less time-consuming than traditional artificial intelligence (AI) and
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machine learning (ML) methods, makes them particularly valuable. The application of

LLMs in healthcare has garnered significant interest from researchers6-8. However, there

is still a gap between the potential capabilities of LLMs and their application to real-time

physiological data gathered from wearables. This is a rapidly growing domain, with an

increasing number of users (both researchers and the end user wearing the watch)

employing smartwatches to track vital signs such as heart rate, steps, and respiratory

rate, as well as glucose monitoring devices to track blood sugar levels9-12.

To bridge this gap and demonstrate practical and equitable real-world applications, we

conducted a study to evaluate whether state-of-the-art LLMs can quickly and effectively

answer research questions and uncover new insights from wearable data, specifically

focusing on blood glucose levels, collected from a moderate number of participants. Our

focus is primarily on diabetes-related data, but we also extend our analysis to other

physiological metrics such as heart rate and respiratory rate gathered from smartwatches.

For this study, we utilized the AI-READI (Artificial Intelligence Ready and Equitable Atlas

for Diabetes Insights) dataset13. We leveraged cutting-edge LLMs (i.e. GPT1, Gemini2,

and Claude3) and applied various prompting methods to different diabetes-related health

tasks. We compared the performance of these LLMs using multiple prompting techniques

and evaluation metrics. Finally, we used the best-performing model to extract new

insights from the diabetes dataset, uncovering information that might be overlooked by

traditional AI/ML methods or would require a time-consuming process. This study aims to
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bridge the gap and showcase the practical benefits of LLMs in utilizing wearable data to

gain valuable health insights, with a specific focus on diabetes.

LLMs in healthcare research

In general healthcare, LLMs like GPT-4 are enhancing various medical practices by

improving diagnostic accuracy, streamlining administrative tasks, and supporting clinical

decision-making14,18. These models can analyze and interpret vast amounts of medical

data, including patient records, radiology reports, and clinical notes, thus aiding

healthcare professionals in making more informed decisions. For instance, LLMs have

been used to generate accurate patient discharge summaries, draft clinical notes, and

even assist in medical education by providing up-to-date medical information and

recommendations14-18. Despite their potential, there are challenges such as ensuring data

privacy, addressing biases in training data, and maintaining the accuracy and reliability of

the outputs 19,20 .

In precision medicine, LLMs are playing a crucial role by enabling personalized treatment

plans based on individual patient data. These models can analyze genetic information,

lifestyle factors, and environmental influences to predict disease risks and treatment

responses. For example, LLMs have been employed to identify appropriate treatments for

cancer patients, support decision-making in tumor boards, and predict disease

progression in neurodegenerative disorders21,22. The ability of LLMs to integrate and

analyze multimodal data—such as genomic sequences, imaging data, and electronic
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health records—makes them invaluable in tailoring treatments to individual patients,

thereby improving outcomes and reducing adverse effects 23-25.

Wearables represent a potential significant application area for LLMs in healthcare. These

devices generate continuous streams of physiological and longitudinal data, which can be

analyzed in real-time to monitor patient health, detect anomalies, and predict potential

health issues. LLMs can process the data from wearables to provide insights into a

patient’s daily health metrics, offer personalized health recommendations, and even

predict the onset of diseases like cardiovascular conditions or diabetes11,26-29. The

integration of LLMs with wearable technology facilitates proactive health management,

enabling real-time delivery of care and health insights without requiring patients to directly

interface with a physician or actively engage in a mobile health app.

Approach

We wished to evaluate different LMMs for their ability to accurately address tasks as well

as gain new insights into glucose dysregulation. The tasks we chose were of increasing

order of complexity. Our overall approach to utilize prompt-driven techniques for

enhanced diabetes insights is as follows: We first describe the dataset and the data

preprocessing and integration steps utilized. Next, we detail the LLMs employed in our

experiment. We then present our experimental design, which involves utilizing LLMs to

address multiple diabetes insight tasks through various prompting strategies, including

zero-shot prompting, few-shot prompting, and chain-of-thought prompting. Our approach

to prompt engineering remains model-agnostic throughout these steps.
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We utilized the dataset from the AI-READI project, an AI-ready and ethically-sourced

dataset aimed at supporting research related to type 2 diabetes (NIH Bridge2AI program).

