

Comparative Evaluation Of Machine Learning
Classifiers For Brain Tumor Detection

Umair Ali
https://orcid.org/0009-0001-5156-4733

Abstract—This study evaluates the effectiveness of six
machine learning classifiers—Support Vector Classifier (SVC),
Logistic Regression, K-Nearest Neighbors (KNN), Naive Bayes,
Decision Tree, and Random Forest—in detecting brain tumors
using numerical data rather than traditional imaging
techniques like MRI. The results emphasize the importance of
data preprocessing, particularly feature scaling, in enhancing
model performance. Among the classifiers, Random Forest
emerged as the top performer, achieving an accuracy of
98.27% on both original and scaled data, demonstrating its
robustness and reliability. The study highlights the potential of
Random Forest as a valuable tool for automated brain tumor
detection in clinical settings, offering a cost-effective and
accessible alternative for resource-constrained environments.
The paper suggests that future research should explore
advanced deep learning models, such as 3D Convolutional
Neural Networks (CNNs) and Generative Adversarial
Networks (GANs), to further improve diagnostic accuracy and
support early intervention and personalized treatment
strategies for brain tumor patients.

Keywords—Brain Tumor Detection, Machine Learning
Classifiers, Feature Scaling, Classification Accuracy, Ensemble
Learning

I. INTRODUCTION

Brain tumors represent a significant global health
concern, with the Nature Brain Tumor Society (NBTS)
estimating that approximately 700,000 individuals in the
United States are affected by these malignancies each year
[1]. Brain tumors can be classified into various categories
such as gliomas, medulloblastomas, and acoustic neuromas,
each presenting distinct characteristics and treatment
challenges [2]. Effective early detection and accurate
diagnosis of brain tumors are crucial for optimizing
treatment strategies and improving patient outcomes.
Untreated brain tumors can lead to severe neurological
deficits, cognitive impairments, and, in many cases, death
[3].

Traditionally, brain tumors have been diagnosed using
Magnetic Resonance Imaging (MRI), which offers high-
resolution images of brain structures [4]. However,
analyzing MRI data manually is both time-consuming and
prone to variability, and often lacks the precision required
for accurate tumor detection and segmentation [5]. This
challenge has spurred interest in leveraging machine
learning techniques to automate and enhance the diagnostic
process.

Recent advancements in machine learning and artificial
intelligence have shown promising potential in the realm of
medical diagnostics [6]. In particular, machine learning
models that rely on numerical values extracted from patient
data, such as clinical features, genetic information, and
laboratory results, have been increasingly explored as a
means of improving brain tumor detection [7]. These
models can offer significant advantages over traditional

image-based methods by facilitating faster and more
consistent diagnostic processes [3].

This study aims to evaluate the effectiveness of several
well-known machine learning classifiers for the task of brain
tumor detection using numerical data. Specifically, we
examine the performance of Support Vector Classifier
(SVC), Logistic Regression Classifier, K-Nearest Neighbors
(KNN) Classifier, Naive Bayes Classifier, Decision Tree
Classifier, and Random Forest Classifier. Each of these
algorithms brings unique strengths to the table. For instance,
SVM is known for its effectiveness in high-dimensional
spaces and its ability to handle non-linearly separable data
[8]. Logistic Regression is appreciated for its simplicity,
interpretability, and capability to manage both continuous
and categorical features [9]. KNN is valued for its
robustness to noise and ability to capture complex feature
interactions [10]. Naive Bayes offers benefits in handling
categorical data and learning from smaller datasets [11].
Decision Trees are favored for their interpretability and
ability to model both categorical and numerical features
[12]. Random Forest, an ensemble method, is known for
reducing overfitting and handling high-dimensional data
effectively [13].

