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Abstract—This study evaluates the effectiveness of six 
machine learning classifiers—Support Vector Classifier (SVC), 
Logistic Regression, K-Nearest Neighbors (KNN), Naive Bayes, 
Decision Tree, and Random Forest—in detecting brain tumors 
using numerical data rather than traditional imaging 
techniques like MRI. The results emphasize the importance of 
data preprocessing, particularly feature scaling, in enhancing 
model performance. Among the classifiers, Random Forest 
emerged as the top performer, achieving an accuracy of 
98.27% on both original and scaled data, demonstrating its 
robustness and reliability. The study highlights the potential of 
Random Forest as a valuable tool for automated brain tumor 
detection in clinical settings, offering a cost-effective and 
accessible alternative for resource-constrained environments. 
The paper suggests that future research should explore 
advanced deep learning models, such as 3D Convolutional 
Neural Networks (CNNs) and Generative Adversarial 
Networks (GANs), to further improve diagnostic accuracy and 
support early intervention and personalized treatment 
strategies for brain tumor patients. 

Keywords—Brain Tumor Detection, Machine Learning 
Classifiers, Feature Scaling, Classification Accuracy, Ensemble 
Learning 

I. INTRODUCTION 

Brain tumors represent a significant global health 
concern, with the Nature Brain Tumor Society (NBTS) 
estimating that approximately 700,000 individuals in the 
United States are affected by these malignancies each year 
[1]. Brain tumors can be classified into various categories 
such as gliomas, medulloblastomas, and acoustic neuromas, 
each presenting distinct characteristics and treatment 
challenges [2]. Effective early detection and accurate 
diagnosis of brain tumors are crucial for optimizing 
treatment strategies and improving patient outcomes. 
Untreated brain tumors can lead to severe neurological 
deficits, cognitive impairments, and, in many cases, death 
[3]. 

Traditionally, brain tumors have been diagnosed using 
Magnetic Resonance Imaging (MRI), which offers high-
resolution images of brain structures [4]. However, 
analyzing MRI data manually is both time-consuming and 
prone to variability, and often lacks the precision required 
for accurate tumor detection and segmentation [5]. This 
challenge has spurred interest in leveraging machine 
learning techniques to automate and enhance the diagnostic 
process. 

Recent advancements in machine learning and artificial 
intelligence have shown promising potential in the realm of 
medical diagnostics [6]. In particular, machine learning 
models that rely on numerical values extracted from patient 
data, such as clinical features, genetic information, and 
laboratory results, have been increasingly explored as a 
means of improving brain tumor detection [7]. These 
models can offer significant advantages over traditional 

image-based methods by facilitating faster and more 
consistent diagnostic processes [3]. 

This study aims to evaluate the effectiveness of several 
well-known machine learning classifiers for the task of brain 
tumor detection using numerical data. Specifically, we 
examine the performance of Support Vector Classifier 
(SVC), Logistic Regression Classifier, K-Nearest Neighbors 
(KNN) Classifier, Naive Bayes Classifier, Decision Tree 
Classifier, and Random Forest Classifier. Each of these 
algorithms brings unique strengths to the table. For instance, 
SVM is known for its effectiveness in high-dimensional 
spaces and its ability to handle non-linearly separable data 
[8]. Logistic Regression is appreciated for its simplicity, 
interpretability, and capability to manage both continuous 
and categorical features [9]. KNN is valued for its 
robustness to noise and ability to capture complex feature 
interactions [10]. Naive Bayes offers benefits in handling 
categorical data and learning from smaller datasets [11]. 
Decision Trees are favored for their interpretability and 
ability to model both categorical and numerical features 
[12]. Random Forest, an ensemble method, is known for 
reducing overfitting and handling high-dimensional data 
effectively [13]. 

The motivation behind using these classifiers lies in their 
distinct advantages for processing numerical data and their 
varying approaches to handling complex patterns in the 
data. This study leverages a dataset consisting of clinical 
and diagnostic numerical values related to brain tumors, 
providing a platform for evaluating the performance of these 
classifiers [14]. The aim is to determine which classifier 
provides the highest accuracy and reliability for brain tumor 
detection, contributing to the development of efficient 
diagnostic tools [15]. 