The public dataset includes health information, encompassing diabetes status, blood

sugar levels gathered from the Dexcom G6 Continuous Glucose Monitoring (CGM) device

-- 197 participants --, and fitness tracker data (e.g., heart rate, stress, respiratory rate,

activity) gathered from a Garmin smartwatch -- 135 participants. This data is

representative of a diverse group of participants, balanced across sexes (equal numbers

of male and female), ethnicities/races (equal numbers of Asian, Black, Hispanic, and

White), and health states (equal numbers of non-diabetic, diet-controlled diabetic, oral

medication-controlled diabetic, and insulin-controlled diabetic). We then synchronized and

aggregated the data and ensured that all participants under analysis had sufficient

numbers of blood sugar level measurements and wearable data, with the criterion being

at least one day of data for all data types. The resulting synchronized subset includes

data for a total of 113 participants, comprising 42 diabetic and 71 non-diabetic individuals.

For the LLMs, we utilized the most commonly and widely used models to conduct our

analysis and experiments, including GPT-3.530, GPT-431, GPT-4o32, Gemini33, Gemini 1.5

pro34, and Claude 3 Sonnet35. These LLMs were selected due to their widespread

adoption and proven effectiveness in various natural language processing applications.

Studies have evaluated the performance of these LLMs from various aspects, including

conversational QA tasks36, logical reasoning37,38, coding tasks37, understanding electronic

health records39, and ethical perspectives40. These analyses reveal the strengths and
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limitations of each LLM. Here, by incorporating these models, we aimed to leverage their

advanced capabilities and robust performance to ensure a comprehensive evaluation

across different state-of-the-art LLMs.

We chose tasks of increasing order of complexity using different prompting approaches.

Fig. 1 illustrates the prompt design utilized in this study beginning with zero-shot

prompting. This approach involves crafting a straightforward prompt that directly

addresses the diabetes-related research question without incorporating additional

domain-specific or engineering context, which can be beneficial in maintaining clarity and

focus. Following this, we employed few-shot prompting, which introduces some

domain-specific information by providing examples (labels) that enable the model to learn

relevant knowledge and thereby improve its performance. Finally, we utilized

chain-of-thought prompting, where the LLM is presented with examples of chained,

step-by-step logical reasoning (via additional health context or user context). This method

aids the model in developing a more structured and coherent approach to solving the

problem, ultimately leading to better solutions.

As shown in Fig. 1, we categorized our questions into four distinct tasks. The first task

involves querying the LLM to predict diabetes by analyzing participants' glucose level and

other wearable data (Diabetes detection). The second task focuses on identifying

non-diabetic participants who still experience periods of high glucose levels (High

glucose detection). The third task examines the correlation between glucose levels and

other types of wearable data, aiming to uncover any significant relationships between
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different types of physiological data (Glucose correlation). Lastly, the fourth task aims to

predict participants' ages based on their glucose levels and other wearable data (Age

prediction). This structured approach allows us to comprehensively explore various

aspects of the dataset and evaluate the LLMs' capabilities for different types of analysis.

Figure 1. Different types of contexts and three prompting settings (zero-shot, few-shot, and

chain-of-thought).

LLMs performance evaluation

For the first and second tasks, we use the F1-score as a balanced measure of precision

and recall to compare the performance of the LLMs. For the third task, we evaluate the
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models' ability to correctly identify three types of correlations between glucose and

wearable data: Pearson, Spearman, and Cross correlation. This assessment helps us

understand the models' proficiency in capturing different correlations within the data. For

the fourth task, we use the Mean Absolute Error (MAE) to compare the performance of

the models in predicting participants' ages. Additionally, we apply min-max normalization

to the MAE values to ensure comparability and consistency in the evaluation metrics

across different tasks.

