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Abstract—Brain tumors, which are abnormal growths of 

cells in the brain, represent a significant health concern, 

necessitating prompt and accurate detection for effective 

treatment. If left untreated, brain tumors can lead to severe 

complications, including cognitive impairment, paralysis, and 

even death. This study evaluates six machine learning 

classifiers: Support Vector Classifier (SVC), Logistic 

Regression Classifier, K-Nearest Neighbors (KNN) Classifier, 

Naive Bayes Classifier, Decision Tree Classifier, and Random 

Forest Classifier - on a comprehensive brain tumor dataset. 

Our results showed that Random Forest achieved the highest 

accuracy of 98.27%, demonstrating its potential in detecting 

brain tumors. However, Support Vector Classifier (SVC) 

emerged as the top performer, achieving an impressive 

accuracy of 97.74%, showcasing its exceptional ability to detect 

brain tumors accurately. This significant improvement in 

SVC's performance highlights its potential as a reliable tool for 

medical diagnostics, contributing to the development of 

efficient and accurate automated systems for early brain tumor 

diagnosis, ultimately aiming to improve patient outcomes and 

treatment efficacy. 

Keywords—Brain Tumor Detection, MRI Image Analysis, 

Deep Learning, Image Classification, Accurate Tumor Diagnosis 

I. INTRODUCTION 

Brain tumors represent a significant global health 
concern, with the Nature Brain Tumor Society (NBTS) 
estimating that approximately 700,000 individuals in the 
United States are affected by these malignancies each year 
[1]. Brain tumors can be classified into various categories 
such as gliomas, medulloblastomas, and acoustic neuromas, 
each presenting distinct characteristics and treatment 
challenges [2]. Effective early detection and accurate 
diagnosis of brain tumors are crucial for optimizing 
treatment strategies and improving patient outcomes. 
Untreated brain tumors can lead to severe neurological 
deficits, cognitive impairments, and, in many cases, death 
[3]. 

Traditionally, brain tumors have been diagnosed using 
Magnetic Resonance Imaging (MRI), which offers high-
resolution images of brain structures [4]. However, 
analyzing MRI data manually is both time-consuming and 
prone to variability, and often lacks the precision required 
for accurate tumor detection and segmentation [5]. This 
challenge has spurred interest in leveraging machine 
learning techniques to automate and enhance the diagnostic 
process. 

Recent advancements in machine learning and artificial 
intelligence have shown promising potential in the realm of 
medical diagnostics [6]. In particular, machine learning 
models that rely on numerical values extracted from patient 
data, such as clinical features, genetic information, and 
laboratory results, have been increasingly explored as a 
means of improving brain tumor detection [7]. These 
models can offer significant advantages over traditional 

image-based methods by facilitating faster and more 
consistent diagnostic processes [3]. 

This study aims to evaluate the effectiveness of several 
well-known machine learning classifiers for the task of brain 
tumor detection using numerical data. Specifically, we 
examine the performance of Support Vector Classifier 
(SVC), Logistic Regression Classifier, K-Nearest Neighbors 
(KNN) Classifier, Naive Bayes Classifier, Decision Tree 
Classifier, and Random Forest Classifier. Each of these 
algorithms brings unique strengths to the table. For instance, 
SVM is known for its effectiveness in high-dimensional 
spaces and its ability to handle non-linearly separable data 
[8]. Logistic Regression is appreciated for its simplicity, 
interpretability, and capability to manage both continuous 
and categorical features [9]. KNN is valued for its 
robustness to noise and ability to capture complex feature 
interactions [10]. Naive Bayes offers benefits in handling 
categorical data and learning from smaller datasets [11]. 
Decision Trees are favored for their interpretability and 
ability to model both categorical and numerical features 
[12]. Random Forest, an ensemble method, is known for 
reducing overfitting and handling high-dimensional data 
effectively [13]. 

The motivation behind using these classifiers lies in their 
distinct advantages for processing numerical data and their 
varying approaches to handling complex patterns in the 
data. This study leverages a dataset consisting of clinical 
and diagnostic numerical values related to brain tumors, 
providing a platform for evaluating the performance of these 
classifiers [14]. The aim is to determine which classifier 
provides the highest accuracy and reliability for brain tumor 
detection, contributing to the development of efficient 
diagnostic tools [15]. 