Machine learning has demonstrated significant promise 
in the medical field, with various studies highlighting its 
effectiveness in improving diagnostic accuracy [16]. For 
instance, recent research has shown that machine learning 
models can significantly enhance the accuracy of cancer 
detection and prognosis prediction [17]. By applying these 
techniques to brain tumor detection using numerical data, 
this study seeks to build upon these advancements and offer 
a novel approach to diagnosing brain tumors [18]. 

In this study, this study focuses on evaluating the 
efficacy of various machine learning classifiers in detecting 
brain tumors from numerical values rather than MRI 
images. The goal is to identify the most effective algorithm 
for this task, thereby contributing to the broader effort of 
improving brain tumor diagnosis and ultimately enhancing 
patient outcomes. 

The paper is further structured as follows: Section II 
discusses the literature review on the brain tumor detection. 
Section III highlights motivation. Section IV describes 
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machine learning algorithms. Section V presents 
methodology. Section VI result. Section VII discussion. 
Lastly, Section VIII concludes the paper and future work. 

II. LITERATURE REVIEW 

This paper [19] highlights the "curse of dimensionality" 
often encountered in brain tumor datasets with many 
features. They propose a two-pronged approach: first, using 
Particle Swarm Optimization to select the most informative 
features, mimicking the efficient foraging behavior of birds 
or fish. Second, they employ ensemble learning with 
Majority Voting, combining the predictions of multiple 
classifiers to improve accuracy and robustness. This 
approach could be particularly relevant to your work if 
you're dealing with a large number of features. 

While the paper [20] utilizes an SVM, its core 
contribution lies in a novel feature extraction method 
designed to capture the most discriminative information 
from brain tumor data. This emphasis on feature engineering 
is highly transferable. You could apply their proposed 
feature extraction techniques and then experiment with 
alternative classifiers like Random Forest, which is known 
for its ability to handle high-dimensional data, or Gradient 
Boosting, which excels at reducing bias and achieving high 
accuracy. 

This paper [21] delves into the realm of unsupervised 
learning for brain tumor detection, specifically employing 
the K-Means clustering algorithm. K-Means groups similar 
data points together based on their features, aiming to 
uncover hidden patterns and structures within the data 
without relying on labeled examples. This approach could 
be beneficial for your research by potentially revealing 
distinct clusters or subgroups within your dataset that 
correspond to different tumor characteristics or stages. 

While the [22] title mentions CNNs, which are typically 
used for image data, this paper emphasizes the critical role 
of feature extraction for accurate brain tumor classification, 
regardless of the data type. They highlight how carefully 
engineered features can significantly improve the 
performance of machine learning models. You can draw 
inspiration from their feature engineering techniques and 
apply them to your tabular data to potentially enhance the 
accuracy of your chosen classifiers. 

[23] Brain tumor detection and segmentation have been 
extensively explored using machine learning and deep 
learning techniques. Various studies have proposed CNN-
based methods, automated feature extraction and 
classification approaches, and comparisons of deep learning 
models. Additionally, hybrid approaches combining 
different techniques have been investigated. These studies 
have achieved high accuracy rates, ranging from 91.43% to 
98.69%, demonstrating the potential of machine learning 
and deep learning in brain tumor detection and 
segmentation. 

[24] Brain tumor segmentation has been extensively 
explored using machine learning techniques. Previous 
reviews have focused on traditional computer vision 
methods and deep learning approaches. Recent studies have 
investigated the use of convolutional neural networks 

(CNNs) for brain tumor segmentation. Other approaches 
include using transfer learning, ensemble learning, and 
hybrid models combining CNNs with traditional machine 
learning techniques. These studies demonstrate the potential 
of machine learning for brain tumor segmentation, achieving 
high accuracy and efficiency. 

In study [25] MRI-based brain tumor detection using 
convolutional deep learning methods and machine learning 
techniques was explored. A 2D CNN and auto-encoder 
network were proposed, achieving training accuracies of 
96.47% and 95.63%, respectively. Six machine learning 
techniques were compared, with KNN achieving the highest 
accuracy (86%) and MLP the lowest (28%). The study 
demonstrates the effectiveness of deep learning methods in 
brain tumor detection, with the proposed 2D CNN showing 
optimal accuracy and performance. This work contributes to 
the development of automated brain tumor detection 
systems, improving diagnosis and treatment. 