Fig. 2 summarizes the performance among the six models tested with a focus on

diabetes. As illustrated, among all models, GPT-4o exhibits the best performance when

using the chain-of-thought prompting method. The next best model is Gemini 1.5 pro,

which, interestingly, excels with the few-shot prompting approach. This is particularly

evident in the age prediction task in this model, where providing direct examples of

participants' ages makes it easier for the model to perform the task, compared to

incorporating additional reasoning features, such as other wearable data (e.g., heart rate,

respiratory rate, and stress level), into the process. This finding highlights the importance

of selecting the appropriate prompting method for different models and tasks to achieve

optimal performance. Another important observation is that GPT-4o performs better than

GPT-4 and significantly better than GPT-3.5, reflecting the advancements in natural

language processing, contextual comprehension, and response generation capabilities in

these successive model iterations. This supports previous research, which shows that the

behavior of the 'same' LLM service can change substantially in a relatively short period

via updates to the models41.
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Figure 2. Overview of LLMs performance under three prompting settings. For the various tasks,

we employ the following metrics: for "diabetes detection" and "high glucose detection," we use

the F1-score; for the "glucose correlation" task, we utilize three types of correlations: Pearson,

Spearman, and cross-correlation; and for the "age prediction" task, we use the Mean Absolute

Error (MAE). The aggregate performance score for all LLMs, calculated using the optimal

prompting settings for each model is as follows: GPT-3.5: 64.6%, GPT-4: 80.7%, GPT-4o:

95.5%, Gemini: 67.7%, Gemini 1.5 pro: 79.9%, and Claude 3 Sonnet: 66.2%.

Diabetes insights using LLMs

An LLM-based module can be immensely helpful for researchers in discovering novel

insights at various stages of their analysis. Initially, it can serve as a powerful tool for

generating hypotheses by identifying trends and anomalies in large datasets. During
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intermediate stages, it can assist in refining these hypotheses by providing contextual

understanding and suggesting relevant variables to consider. Finally, as part of the final

analysis, an LLM can validate findings and offer new perspectives, ensuring a

comprehensive exploration of the data. It is also important to note that these tasks are

unlikely to have been part of the training corpus for these LLMs, as they are relatively new

and specialized biomedical tasks, and it is remarkable that the LLMs demonstrated any

capability to perform these tasks. Hence, this capability of LLMs to assist throughout the

research process not only enhances the efficiency and depth of analysis but also fosters

innovative discoveries that might otherwise be overlooked.

Since GPT-4o (using chain-of-thought prompting) demonstrated the best performance on

our proposed diabetes-based research prompts, we used this model to investigate how

this LLM can uncover new insights in the AI-READI dataset. Leveraging its advanced

capabilities, GPT-4o was able to identify patterns and correlations that were not

immediately obvious, providing a deeper understanding of the data and potentially

highlighting areas for further study.

First, we started with analyzing the glucose level distributions in diabetic versus

non-diabetic participants. Fig. 3A displays the glucose level distribution for 42 diabetic

and 71 non-diabetic participants. As expected, the majority of diabetic participants

frequently experience high glucose levels (over 180). However, some non-diabetic

participants also have significant periods of high glucose, as identified through prompting

over task two in the previous section. Next, we utilized GPT-4o to explore the correlations
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between glucose and stress, and glucose and respiratory rate, in both diabetic and

non-diabetic participants. These findings are illustrated in Fig. 3B and 3C, respectively.