Machine learning has demonstrated significant promise 
in the medical field, with various studies highlighting its 
effectiveness in improving diagnostic accuracy [16]. For 
instance, recent research has shown that machine learning 
models can significantly enhance the accuracy of cancer 
detection and prognosis prediction [17]. By applying these 
techniques to brain tumor detection using numerical data, 
this study seeks to build upon these advancements and offer 
a novel approach to diagnosing brain tumors [18]. 

In this study, this study focuses on evaluating the 
efficacy of various machine learning classifiers in detecting 
brain tumors from numerical values rather than MRI 
images. The goal is to identify the most effective algorithm 
for this task, thereby contributing to the broader effort of 
improving brain tumor diagnosis and ultimately enhancing 
patient outcomes. 

The paper is further structured as follows: Section II 
discusses the literature review on the brain tumor detection. 
Section III highlights motivation. Section IV describes 
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machine learning algorithms. Section V presents 
methodology. Section VI result. Section VII discussion. 
Lastly, Section VIII concludes the paper and future work. 

II. LITERATURE REVIEW 

This paper [19] highlights the "curse of dimensionality" 
often encountered in brain tumor datasets with many 
features. They propose a two-pronged approach: first, using 
Particle Swarm Optimization to select the most informative 
features, mimicking the efficient foraging behavior of birds 
or fish. Second, they employ ensemble learning with 
Majority Voting, combining the predictions of multiple 
classifiers to improve accuracy and robustness. This 
approach could be particularly relevant to your work if 
you're dealing with a large number of features. 

While the paper [20] utilizes an SVM, its core 
contribution lies in a novel feature extraction method 
designed to capture the most discriminative information 
from brain tumor data. This emphasis on feature engineering 
is highly transferable. You could apply their proposed 
feature extraction techniques and then experiment with 
alternative classifiers like Random Forest, which is known 
for its ability to handle high-dimensional data, or Gradient 
Boosting, which excels at reducing bias and achieving high 
accuracy. 

This paper [21] delves into the realm of unsupervised 
learning for brain tumor detection, specifically employing 
the K-Means clustering algorithm. K-Means groups similar 
data points together based on their features, aiming to 
uncover hidden patterns and structures within the data 
without relying on labeled examples. This approach could 
be beneficial for your research by potentially revealing 
distinct clusters or subgroups within your dataset that 
correspond to different tumor characteristics or stages. 

While the [22] title mentions CNNs, which are typically 
used for image data, this paper emphasizes the critical role 
of feature extraction for accurate brain tumor classification, 
regardless of the data type. They highlight how carefully 
engineered features can significantly improve the 
performance of machine learning models. You can draw 
inspiration from their feature engineering techniques and 
apply them to your tabular data to potentially enhance the 
accuracy of your chosen classifiers. 

[23] Brain tumor detection and segmentation have been 
extensively explored using machine learning and deep 
learning techniques. Various studies have proposed CNN-
based methods, automated feature extraction and 
classification approaches, and comparisons of deep learning 
models. Additionally, hybrid approaches combining 
different techniques have been investigated. These studies 
have achieved high accuracy rates, ranging from 91.43% to 
98.69%, demonstrating the potential of machine learning 
and deep learning in brain tumor detection and 
segmentation. 

[24] Brain tumor segmentation has been extensively 
explored using machine learning techniques. Previous 
reviews have focused on traditional computer vision 
methods and deep learning approaches. Recent studies have 
investigated the use of convolutional neural networks 

(CNNs) for brain tumor segmentation. Other approaches 
include using transfer learning, ensemble learning, and 
hybrid models combining CNNs with traditional machine 
learning techniques. These studies demonstrate the potential 
of machine learning for brain tumor segmentation, achieving 
high accuracy and efficiency. 

In study [25] MRI-based brain tumor detection using 
convolutional deep learning methods and machine learning 
techniques was explored. A 2D CNN and auto-encoder 
network were proposed, achieving training accuracies of 
96.47% and 95.63%, respectively. Six machine learning 
techniques were compared, with KNN achieving the highest 
accuracy (86%) and MLP the lowest (28%). The study 
demonstrates the effectiveness of deep learning methods in 
brain tumor detection, with the proposed 2D CNN showing 
optimal accuracy and performance. This work contributes to 
the development of automated brain tumor detection 
systems, improving diagnosis and treatment. 