The motivation behind using these classifiers lies in their
distinct advantages for processing numerical data and their
varying approaches to handling complex patterns in the
data. This study leverages a dataset consisting of clinical
and diagnostic numerical values related to brain tumors,
providing a platform for evaluating the performance of these
classifiers [14]. The aim is to determine which classifier
provides the highest accuracy and reliability for brain tumor
detection, contributing to the development of efficient
diagnostic tools [15].

Machine learning has demonstrated significant promise
in the medical field, with various studies highlighting its
effectiveness in improving diagnostic accuracy [16]. For
instance, recent research has shown that machine learning
models can significantly enhance the accuracy of cancer
detection and prognosis prediction [17]. By applying these
techniques to brain tumor detection using numerical data,
this study seeks to build upon these advancements and offer
a novel approach to diagnosing brain tumors [18].

In this study, this study focuses on evaluating the
efficacy of various machine learning classifiers in detecting
brain tumors from numerical values rather than MRI
images. The goal is to identify the most effective algorithm
for this task, thereby contributing to the broader effort of
improving brain tumor diagnosis and ultimately enhancing
patient outcomes.

The paper is further structured as follows: Section II
discusses the literature review on the brain tumor detection.
Section III highlights motivation. Section IV describes

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

machine learning algorithms. Section V presents
methodology. Section VI result. Section VII discussion.
Lastly, Section VIII concludes the paper and future work.

II. LITERATURE REVIEW

This paper [19] highlights the "curse of dimensionality"
often encountered in brain tumor datasets with many
features. They propose a two-pronged approach: first, using
Particle Swarm Optimization to select the most informative
features, mimicking the efficient foraging behavior of birds
or fish. Second, they employ ensemble learning with
Majority Voting, combining the predictions of multiple
classifiers to improve accuracy and robustness. This
approach could be particularly relevant to your work if
you're dealing with a large number of features.

While the paper [20] utilizes an SVM, its core
contribution lies in a novel feature extraction method
designed to capture the most discriminative information
from brain tumor data. This emphasis on feature engineering
is highly transferable. You could apply their proposed
feature extraction techniques and then experiment with
alternative classifiers like Random Forest, which is known
for its ability to handle high-dimensional data, or Gradient
Boosting, which excels at reducing bias and achieving high
accuracy.

This paper [21] delves into the realm of unsupervised
learning for brain tumor detection, specifically employing
the K-Means clustering algorithm. K-Means groups similar
data points together based on their features, aiming to
uncover hidden patterns and structures within the data
without relying on labeled examples. This approach could
be beneficial for your research by potentially revealing
distinct clusters or subgroups within your dataset that
correspond to different tumor characteristics or stages.

While the [22] title mentions CNNs, which are typically
used for image data, this paper emphasizes the critical role
of feature extraction for accurate brain tumor classification,
regardless of the data type. They highlight how carefully
engineered features can significantly improve the
performance of machine learning models. You can draw
inspiration from their feature engineering techniques and
apply them to your tabular data to potentially enhance the
accuracy of your chosen classifiers.

[23] Brain tumor detection and segmentation have been
extensively explored using machine learning and deep
learning techniques. Various studies have proposed CNN-
based methods, automated feature extraction and
classification approaches, and comparisons of deep learning
models. Additionally, hybrid approaches combining
different techniques have been investigated. These studies
have achieved high accuracy rates, ranging from 91.43% to
98.69%, demonstrating the potential of machine learning
and deep learning in brain tumor detection and
segmentation.

[24] Brain tumor segmentation has been extensively
explored using machine learning techniques. Previous
reviews have focused on traditional computer vision
methods and deep learning approaches. Recent studies have
investigated the use of convolutional neural networks

(CNNs) for brain tumor segmentation. Other approaches
include using transfer learning, ensemble learning, and
hybrid models combining CNNs with traditional machine
learning techniques. These studies demonstrate the potential
of machine learning for brain tumor segmentation, achieving
high accuracy and efficiency.