Fig. 3B reveals that changes in glucose levels (from normal to high) are significantly

associated with stress levels in diabetic participants compared to non-diabetic participants

as diabetic participants are more likely to experience high stress levels during periods of

elevated glucose. Regarding respiratory rate, as shown in Fig. 3C, the majority of both

diabetic and non-diabetic participants maintained a normal respiratory rate during periods

of normal and high glucose levels. This indicates that glucose level changes in both

groups do not significantly affect respiratory rate. However, diabetic participants still

exhibited more frequent episodes of tachypnea. One explanation for the lack of significant

differences in respiratory rates between diabetic and non-diabetic participants in this

dataset is the insufficient duration of aggregated data in the AI-READI dataset, which

encompasses a maximum of 11 days of data across all participants. This analysis

provides a deeper understanding of how these variables interact differently across the two

groups and provide new insights into the management and prediction of glucose levels.

Interestingly, stress tracking relies on heart rate (HR) and heart rate variability (HRV)

data. These findings from the LLM corroborate their biological associations to higher

glucose levels in the diabetic population42.
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Figure 3. Diabetes Insights (A) Glucose level distribution for diabetic vs. non-diabetic

participants. (B) Glucose vs. stress in diabetic and non-diabetic participants with respect to three

categories of glucose level (low, normal, and high) and four categories of stress (resting, low,

medium, and high). (C) Glucose vs. respiratory rate in diabetic and non-diabetic participants with

respect to three categories of glucose level (low, normal, and high) and three categories of

respiratory rate (normal, bradypnea, and tachypnea).
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Knowledge gaps and potential limitations

While we demonstrated the practical application of LLMs in uncovering new insights in

glucose and wearable data, this approach does have a few limitations: Model

understanding: LLMs may struggle to interpret raw wearable data accurately without

proper preprocessing and contextual information. This is why we apply data

preprocessing and synchronization before running LLMs on the dataset43,44.

Computational resources: Processing large volumes of wearable data and running

complex analyses via LLMs can require significant computational power and memory,

sometimes exceeding the LLM's token limitations45. Ethical, legal and social

implications: Handling sensitive health data via LLMs raises concerns about data

privacy and security. Ensuring compliance with regulations such as HIPAA is crucial.

Moreover, wearable data and analyses may reflect demographic biases, leading to biased

insights that LLMs might overlook46,47. In this study, we used the paid version of the LLMs

with data privacy agreements that ensured our dataset content would not be used to train

their models, as approved by the LLM providers. Additionally, we did not include race,

ethnicity, and other demographic information in our experiments. Future work needs to

consider the diversity and equitability of the training datasets used in LLMs. Although

there is increasing awareness of the importance of inclusion and the use of diverse

training datasets in LLM model learning, including additional reinforcement learning with

human interface48, further efforts are necessary to ensure checks and balances are in

place to reduce bias and mitigate disparities. Validation of insights: Insights generated
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by LLMs need to be rigorously validated through clinical trials and studies to ensure their

accuracy and efficacy49-51.

Conclusion

While LLMs have garnered significant attention across various research domains, there

has yet to be a comprehensive study demonstrating their potential to revolutionize

diabetes research by offering new insights from wearable data. This paper presents the

first proof of concept, illustrating the benefits of utilizing LLMs to analyze and derive new

insights from publicly available wearable data, with a focus on diabetes. Our findings

highlight that GPT-4o, the latest and most advanced model from OpenAI, outperforms

others, though models like Gemini 1.5 Pro also show promising results. Future research

is essential to address existing limitations, including computational resource demands,

ethical and privacy concerns, the need for more equitable data representation, and

rigorous medical validation of new findings. Our findings highlight the need for

cost-effective healthcare solutions, such as using wearable technologies to monitor basic

physiological metrics like heart rate and glucose levels. These accessible methods are

essential for reducing financial burdens on economically disadvantaged and historically

marginalized communities. Additionally, integrating LLMs can enhance data analysis

without requiring expensive infrastructure. While advanced solutions have their place,

their higher costs and complexity may disadvantage vulnerable groups. Therefore, we

advocate for a healthcare model focused on affordability, accessibility, and strategic

technology use to ensure equitable health outcomes.
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