III. MOTIVATION 

Brain tumors are a leading cause of cancer-related deaths 
worldwide, with high mortality rates and a profound impact 
on the quality of life for patients and their families. Early 
and accurate diagnosis is crucial for effective treatment, 
improved patient outcomes, and enhanced survival rates. 
However, brain tumor diagnosis remains a challenging task, 
particularly in resource-constrained settings where access to 
advanced medical facilities, specialized personnel, and 
cutting-edge technologies is limited. In such settings, the 
lack of resources hinders the widespread adoption of 
advanced medical imaging techniques like MRI and CT 
scans, which are essential for accurate brain tumor 
diagnosis. 

This research is motivated by the need for a cost-
effective, objective, and accessible tool for brain tumor 
diagnosis that can operate within the constraints of resource-
constrained settings. We aim to develop a predictive model 
that can aid in brain tumor diagnosis using readily available 
patient attributes and clinical features, eliminating the 
reliance on advanced medical imaging techniques or deep 
learning features. By leveraging machine learning 
algorithms and data analytics, our model seeks to provide a 
valuable tool for healthcare professionals, enabling them to 
make informed decisions and improve patient outcomes. 
Ultimately, our research strives to contribute to the 
development of efficient and accurate automated systems 
for early brain tumor diagnosis, leading to better patient care 
and treatment efficacy. 

IV. MACHINE LEARNING CLASSIFIERS 

A. Support Vector Classifier 

Support Vector Machines are powerful supervised 
learning models used for classification and regression tasks. 
In the context of classification, an SVM aims to find an 
optimal hyperplane that best separates data points belonging 
to different classes. 

The hyperplane is chosen to maximize the margin, 
which is the distance between the hyperplane and the closest 
data points from each class, known as support vectors. This 
focus on maximizing the margin contributes to the SVC's 
ability to generalize well to unseen data [26]. 
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SVCs can be applied to both linearly separable and non-
linearly separable data. For non-linearly separable data, 
SVCs utilize kernel functions to map the data into a higher-
dimensional space where it becomes linearly separable [27]. 

B. Logistic Regression Classifier 

Logistic regression is a statistical model used to predict 
the probability of a binary outcome (yes/no, 1/0) based on 
one or more independent variables. Unlike linear regression, 
which predicts continuous outcomes, logistic regression 
employs a sigmoid function to map predictions to a 
probability range between 0 and 1 [28]. 

This algorithm works by estimating the log odds of the 
outcome occurring based on the values of the independent 
variables. These log odds are then transformed into 
probabilities using the sigmoid function. 

While primarily used for binary classification, logistic 
regression can be extended to handle multinomial outcomes 
(multiple categories) through variations like multinomial 
logistic regression. Logistic regression models are widely 
used in various fields, such as biology and social sciences, 
where the objective is to predict a categorical outcome [29]. 

C. K-Nearest Neighbor (KNN) Classifier 

The K-Nearest Neighbors (KNN) classifier is a 
straightforward yet powerful supervised learning algorithm 
used for both classification and regression tasks [30]. At its 
core, KNN operates on the principle that similar data points 
tend to cluster together. 

When classifying a new data point, the algorithm 
identifies the k nearest neighbors to the point in the feature 
space, based on a chosen distance metric (e.g., Euclidean 
distance). The class label of the new data point is then 
determined by a majority vote among its k neighbors. For 
instance, if k is set to 5, and 3 out of the 5 nearest neighbors 
belong to class A, the new data point would be classified as 
belonging to class A. 

One of the key advantages of KNN is its simplicity and 
ease of implementation [31]. It's a non-parametric method, 
meaning it makes no assumptions about the underlying data 
distribution, making it suitable for datasets with complex or 
unknown structures. However, the choice of k is crucial, as a 
small k can make the model susceptible to noise, while a 
large k might lead to over smoothing and misclassification. 

D. Logistic Regression Classifier 

The Naive Bayes Classifier (NBC) is a widely used 
machine learning algorithm for classification tasks. It is 
based on Bayes' theorem, which describes the probability of 
a hypothesis given some observed evidence. In the context 
of classification, the hypothesis is the class label, and the 
evidence is the feature values of the instance to be classified 
[32]. 