In study [25] MRI-based brain tumor detection using
convolutional deep learning methods and machine learning
techniques was explored. A 2D CNN and auto-encoder
network were proposed, achieving training accuracies of
96.47% and 95.63%, respectively. Six machine learning
techniques were compared, with KNN achieving the highest
accuracy (86%) and MLP the lowest (28%). The study
demonstrates the effectiveness of deep learning methods in
brain tumor detection, with the proposed 2D CNN showing
optimal accuracy and performance. This work contributes to
the development of automated brain tumor detection
systems, improving diagnosis and treatment.

III. MOTIVATION

Brain tumors are a leading cause of cancer-related deaths
worldwide, with high mortality rates and a profound impact
on the quality of life for patients and their families. Early
and accurate diagnosis is crucial for effective treatment,
improved patient outcomes, and enhanced survival rates.
However, brain tumor diagnosis remains a challenging task,
particularly in resource-constrained settings where access to
advanced medical facilities, specialized personnel, and
cutting-edge technologies is limited. In such settings, the
lack of resources hinders the widespread adoption of
advanced medical imaging techniques like MRI and CT
scans, which are essential for accurate brain tumor
diagnosis.

This research is motivated by the need for a cost-
effective, objective, and accessible tool for brain tumor
diagnosis that can operate within the constraints of resource-
constrained settings. We aim to develop a predictive model
that can aid in brain tumor diagnosis using readily available
patient attributes and clinical features, eliminating the
reliance on advanced medical imaging techniques or deep
learning features. By leveraging machine learning
algorithms and data analytics, our model seeks to provide a
valuable tool for healthcare professionals, enabling them to
make informed decisions and improve patient outcomes.
Ultimately, our research strives to contribute to the
development of efficient and accurate automated systems
for early brain tumor diagnosis, leading to better patient care
and treatment efficacy.

IV. MACHINE LEARNING CLASSIFIERS

A. Support Vector Classifier

Support Vector Machines are powerful supervised
learning models used for classification and regression tasks.
In the context of classification, an SVM aims to find an
optimal hyperplane that best separates data points belonging
to different classes.

The hyperplane is chosen to maximize the margin,
which is the distance between the hyperplane and the closest
data points from each class, known as support vectors. This
focus on maximizing the margin contributes to the SVC's
ability to generalize well to unseen data [26].

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

SVCs can be applied to both linearly separable and non-
linearly separable data. For non-linearly separable data,
SVCs utilize kernel functions to map the data into a higher-
dimensional space where it becomes linearly separable [27].

B. Logistic Regression Classifier

Logistic regression is a statistical model used to predict
the probability of a binary outcome (yes/no, 1/0) based on
one or more independent variables. Unlike linear regression,
which predicts continuous outcomes, logistic regression
employs a sigmoid function to map predictions to a
probability range between 0 and 1 [28].

This algorithm works by estimating the log odds of the
outcome occurring based on the values of the independent
variables. These log odds are then transformed into
probabilities using the sigmoid function.

While primarily used for binary classification, logistic
regression can be extended to handle multinomial outcomes
(multiple categories) through variations like multinomial
logistic regression. Logistic regression models are widely
used in various fields, such as biology and social sciences,
where the objective is to predict a categorical outcome [29].

C. K-Nearest Neighbor (KNN) Classifier

The K-Nearest Neighbors (KNN) classifier is a
straightforward yet powerful supervised learning algorithm
used for both classification and regression tasks [30]. At its
core, KNN operates on the principle that similar data points
tend to cluster together.

When classifying a new data point, the algorithm
identifies the k nearest neighbors to the point in the feature
space, based on a chosen distance metric (e.g., Euclidean
distance). The class label of the new data point is then
determined by a majority vote among its k neighbors. For
instance, if k is set to 5, and 3 out of the 5 nearest neighbors
belong to class A, the new data point would be classified as
belonging to class A.