III. MOTIVATION 

Brain tumors are a leading cause of cancer-related deaths 
worldwide, with high mortality rates and a profound impact 
on the quality of life for patients and their families. Early 
and accurate diagnosis is crucial for effective treatment, 
improved patient outcomes, and enhanced survival rates. 
However, brain tumor diagnosis remains a challenging task, 
particularly in resource-constrained settings where access to 
advanced medical facilities, specialized personnel, and 
cutting-edge technologies is limited. In such settings, the 
lack of resources hinders the widespread adoption of 
advanced medical imaging techniques like MRI and CT 
scans, which are essential for accurate brain tumor 
diagnosis. 

This research is motivated by the need for a cost-
effective, objective, and accessible tool for brain tumor 
diagnosis that can operate within the constraints of resource-
constrained settings. We aim to develop a predictive model 
that can aid in brain tumor diagnosis using readily available 
patient attributes and clinical features, eliminating the 
reliance on advanced medical imaging techniques or deep 
learning features. By leveraging machine learning 
algorithms and data analytics, our model seeks to provide a 
valuable tool for healthcare professionals, enabling them to 
make informed decisions and improve patient outcomes. 
Ultimately, our research strives to contribute to the 
development of efficient and accurate automated systems 
for early brain tumor diagnosis, leading to better patient care 
and treatment efficacy. 

IV. MACHINE LEARNING CLASSIFIERS 

A. Support Vector Classifier 

Support Vector Machines are powerful supervised 
learning models used for classification and regression tasks. 
In the context of classification, an SVM aims to find an 
optimal hyperplane that best separates data points belonging 
to different classes. 

The hyperplane is chosen to maximize the margin, 
which is the distance between the hyperplane and the closest 
data points from each class, known as support vectors. This 
focus on maximizing the margin contributes to the SVC's 
ability to generalize well to unseen data [26]. 
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SVCs can be applied to both linearly separable and non-
linearly separable data. For non-linearly separable data, 
SVCs utilize kernel functions to map the data into a higher-
dimensional space where it becomes linearly separable [27]. 

B. Logistic Regression Classifier 

Logistic regression is a statistical model used to predict 
the probability of a binary outcome (yes/no, 1/0) based on 
one or more independent variables. Unlike linear regression, 
which predicts continuous outcomes, logistic regression 
employs a sigmoid function to map predictions to a 
probability range between 0 and 1 [28]. 

This algorithm works by estimating the log odds of the 
outcome occurring based on the values of the independent 
variables. These log odds are then transformed into 
probabilities using the sigmoid function. 

While primarily used for binary classification, logistic 
regression can be extended to handle multinomial outcomes 
(multiple categories) through variations like multinomial 
logistic regression. Logistic regression models are widely 
used in various fields, such as biology and social sciences, 
where the objective is to predict a categorical outcome [29]. 

C. K-Nearest Neighbor (KNN) Classifier 

The K-Nearest Neighbors (KNN) classifier is a 
straightforward yet powerful supervised learning algorithm 
used for both classification and regression tasks [30]. At its 
core, KNN operates on the principle that similar data points 
tend to cluster together. 

When classifying a new data point, the algorithm 
identifies the k nearest neighbors to the point in the feature 
space, based on a chosen distance metric (e.g., Euclidean 
distance). The class label of the new data point is then 
determined by a majority vote among its k neighbors. For 
instance, if k is set to 5, and 3 out of the 5 nearest neighbors 
belong to class A, the new data point would be classified as 
belonging to class A. 

One of the key advantages of KNN is its simplicity and 
ease of implementation [31]. It's a non-parametric method, 
meaning it makes no assumptions about the underlying data 
distribution, making it suitable for datasets with complex or 
unknown structures. However, the choice of k is crucial, as a 
small k can make the model susceptible to noise, while a 
large k might lead to over smoothing and misclassification. 

D. Navie Bayes Classifier 

The Naive Bayes Classifier (NBC) is a widely used 
machine learning algorithm for classification tasks. It is 
based on Bayes' theorem, which describes the probability of 
a hypothesis given some observed evidence. In the context 
of classification, the hypothesis is the class label, and the 
evidence is the feature values of the instance to be classified 
[32]. 

The NBC algorithm assumes independence between 
features, meaning that each feature contributes 
independently to the probability of the class label. This 
assumption simplifies the calculation of the posterior 
probability of the class given the features. The algorithm 
calculates the likelihood of each feature given the class, as 
well as the prior probability of each class. Then, it applies 

Bayes' theorem to calculate the posterior probability of each 
class given the features [32]. 