The NBC algorithm assumes independence between 
features, meaning that each feature contributes 
independently to the probability of the class label. This 
assumption simplifies the calculation of the posterior 
probability of the class given the features. The algorithm 
calculates the likelihood of each feature given the class, as 
well as the prior probability of each class. Then, it applies 

Bayes' theorem to calculate the posterior probability of each 
class given the features [32]. 

There are three main types of NBC, each suited to 
different types of data. Multinomial Naive Bayes (MNB) is 
used for multi-class problems with discrete features. 
Bernoulli Naive Bayes (BNB) is used for binary 
classification with binary features. Gaussian Naive Bayes 
(GNB) is used for continuous features and assumes a 
Gaussian distribution [33]. 

E. K-Nearest Neighbor (KNN) Classifier 

Decision Tree Classifiers are a popular supervised 
learning method used in machine learning for both 
classification and regression tasks [34]. Their strength lies in 
their intuitive, tree-like structure that breaks down complex 
decisions into a series of simpler ones, mirroring human-like 
reasoning. This makes them easy to understand and 
interpret, even for non-experts. 

The algorithm works by recursively partitioning the 
dataset into increasingly homogeneous subsets based on the 
values of input features [35]. Starting at the root node, 
which represents the entire dataset, the algorithm searches 
for the best feature to split the data, aiming to create subsets 
that are as pure as possible in terms of class distribution 
[36]. This process continues down the tree, with each 
internal node representing a decision point based on a 
specific feature. The branches stemming from these nodes 
represent decision rules, guiding the data towards leaf 
nodes, which hold the final predictions or class labels. 

F. Random Forest Classifier 

The Random Forest Classifier is a powerful ensemble 
learning method used in machine learning for both 
classification and regression tasks [37]. It operates by 
constructing a multitude of decision trees during training 
and outputting the class that is the mode of the classes 
(classification) or mean/average prediction (regression) of 
the individual trees [38]. 

The "random" aspect of Random Forest stems from two 
key concepts: random sampling of the training data and 
random subspace selection. During the creation of each tree, 
a technique called bootstrap sampling is employed, where 
the algorithm randomly selects a subset of the training data 
with replacement [39]. This means that some data points 
may be selected multiple times, while others might be left 
out. This process introduces diversity among the trees, as 
each tree learns from a slightly different perspective of the 
data. 

V. METHODOLOGY 

A. Introduction 

The goal of this study is to develop and evaluate 
machine learning models to detect brain tumors using a 
dataset containing numerical values rather than images. This 
study employs multiple Machine Learning Classifiers, 
including Support Vector Classifier (SVC), Logistic 
Regression Classifier, K-Nearest Neighbors (KNN) 
Classifier, Naive Bayes Classifier, Decision Tree Classifier, 
and Random Forest Classifier, to classify individuals as 
having brain tumors or being healthy. The following 
sections detail the comprehensive methodology 
implemented in this study, which is divided into data 
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preprocessing, model building, evaluation, and validation 
steps. 

B. Data Collection 

The dataset used in this study consists of MRI images of 
brain tumors sourced from Kaggle.com. These images were 
preprocessed to extract numerical features relevant to brain 
tumor detection, resulting in a dataset with 3761 rows and 
multiple columns. The columns include 'Class' (indicating 
the presence or absence of a brain tumor), as well as various 
texture features such as 'Mean', 'Variance', 'Standard 
Deviation', 'Entropy', 'Skewness', 'Kurtosis', 'Contrast', 
'Energy', 'ASM', 'Homogeneity', 'Dissimilarity', and 
'Correlation'.  

Sample images from the dataset are shown in Figure 1, 
which displays four MRI images (fig 1(a), fig 1(b), fig 1(c), 
fig 4(d)) of patients without brain tumors, while Figure 2 
displays four MRI images (fig 2(a), fig 2(b), fig 2(c), fig 
2(d)) of patients with brain tumors. 

 

Fig. 1. MRI images of patients without brain tumor. 

 

Fig. 2. MRI images of patients with brain tumor. 