One of the key advantages of KNN is its simplicity and
ease of implementation [31]. It's a non-parametric method,
meaning it makes no assumptions about the underlying data
distribution, making it suitable for datasets with complex or
unknown structures. However, the choice of k is crucial, as a
small k can make the model susceptible to noise, while a
large k might lead to over smoothing and misclassification.

D. Navie Bayes Classifier

The Naive Bayes Classifier (NBC) is a widely used
machine learning algorithm for classification tasks. It is
based on Bayes' theorem, which describes the probability of
a hypothesis given some observed evidence. In the context
of classification, the hypothesis is the class label, and the
evidence is the feature values of the instance to be classified
[32].

The NBC algorithm assumes independence between
features, meaning that each feature contributes
independently to the probability of the class label. This
assumption simplifies the calculation of the posterior
probability of the class given the features. The algorithm
calculates the likelihood of each feature given the class, as
well as the prior probability of each class. Then, it applies

Bayes' theorem to calculate the posterior probability of each
class given the features [32].

There are three main types of NBC, each suited to
different types of data. Multinomial Naive Bayes (MNB) is
used for multi-class problems with discrete features.
Bernoulli Naive Bayes (BNB) is used for binary
classification with binary features. Gaussian Naive Bayes
(GNB) is used for continuous features and assumes a
Gaussian distribution [33].

E. Decision Tree Classifier

Decision Tree Classifiers are a popular supervised
learning method used in machine learning for both
classification and regression tasks [34]. Their strength lies in
their intuitive, tree-like structure that breaks down complex
decisions into a series of simpler ones, mirroring human-like
reasoning. This makes them easy to understand and
interpret, even for non-experts.

The algorithm works by recursively partitioning the
dataset into increasingly homogeneous subsets based on the
values of input features [35]. Starting at the root node,
which represents the entire dataset, the algorithm searches
for the best feature to split the data, aiming to create subsets
that are as pure as possible in terms of class distribution
[36]. This process continues down the tree, with each
internal node representing a decision point based on a
specific feature. The branches stemming from these nodes
represent decision rules, guiding the data towards leaf
nodes, which hold the final predictions or class labels.

F. Random Forest Classifier

The Random Forest Classifier is a powerful ensemble
learning method used in machine learning for both
classification and regression tasks [37]. It operates by
constructing a multitude of decision trees during training
and outputting the class that is the mode of the classes
(classification) or mean/average prediction (regression) of
the individual trees [38].

The "random" aspect of Random Forest stems from two
key concepts: random sampling of the training data and
random subspace selection. During the creation of each tree,
a technique called bootstrap sampling is employed, where
the algorithm randomly selects a subset of the training data
with replacement [39]. This means that some data points
may be selected multiple times, while others might be left
out. This process introduces diversity among the trees, as
each tree learns from a slightly different perspective of the
data.

V. METHODOLOGY

A. Introduction

The goal of this study is to develop and evaluate
machine learning models to detect brain tumors using a
dataset containing numerical values rather than images. This
study employs multiple Machine Learning Classifiers,
including Support Vector Classifier (SVC), Logistic
Regression Classifier, K-Nearest Neighbors (KNN)
Classifier, Naive Bayes Classifier, Decision Tree Classifier,
and Random Forest Classifier, to classify individuals as
having brain tumors or being healthy. The following
sections detail the comprehensive methodology
implemented in this study, which is divided into data

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

preprocessing, model building, evaluation, and validation
steps.

B. Data Collection

The dataset used in this study consists of MRI images of
brain tumors sourced from [40] [41]. These images were
preprocessed to extract numerical features relevant to brain
tumor detection, resulting in a dataset with 3761 rows and
multiple columns. The columns include 'Class' (indicating
the presence or absence of a brain tumor), as well as various
texture features such as 'Mean', 'Variance', 'Standard
Deviation', 'Entropy', 'Skewness', 'Kurtosis', 'Contrast',
'Energy', 'ASM', 'Homogeneity', 'Dissimilarity', and
'Correlation'.