There are three main types of NBC, each suited to 
different types of data. Multinomial Naive Bayes (MNB) is 
used for multi-class problems with discrete features. 
Bernoulli Naive Bayes (BNB) is used for binary 
classification with binary features. Gaussian Naive Bayes 
(GNB) is used for continuous features and assumes a 
Gaussian distribution [33]. 

E. Decision Tree Classifier 

Decision Tree Classifiers are a popular supervised 
learning method used in machine learning for both 
classification and regression tasks [34]. Their strength lies in 
their intuitive, tree-like structure that breaks down complex 
decisions into a series of simpler ones, mirroring human-like 
reasoning. This makes them easy to understand and 
interpret, even for non-experts. 

The algorithm works by recursively partitioning the 
dataset into increasingly homogeneous subsets based on the 
values of input features [35]. Starting at the root node, 
which represents the entire dataset, the algorithm searches 
for the best feature to split the data, aiming to create subsets 
that are as pure as possible in terms of class distribution 
[36]. This process continues down the tree, with each 
internal node representing a decision point based on a 
specific feature. The branches stemming from these nodes 
represent decision rules, guiding the data towards leaf 
nodes, which hold the final predictions or class labels. 

F. Random Forest Classifier 

The Random Forest Classifier is a powerful ensemble 
learning method used in machine learning for both 
classification and regression tasks [37]. It operates by 
constructing a multitude of decision trees during training 
and outputting the class that is the mode of the classes 
(classification) or mean/average prediction (regression) of 
the individual trees [38]. 

The "random" aspect of Random Forest stems from two 
key concepts: random sampling of the training data and 
random subspace selection. During the creation of each tree, 
a technique called bootstrap sampling is employed, where 
the algorithm randomly selects a subset of the training data 
with replacement [39]. This means that some data points 
may be selected multiple times, while others might be left 
out. This process introduces diversity among the trees, as 
each tree learns from a slightly different perspective of the 
data. 

V. METHODOLOGY 

A. Introduction 

The goal of this study is to develop and evaluate 
machine learning models to detect brain tumors using a 
dataset containing numerical values rather than images. This 
study employs multiple Machine Learning Classifiers, 
including Support Vector Classifier (SVC), Logistic 
Regression Classifier, K-Nearest Neighbors (KNN) 
Classifier, Naive Bayes Classifier, Decision Tree Classifier, 
and Random Forest Classifier, to classify individuals as 
having brain tumors or being healthy. The following 
sections detail the comprehensive methodology 
implemented in this study, which is divided into data 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/


preprocessing, model building, evaluation, and validation 
steps. 

B. Data Collection 

The dataset used in this study consists of MRI images of 
brain tumors sourced from [40] [41]. These images were 
preprocessed to extract numerical features relevant to brain 
tumor detection, resulting in a dataset with 3761 rows and 
multiple columns. The columns include 'Class' (indicating 
the presence or absence of a brain tumor), as well as various 
texture features such as 'Mean', 'Variance', 'Standard 
Deviation', 'Entropy', 'Skewness', 'Kurtosis', 'Contrast', 
'Energy', 'ASM', 'Homogeneity', 'Dissimilarity', and 
'Correlation'.  

Sample images from the dataset are shown in Figure 1, 
which displays four MRI images (fig 1(a), fig 1(b), fig 1(c), 
fig 4(d)) of patients without brain tumors, while Figure 2 
displays four MRI images (fig 2(a), fig 2(b), fig 2(c), fig 
2(d)) of patients with brain tumors. 

 
Fig. 1. MRI images of patients without brain tumor. 

 
Fig. 2. MRI images of patients with brain tumor. 

C. Preprocessing Steps 

The extracted features were preprocessed to ensure data 
quality and consistency. The preprocessing steps included 
normalization, noise reduction, and feature scaling. 

a) Import Libraries: First, essential libraries were 
imported for data analysis, visualization, and model. As 
shown in Table 1, the necessary libraries were imported 
using the following code: 

TABLE I.  IMPORTING LIBRARIES FOR DATA ANALYSIS AND 
VISUALIZATION 

Code Description 

import numpy as np Import NumPy library for 
numerical computations 

import pandas as pd 
Import Pandas library for data 

manipulation and analysis 

import matplotlib.pyplot as plt 
Import Matplotlib library for data 

visualization 

import seaborn as sns 
Import Seaborn library for data 
visualization and exploration 

b) Load Dataset: The dataset was loaded into a 
pandas DataFrame for analysis, as shown in Table 2. 