C. Preprocessing Steps 

The extracted features were preprocessed to ensure data 
quality and consistency. The preprocessing steps included 
normalization, noise reduction, and feature scaling. 

a) Import Libraries: First, essential libraries were 

imported for data analysis, visualization, and model. As 

shown in Table 1, the necessary libraries were imported 

using the following code: 

TABLE I.  IMPORTING LIBRARIES FOR DATA ANALYSIS AND 

VISUALIZATION 

Code Description 

import numpy as np 
Import NumPy library for 

numerical computations 

import pandas as pd 
Import Pandas library for data 

manipulation and analysis 

import matplotlib.pyplot as plt 
Import Matplotlib library for data 

visualization 

import seaborn as sns 
Import Seaborn library for data 

visualization and exploration 

From sklearn.metrics import 

confusion_matrix, 

classification_report, 

accuracy_score 

Import evaluation metrics from 

Scikit-learn library 

b) Load Dataset: The dataset was loaded into a 

pandas DataFrame for analysis, as shown in Table 2. 

TABLE II.  LOADING DATASET INTO PANDAS DATAFRAME 

Code Description 

data = 

pd.read_csv('path_to_dataset.csv') 

 

Load dataset into a 

Pandas DataFrame object called 

data 

D. Exploratory Data Analysis (EDA) 

EDA was performed to understand the distribution and 
characteristics of the dataset. Techniques such as histogram 
plotting, box plots, and scatter plots were used to visualize 
data trends and outliers. These visualizations helped in 
identifying potential issues such as class imbalance and 
guided the data preprocessing steps. 

a) Heatmap: Heatmaps are a powerful visualization 

tool in machine learning, used to represent complex data 

insights intuitively. By leveraging heatmaps, machine 

learning practitioners can gain a deeper understanding of 

their data, develop more effective models, and communicate 

insights more effectively. The code used to generate the 

heatmap is presented in Table 3: 

TABLE III.  HEATMAP 

Code Description 

plt.figure(figsize=(16,9)) 
Set figure size (16x9 inches) for 

plotting 

sns.heatmap(data) Visualize data as a heatmap 

b) Heatmap of Correlation Matrix: The dataset was 

loaded into a pandas DataFrame for analysis, as shown in 

Table 2. 

TABLE IV.  CORRELATION MATRIX 

Code Description 

data.corr() 
Calculate correlation matrix of the 

dataset 

TABLE V.  HEATMAP OF CORRELATION MATRIX 

Code Description 

plt.figure(figsize=(10,8)) 
Set figure size (10x8 inches) for 

plotting 

sns.heatmap(data.corr(), annot = 

True, cmap ='coolwarm', 

linewidths=2) 

Visualize correlation matrix as a 

heatmap with annotations, 

coolwarm color scheme, and 

defined line widths 
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E. Data Splitting 

Data splitting is a crucial step in machine learning, 
where the available data is divided into two subsets: training 
data and testing data. The training data is used to train the 
model, while the testing data is used to evaluate its 
performance. The code used to split the data into training 
and testing is presented in Table 6. 

TABLE VI.  DATA SPLITTING INTO TRAINING AND TESTING SETS 

Code Description 

from sklearn.model_selection 

import train_test_split 

Import train_test_split function 

for splitting data 

X = data.drop(['Class'], axis=1) 
Separate features (X) by dropping 

the target column ('Class') 

y = data['Class'] 
Separate target variable (y) as the 

'Class' column 

X_train, X_test, y_train, y_test = 

train_test_split(X, y, test_size = 

0.2, random_state= 5) 

Split data into training (80%) and 

testing sets (20%) with a 

fixed random seed 

F. Feature Scaling 

Feature scaling, also known as data normalization. It 
involves transforming numeric features into a common 
scale, usually between 0 and 1, to prevent differences in 
scales from affecting model performance. The code used for 
feature scaling is presented in Table 7. 

TABLE VII.  FEATURE SCALING 

Code Description 

from sklearn.preprocessing 

import StandardScaler 

Import StandardScaler class for 

data scaling 

sc = StandardScaler() 
Initialize a StandardScaler object 

for scaling data 

X_train_sc = 

sc.fit_transform(X_train) 

Scale training data (X_train) and 

fit scaler to it 

X_test_sc = sc.transform(X_test) Scale testing data (X_test) using 

the same scaler 

G. Model Building and Training 

After preprocessing the data, various machine learning 
models were developed and trained to predict the target 
variable. Both the original and scaled datasets were used to 
train the models, allowing for a comprehensive evaluation 
of their performance. 

a) Support Vector Classifier: The SVC was trained 

with both the original and scaled data. Training the model 

with the original data is presented in Table 8, and training 

with scaled data is presented in Table 9. 

TABLE VIII.  SUPPORT VECTOR CLASSIFIER TRAINED WITH ORIGINAL 

DATA 

Code Description 

from sklearn.svm import SVC 
Import Support Vector Classifier 

(SVC) from scikit-learn 

svc_classifier = SVC() 
Initialize an SVC object with 

default parameters 

svc_classifier.fit(X_train, y_train) 
Train the SVC model on the 

training data (X_train, y_train) 

y_pred_svc = 

svc_classifier.predict(X_test) 

Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, 

y_pred_svc) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_svc) with actual 

labels (y_test) 

TABLE IX.  SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED 

DATA 

Code Description 

svc_classifier_sc = SVC() 
Initialize another SVC object for 

scaled data 

svc_classifier_sc.fit(X_train_sc, 

y_train) 

Train the SVC model on scaled 

training data (X_train_sc, y_train) 

y_pred_svc_sc = 

svc_classifier_sc.predict(X_test_s

c) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_svc_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_svc_sc) with actual 

labels (y_test) 

b) Logistic Regression Classifier: The LRC was 

trained with both the original and scaled data. Training the 

model with the original data is presented in Table 10, and 

training with scaled data is presented in Table 11. 

TABLE X.  LOGISTIC REGRESSION CLASSIFIER TRAINED WITH 

ORIGINAL DATA 

Code Description 

from sklearn.linear_model import 

LogisticRegression 

Import Logistic Regression class 

from scikit-learn 

log_reg = LogisticRegression() 
Initialize a Logistic Regression 

object with default parameters 

log_reg.fit(X_train, y_train) 
Train the Logistic Regression 

model on the training data 

(X_train, y_train) 

y_pred_log_reg = 

log_reg.predict(X_test) 

Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, y_pred_lr) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_log_reg) with 

actual labels (y_test) 

TABLE XI.  LOGISTIC REGRESSION CLASSIFIER TRAINED WITH 

SCALED DATA 

Code Description 

log_reg_sc = 

LogisticRegression() 

Initialize another Logistic 

Regression object for scaled data 

log_reg_sc.fit(X_train_sc, 

y_train) 

Train the Logistic Regression 

model on scaled training data 

(X_train_sc, y_train) 

y_pred_log_reg_sc = 

log_reg_sc.predict(X_test_sc) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_lr_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_log_reg_sc) with actual 

labels (y_test) 

c) K-Nearest Neighbor (KNN) Classifier: The KNN 

was trained with both the original and scaled data. Training 

the model with the original data is presented in Table 12, 

and training with scaled data is presented in Table 13. 

TABLE XII.  K-NEAREST NEIGHBOR (KNN) CLASSIFIER TRAINED WITH 

ORIGINAL DATA 

Code Description 

from sklearn.neighbors import 

KNeighborsClassifier 

Import K-Nearest Neighbors 

(KNN) Classifier from scikit-

learn 

knn = KNeighborsClassifier() 
Initialize a KNN Classifier object 

with default parameters (k=5) 

knn.fit(X_train, y_train) 
Train the KNN model on the 

training data (X_train, y_train) 
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Code Description 

y_pred_knn = knn.predict(X_test) 
Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, 

y_pred_knn) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_knn) with actual 

labels (y_test) 

TABLE XIII.  SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED 

DATA 

Code Description 

knn_sc = KNeighborsClassifier() 
Initialize another KNN Classifier 

object for scaled data 

knn_sc.fit(X_train_sc, y_train) 
Train the KNN model on scaled 

training data (X_train_sc, y_train) 

y_pred_knn_sc = 

knn_sc.predict(X_test_sc) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_knn_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_knn_sc) with actual 

labels (y_test) 

d) Naive Bayes Classifier: The Naive Bayes Classifier  

was trained with both the original and scaled data. Training 

the model with the original data is presented in Table 14, 

and training with scaled data is presented in Table 15. 