TABLE II.  LOADING DATASET INTO PANDAS DATAFRAME 

Code Description 

data = 
pd.read_csv('path_to_dataset.csv') 

Load dataset into a 
Pandas DataFrame object called 

data 

c) Data Overview: Display information and summary 
statistics of the dataset, shown in Table 3 

TABLE III.  DATA OVERVIEW 

Code Description 

data.info() Summary of data structure 

data.isnull().sum() Count of missing values 

data.describe() Statistical summary of data 

D. Exploratory Data Analysis (EDA) 

EDA was performed to understand the distribution and 
characteristics of the dataset. Techniques such as histogram 
plotting, box plots, and scatter plots were used to visualize 
data trends and outliers. These visualizations helped in 
identifying potential issues such as class imbalance and 
guided the data preprocessing steps. 

a) Heatmap: Heatmaps are a powerful visualization 
tool in machine learning, used to represent complex data 
insights intuitively. By leveraging heatmaps, machine 
learning practitioners can gain a deeper understanding of 
their data, develop more effective models, and communicate 
insights more effectively. The code used to generate the 
heatmap is presented in Table 4: 

TABLE IV.  HEATMAP 

Code Description 

plt.figure(figsize=(16,9)) Set figure size (16x9 inches) for 
plotting 

sns.heatmap(data) Visualize data as a heatmap 

b) Heatmap of Correlation Matrix: The dataset was 
loaded into a pandas DataFrame for analysis, as shown in 
Table 5, and 6. 

TABLE V.  CORRELATION MATRIX 

Code Description 

data.corr() 
Calculate correlation matrix of the 

dataset 

TABLE VI.  HEATMAP OF CORRELATION MATRIX 

Code Description 
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Code Description 

plt.figure(figsize=(10,8)) 
Set figure size (10x8 inches) for 

plotting 

sns.heatmap(data.corr(), annot = 
True, cmap ='coolwarm', 
linewidths=2) 

Visualize correlation matrix as a 
heatmap with annotations, 

coolwarm color scheme, and 
defined line widths 

E. Data Splitting 

Data splitting is a crucial step in machine learning, 
where the available data is divided into two subsets: training 
data and testing data. The training data is used to train the 
model, while the testing data is used to evaluate its 
performance. The code used to split the data into training 
and testing is presented in Table 7. 

TABLE VII.  DATA SPLITTING INTO TRAINING AND TESTING SETS 

Code Description 
from sklearn.model_selection 
import train_test_split 

Import train_test_split function 
for splitting data 

X = data.drop(['Class'], axis=1) 
Separate features (X) by dropping 

the target column ('Class') 

y = data['Class'] Separate target variable (y) as the 
'Class' column 

X_train, X_test, y_train, y_test = 
train_test_split(X, y, test_size = 
0.2, random_state= 5) 

Split data into training (80%) and 
testing sets (20%) with a 

fixed random seed 

F. Feature Scaling 

Feature scaling, also known as data normalization. It 
involves transforming numeric features into a common 
scale, usually between 0 and 1, to prevent differences in 
scales from affecting model performance. The code used for 
feature scaling is presented in Table 8. 

TABLE VIII.  FEATURE SCALING 

Code Description 
from sklearn.preprocessing 
import StandardScaler 

Import StandardScaler class for 
data scaling 

sc = StandardScaler() Initialize a StandardScaler object 
for scaling data 

X_train_sc = 
sc.fit_transform(X_train) 

Scale training data (X_train) and 
fit scaler to it 

X_test_sc = sc.transform(X_test) Scale testing data (X_test) using 
the same scaler 

G. Model Building and Training 

After preprocessing the data, various machine learning 
models were developed and trained to predict the target 
variable. Both the original and scaled datasets were used to 
train the models, allowing for a comprehensive evaluation 
of their performance. 

a) Support Vector Classifier: The SVC was trained 
with both the original and scaled data. Training the model 
with the original data is presented in Table 9, and training 
with scaled data is presented in Table 10. 