TABLE XIV.  NAIVE BAYES CLASSIFIER TRAINED WITH ORIGINAL DATA 

Code Description 

from sklearn.naive_bayes import 

GaussianNB 

Import Gaussian Naive Bayes 

(GNB) classifier from scikit-learn 

nb = GaussianNB() 
Initialize a Gaussian Naive Bayes 

object with default parameters 

nb.fit(X_train, y_train) 
Train the GNB model on the 

training data (X_train, y_train) 

y_pred_nb = nb.predict(X_test) 
Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, 

y_pred_nb) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_nb) with actual 

labels (y_test) 

TABLE XV.  NAIVE BAYES CLASSIFIER TRAINED WITH SCALED DATA 

Code Description 

nb_sc = GaussianNB() 
Initialize another Gaussian Naive 

Bayes object for scaled data 

nb_sc.fit(X_train_sc, y_train) 
Train the GNB model on scaled 

training data (X_train_sc, y_train) 

y_pred_nb_sc = 

nb_sc.predict(X_test_sc) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_nb_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_nb_sc) with actual labels 

(y_test) 

e) Decision Tree Classifier: The DTC was trained 

with both the original and scaled data. Training the model 

with the original data is presented in Table 16, and training 

with scaled data is presented in Table 17. 

TABLE XVI.  DECISION TREE CLASSIFIER TRAINED WITH ORIGINAL 

DATA 

Code Description 

from sklearn.tree import 

DecisionTreeClassifier 

Import Decision Tree Classifier 

from scikit-learn 

dt = DecisionTreeClassifier() Initialize a Decision Tree 

Code Description 

Classifier object with default 

parameters 

dt.fit(X_train, y_train) 
Train the Decision Tree model on 

the training data (X_train, 

y_train) 

y_pred_dt = dt.predict(X_test) 
Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, 

y_pred_dt) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_dt) with actual 

labels (y_test) 

TABLE XVII.  SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED 

DATA 

Code Description 

svc_classifier_sc = SVC() 
Initialize another SVC object for 

scaled data 

svc_classifier_sc.fit(X_train_sc, 

y_train) 

Train the SVC model on scaled 

training data (X_train_sc, y_train) 

y_pred_svc_sc = 

svc_classifier_sc.predict(X_test_s

c) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_svc_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_svc_sc) with actual 

labels (y_test) 

f) Random Forest Classifier: The RFC was trained 

with both the original and scaled data. Training the model 

with the original data is presented in Table 18, and training 

with scaled data is presented in Table 19. 

TABLE XVIII.  SUPPORT VECTOR CLASSIFIER TRAINED WITH ORIGINAL 

DATA 

Code Description 

from sklearn.ensemble import 

RandomForestClassifier 

Import Random Forest Classifier 

from scikit-learn 

rf = RandomForestClassifier() 
Initialize a Random Forest 

Classifier object with default 

parameters 

rf.fit(X_train, y_train) 
Train the Random Forest model 

on the training data (X_train, 

y_train) 

y_pred_rf = rf.predict(X_test) 
Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, y_pred_rf) 

Calculate the accuracy of the 

model by comparing predicted 

labels (y_pred_rf) with actual 

labels (y_test) 

TABLE XIX.  SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED 

DATA 

Code Description 

rf_sc = RandomForestClassifier() 
Initialize another Random Forest 

Classifier object for scaled data 

rf_sc.fit(X_train_sc, y_train) 

Train the Random Forest model 

on scaled training data 

(X_train_sc, y_train) 

y_pred_rf_sc = 

rf_sc.predict(X_test_sc) 

Use the trained model to predict 

labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 

y_pred_rf_sc) 

Calculate the accuracy of the 

model on scaled data by 

comparing predicted labels 

(y_pred_rf_sc) with actual labels 

(y_test) 

H. Result 

In the study, several traditional machine learning 
algorithms were evaluated on a dataset comprising 
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numerical features related to brain tumor detection. The 
performance of each algorithm was assessed both on the 
original data and after applying data scaling techniques to 
standardize the features. The results demonstrated 
significant improvements in model accuracy post-scaling. 

The Support Vector Classifier (SVC) achieved a 
baseline accuracy of 78.61% on the original data. However, 
after scaling, the model's performance surged to 97.74%, 
highlighting the crucial role of data scaling in boosting 
accuracy. 

Logistic Regression Classifier demonstrated a notable 
accuracy of 90.96% on the original data. When applied to 
scaled data, the model's performance further improved to 
95.88%, indicating enhanced class separation and more 
effective feature utilization. 