TABLE IX.  SUPPORT VECTOR CLASSIFIER TRAINED WITH ORIGINAL 
DATA 

Code Description 

from sklearn.svm import SVC Import Support Vector Classifier 
(SVC) from scikit-learn 

svc_classifier = SVC() Initialize an SVC object with 
default parameters 

svc_classifier.fit(X_train, y_train) Train the SVC model on the 
training data (X_train, y_train) 

Code Description 
y_pred_svc = 

svc_classifier.predict(X_test) 
Use the trained model to predict 

labels for the testing data (X_test) 

accuracy_score(y_test, 
y_pred_svc) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_svc) with actual 

labels (y_test) 

TABLE X.  SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED 
DATA 

Code Description 

svc_classifier_sc = SVC() 
Initialize another SVC object for 

scaled data 
svc_classifier_sc.fit(X_train_sc, 

y_train) 
Train the SVC model on scaled 

training data (X_train_sc, y_train) 
y_pred_svc_sc = 

svc_classifier_sc.predict(X_test_s
c) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_svc_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_svc_sc) with actual 

labels (y_test) 

b) Logistic Regression Classifier: The LRC was 
trained with both the original and scaled data. Training the 
model with the original data is presented in Table 11, and 
training with scaled data is presented in Table 12. 

TABLE XI.  LOGISTIC REGRESSION CLASSIFIER TRAINED WITH 
ORIGINAL DATA 

Code Description 
from sklearn.linear_model import 

LogisticRegression 
Import Logistic Regression class 

from scikit-learn 

log_reg = LogisticRegression() Initialize a Logistic Regression 
object with default parameters 

log_reg.fit(X_train, y_train) 
Train the Logistic Regression 

model on the training data 
(X_train, y_train) 

y_pred_log_reg = 
log_reg.predict(X_test) 

Use the trained model to predict 
labels for the testing data (X_test) 

accuracy_score(y_test, y_pred_lr) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_log_reg) with 

actual labels (y_test) 

TABLE XII.  LOGISTIC REGRESSION CLASSIFIER TRAINED WITH 
SCALED DATA 

Code Description 
log_reg_sc = 

LogisticRegression() 
Initialize another Logistic 

Regression object for scaled data 

log_reg_sc.fit(X_train_sc, 
y_train) 

Train the Logistic Regression 
model on scaled training data 

(X_train_sc, y_train) 

y_pred_log_reg_sc = 
log_reg_sc.predict(X_test_sc) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_lr_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_log_reg_sc) with actual 

labels (y_test) 

c) K-Nearest Neighbor (KNN) Classifier: The KNN 
was trained with both the original and scaled data. Training 
the model with the original data is presented in Table 13, 
and training with scaled data is presented in Table 14. 

TABLE XIII.  K-NEAREST NEIGHBOR (KNN) CLASSIFIER TRAINED WITH 
ORIGINAL DATA 
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Code Description 

from sklearn.neighbors import 
KNeighborsClassifier 

Import K-Nearest Neighbors 
(KNN) Classifier from scikit-

learn 

knn = KNeighborsClassifier() Initialize a KNN Classifier object 
with default parameters (k=5) 

knn.fit(X_train, y_train) Train the KNN model on the 
training data (X_train, y_train) 

y_pred_knn = knn.predict(X_test) Use the trained model to predict 
labels for the testing data (X_test) 

accuracy_score(y_test, 
y_pred_knn) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_knn) with actual 

labels (y_test) 

TABLE XIV.  K-NEAREST NEIGHBOR (KNN) CLASSIFIER TRAINED WITH 
SCALED DATA 

Code Description 

knn_sc = KNeighborsClassifier() 
Initialize another KNN Classifier 

object for scaled data 

knn_sc.fit(X_train_sc, y_train) 
Train the KNN model on scaled 

training data (X_train_sc, y_train) 

y_pred_knn_sc = 
knn_sc.predict(X_test_sc) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_knn_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_knn_sc) with actual 

labels (y_test) 

d) Naive Bayes Classifier: The Naive Bayes Classifier  
was trained with both the original and scaled data. Training 
the model with the original data is presented in Table 15, 
and training with scaled data is presented in Table 16. 

TABLE XV.  NAIVE BAYES CLASSIFIER TRAINED WITH ORIGINAL DATA 

Code Description 
from sklearn.naive_bayes import 

GaussianNB 
Import Gaussian Naive Bayes 

(GNB) classifier from scikit-learn 

nb = GaussianNB() Initialize a Gaussian Naive Bayes 
object with default parameters 

nb.fit(X_train, y_train) Train the GNB model on the 
training data (X_train, y_train) 

y_pred_nb = nb.predict(X_test) Use the trained model to predict 
labels for the testing data (X_test) 

accuracy_score(y_test, 
y_pred_nb) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_nb) with actual 

labels (y_test) 

TABLE XVI.  NAIVE BAYES CLASSIFIER TRAINED WITH SCALED DATA 

Code Description 

nb_sc = GaussianNB() 
Initialize another Gaussian Naive 

Bayes object for scaled data 

nb_sc.fit(X_train_sc, y_train) 
Train the GNB model on scaled 

training data (X_train_sc, y_train) 

y_pred_nb_sc = 
nb_sc.predict(X_test_sc) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_nb_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_nb_sc) with actual labels 

(y_test) 

e) Decision Tree Classifier: The DTC was trained 
with both the original and scaled data. Training the model 
with the original data is presented in Table 17, and training 
with scaled data is presented in Table 18. 

TABLE XVII.  DECISION TREE CLASSIFIER TRAINED WITH ORIGINAL 
DATA 

Code Description 
from sklearn.tree import 
DecisionTreeClassifier 

Import Decision Tree Classifier 
from scikit-learn 

dt = DecisionTreeClassifier() 
Initialize a Decision Tree 

Classifier object with default 
parameters 

dt.fit(X_train, y_train) 
Train the Decision Tree model on 

the training data (X_train, 
y_train) 

y_pred_dt = dt.predict(X_test) Use the trained model to predict 
labels for the testing data (X_test) 

accuracy_score(y_test, 
y_pred_dt) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_dt) with actual 

labels (y_test) 

TABLE XVIII.  DECISION TREE CLASSIFIER TRAINED WITH SCALED DATA 

Code Description 

dt_sc = DecisionTreeClassifier() 
Initialize another SVC object for 

scaled data 

dt_sc.fit(X_train_sc, y_train) Train the SVC model on scaled 
training data (X_train_sc, y_train) 

y_pred_dt_sc = 
dt_sc.predict(X_test_sc) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_dt_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_svc_sc) with actual 

labels (y_test) 

f) Random Forest Classifier: The RFC was trained 
with both the original and scaled data. Training the model 
with the original data is presented in Table 19, and training 
with scaled data is presented in Table 20. 

TABLE XIX.  RANDOM FOREST CLASSIFIER TRAINED WITH ORIGINAL 
DATA 

Code Description 
from sklearn.ensemble import 

RandomForestClassifier 
Import Random Forest Classifier 

from scikit-learn 

rf = RandomForestClassifier() 
Initialize a Random Forest 

Classifier object with default 
parameters 

rf.fit(X_train, y_train) 
Train the Random Forest model 

on the training data (X_train, 
y_train) 

y_pred_rf = rf.predict(X_test) Use the trained model to predict 
labels for the testing data (X_test) 

accuracy_score(y_test, y_pred_rf) 

Calculate the accuracy of the 
model by comparing predicted 
labels (y_pred_rf) with actual 

labels (y_test) 

TABLE XX.  RANDOM FOREST CLASSIFIER TRAINED WITH SCALED 
DATA 

Code Description 

rf_sc = RandomForestClassifier() 
Initialize another Random Forest 
Classifier object for scaled data 

rf_sc.fit(X_train_sc, y_train) 
Train the Random Forest model 

on scaled training data 
(X_train_sc, y_train) 

y_pred_rf_sc = 
rf_sc.predict(X_test_sc) 

Use the trained model to predict 
labels for scaled testing data 

(X_test_sc) 

accuracy_score(y_test, 
y_pred_rf_sc) 

Calculate the accuracy of the 
model on scaled data by 

comparing predicted labels 
(y_pred_rf_sc) with actual labels 

(y_test) 
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H. Result 

In the study, several traditional machine learning 
algorithms were evaluated on a dataset comprising 
numerical features related to brain tumor detection. The 
performance of each algorithm was assessed both on the 
original data and after applying data scaling techniques to 
standardize the features. The results demonstrated 
significant improvements in model accuracy post-scaling. 

The Support Vector Classifier (SVC) achieved a 
baseline accuracy of 78.61% on the original data. However, 
after scaling, the model's performance surged to 97.74%, 
highlighting the crucial role of data scaling in boosting 
accuracy. 

Logistic Regression Classifier demonstrated a notable 
accuracy of 90.96% on the original data. When applied to 
scaled data, the model's performance further improved to 
97.87%, indicating enhanced class separation and more 
effective feature utilization. 