The K-Nearest Neighbors (KNN) Classifier exhibited an 
accuracy of 80.61% on the original data. Nonetheless, its 
performance plummeted to 54.58% on scaled data, 
suggesting a high sensitivity to the scaling method 
employed. 

Naive Bayes Classifier achieved a commendable 
accuracy of 95.35% on the original data. Although scaling 
had a minimal impact, the model's accuracy edged up to 
95.48%, indicating a slight benefit from standardized 
features. 

The Decision Tree Classifier showcased an impressive 
accuracy of 98.14% on the original data. However, its 
performance dipped to 90.30% on scaled data, possibly due 
to altered feature importance or decision boundary 
adjustments. 

Lastly, the Random Forest Classifier achieved an 
outstanding accuracy of 98.27% on the original data. While 
scaling had a moderate impact, the model's accuracy settled 
at 93.89%, suggesting a reliance on inherent relationships 
within the original data that were partially 
disrupted by scaling. 

The summarized results of all classifiers in Table 20: 

TABLE XX.  SUMMARIZED RESULT OF ALL CLASSIFIERS 

Classifiers 
Accuracy (Original 

Data) 

Accuracy (Scaled 

Data) 

Support Vector Machine 78.61% 97.74% 

Logistic Regression 90.96% 95.88% 

K-Nearest Neighbors 80.61% 54.58% 

Naive Bayes 95.35% 95.48% 

Decision Tree 98.14% 90.30% 

Random Forest 98.27% 93.89% 

I. Discussion 

In this study, we conducted a comprehensive evaluation 
of six machine learning classifiers: Support Vector Classifier 
(SVC), Logistic Regression, K-Nearest Neighbors (KNN), 
Naive Bayes, Decision Tree, and Random Forest on a brain 
tumor dataset, with a specific focus on the impact of data 
preprocessing on performance. Our results underscore the 
critical role of feature scaling in enhancing the performance 
of Support Vector Classifier (SVC) in medical diagnostics, 

highlighting its potential as a reliable tool for automated 
brain tumor detection. 

a) Classifiers Performace: While Random Forest 

achieved the 98.27% of highest accuracy on the original 

data, SVC emerged as the top performer on scaled data, with 

an impressive accuracy of 97.74%. This significant 

improvement in SVC's performance on scaled data 

highlights the importance of feature scaling in unlocking its 

full potential. The disparity in performance between SVC on 

original and scaled data emphasizes the necessity of 

preprocessing for optimal results, particularly for classifiers 

sensitive to data distribution like SVC. 

b) Implementations for Clinical Application: The 

marked improvement in SVC's performance with feature 

scaling has important implications for clinical applications. 

Integrating preprocessing steps can significantly enhance 

diagnostic accuracy, particularly for classifiers like SVC 

that rely heavily on data distribution. This finding suggests 

that SVC, combined with feature scaling, has the potential 

to become a reliable model for automated brain tumor 

detection, offering a valuable tool for clinicians in 

diagnosing and treating brain tumors. 

c) Future Work: Future research should explore the 

integration of deep learning techniques and ensemble 

learning methods to further enhance detection accuracy and 

robustness. Additionally, investigating the impact of feature 

scaling on other classifiers, exploring the application of 

SVC to other medical diagnostics tasks, and expanding the 

dataset to include a more diverse range of brain tumor types 

and stages would provide a more comprehensive evaluation 

of SVC's performance and its potential as a clinical tool. 

J. Conclusion 

This study demonstrates the potential of machine 
learning classifiers in brain tumor detection, emphasizing 
the importance of data preprocessing and the careful 
selection of models based on dataset characteristics. The 
findings contribute to the ongoing development of accurate 
and efficient automated diagnostic systems, ultimately 
aiming to improve patient outcomes through early and 
precise detection of brain tumors. 

In summary, scaling the data substantially enhanced the 
performance of our brain tumor detection model, with 
Support Vector Classifier (SVC) achieving optimal results 
on scaled data. SVC's accuracy exhibited a notable 
improvement on scaled data, surpassing the performance of 
other classifier like Random Forest, which worked best on 
original data. This highlights the critical importance of data 
scaling in optimizing SVC's diagnostic accuracy in brain 
tumor detection. Future research should focus on refining 
SVC's performance with scaled data and exploring how 
deep learning and combined modeling approaches can 
enhance detection effectiveness and reliability. 
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