The K-Nearest Neighbors (KNN) Classifier exhibited an 
accuracy of 80.61% on the original data. However, its 
performance improved to 97.74% on scaled data, suggesting 
a positive impact from the scaling method employed. 

Naive Bayes Classifier achieved a commendable 
accuracy of 95.35% on the original data. Although scaling 
had a minimal impact, the model's accuracy edged up to 
95.48%, indicating a slight benefit from standardized 
features. 

The Decision Tree Classifier showcased an impressive 
accuracy of 98.14% on the original data, and this accuracy 
remained the same at 98.14% on scaled data, indicating no 
significant impact from scaling. 

Lastly, the Random Forest Classifier achieved an 
outstanding accuracy of 98.27% on the original data, and 
this accuracy remained the same at 98.27% on scaled data, 
suggesting no significant impact from scaling. 

The summarized results of all classifiers in Table 21: 

TABLE XXI.  SUMMARIZED RESULT OF ALL CLASSIFIERS 

Classifiers 
Accuracy (Original 

Data) 
Accuracy (Scaled 

Data) 

Support Vector Machine 78.61% 97.74% 

Logistic Regression 90.96% 97.87% 

K-Nearest Neighbors 80.61% 97.74% 

Naive Bayes 95.35% 95.48% 

Decision Tree 98.14% 98.14% 

Random Forest 98.27% 98.27% 

I. Discussion 

 In this study, we conducted a comprehensive 
evaluation of six machine learning classifiers: Support 
Vector Classifier (SVC), Logistic Regression, K-Nearest 
Neighbors (KNN), Naive Bayes, Decision Tree, and 
Random Forest on a brain tumor dataset, with a specific 
focus on the impact of data preprocessing on performance. 
Our results underscore the critical role of feature scaling in 
enhancing the performance of machine learning classifiers 
in medical diagnostics, highlighting Random Forest's 

potential as a reliable tool for automated brain tumor 
detection. 

a) Classifier Performance: While Random Forest 
achieved the highest accuracy of 98.27% on both original 
and scaled data, emerging as the top performer in both 
scenarios, this highlights the importance of feature scaling 
in unlocking the full potential of classifiers. 

b) Implementations for Clinical Application: The 
consistent high performance of Random Forest, combined 
with its robustness to data distribution, has important 
implications for clinical applications. Integrating 
preprocessing steps can significantly enhance diagnostic 
accuracy, particularly for classifiers that rely heavily on data 
distribution. This finding suggests that Random Forest has 
the potential to become a reliable model for automated brain 
tumor detection, offering a valuable tool for clinicians in 
diagnosing and treating brain tumors, due to its consistently 
high performance on both original and scaled data. 

c) Future Work: Future research could investigate the 
use of advanced deep learning architectures to improve 
tumor segmentation and detection. This includes exploring 
3D CNNs for analyzing volumetric medical imaging data, 
and GANs for generating synthetic tumor data to augment 
real datasets. Additionally, multi-modal deep learning 
models could be developed to combine imaging data with 
clinical and genomic information. Transfer learning and 
attention mechanisms could also be examined to adapt pre-
trained models to specific brain tumor types and improve 
detection accuracy. By evaluating these approaches, 
researchers can work towards enabling early intervention 
and personalized treatment strategies. 

J. Conclusion 

This comprehensive study demonstrated the significance 
of data preprocessing in enhancing the performance of 
machine learning classifiers for brain tumor detection. The 
evaluation of six traditional machine learning algorithms - 
Support Vector Classifier (SVC), Logistic Regression, K-
Nearest Neighbors (KNN), Naive Bayes, Decision Tree, and 
Random Forest - revealed that Random Forest emerged as 
the top performer, achieving the highest accuracy of 98.27% 
on both original and scaled data, showcasing its robustness 
and reliability. The findings suggest that Random Forest has 
the potential to become a reliable model for automated brain 
tumor detection, offering a valuable tool for clinicians. The 
consistent high performance of Random Forest, combined 
with its robustness to data distribution, has significant 
implications for clinical applications, suggesting its 
potential as a reliable model for automated brain 
tumor detection. Future research could explore advanced 
deep learning architectures, including 3D CNNs, GANs, and 
multi-modal models, to further improve tumor segmentation 
and detection accuracy. Additionally, investigating transfer 
learning and attention mechanisms could help adapt pre-
trained models to specific brain tumor types, ultimately 
enabling early intervention and personalized 
treatment strategies. 
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