Sample images from the dataset are shown in Figure 1,
which displays four MRI images (fig 1(a), fig 1(b), fig 1(c),
fig 4(d)) of patients without brain tumors, while Figure 2
displays four MRI images (fig 2(a), fig 2(b), fig 2(c), fig
2(d)) of patients with brain tumors.

Fig. 1. MRI images of patients without brain tumor.

Fig. 2. MRI images of patients with brain tumor.

C. Preprocessing Steps

The extracted features were preprocessed to ensure data
quality and consistency. The preprocessing steps included
normalization, noise reduction, and feature scaling.

a) Import Libraries: First, essential libraries were
imported for data analysis, visualization, and model. As
shown in Table 1, the necessary libraries were imported
using the following code:

TABLE I. IMPORTING LIBRARIES FOR DATA ANALYSIS AND
VISUALIZATION

Code Description

import numpy as np Import NumPy library for
numerical computations

import pandas as pd
Import Pandas library for data

manipulation and analysis

import matplotlib.pyplot as plt
Import Matplotlib library for data

visualization

import seaborn as sns
Import Seaborn library for data
visualization and exploration

b) Load Dataset: The dataset was loaded into a
pandas DataFrame for analysis, as shown in Table 2.

TABLE II. LOADING DATASET INTO PANDAS DATAFRAME

Code Description

data =
pd.read_csv('path_to_dataset.csv')

Load dataset into a
Pandas DataFrame object called

data

c) Data Overview: Display information and summary
statistics of the dataset, shown in Table 3

TABLE III. DATA OVERVIEW

Code Description

data.info() Summary of data structure

data.isnull().sum() Count of missing values

data.describe() Statistical summary of data

D. Exploratory Data Analysis (EDA)

EDA was performed to understand the distribution and
characteristics of the dataset. Techniques such as histogram
plotting, box plots, and scatter plots were used to visualize
data trends and outliers. These visualizations helped in
identifying potential issues such as class imbalance and
guided the data preprocessing steps.

a) Heatmap: Heatmaps are a powerful visualization
tool in machine learning, used to represent complex data
insights intuitively. By leveraging heatmaps, machine
learning practitioners can gain a deeper understanding of
their data, develop more effective models, and communicate
insights more effectively. The code used to generate the
heatmap is presented in Table 4:

TABLE IV. HEATMAP

Code Description

plt.figure(figsize=(16,9)) Set figure size (16x9 inches) for
plotting

sns.heatmap(data) Visualize data as a heatmap

b) Heatmap of Correlation Matrix: The dataset was
loaded into a pandas DataFrame for analysis, as shown in
Table 5, and 6.

TABLE V. CORRELATION MATRIX

Code Description

data.corr()
Calculate correlation matrix of the

dataset

TABLE VI. HEATMAP OF CORRELATION MATRIX

Code Description

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

Code Description

plt.figure(figsize=(10,8))
Set figure size (10x8 inches) for

plotting

sns.heatmap(data.corr(), annot =
True, cmap ='coolwarm',
linewidths=2)

Visualize correlation matrix as a
heatmap with annotations,

coolwarm color scheme, and
defined line widths

E. Data Splitting

Data splitting is a crucial step in machine learning,
where the available data is divided into two subsets: training
data and testing data. The training data is used to train the
model, while the testing data is used to evaluate its
performance. The code used to split the data into training
and testing is presented in Table 7.

TABLE VII. DATA SPLITTING INTO TRAINING AND TESTING SETS

Code Description
from sklearn.model_selection
import train_test_split

Import train_test_split function
for splitting data

X = data.drop(['Class'], axis=1)
Separate features (X) by dropping

the target column ('Class')

y = data['Class'] Separate target variable (y) as the
'Class' column

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size =
0.2, random_state= 5)

Split data into training (80%) and
testing sets (20%) with a

fixed random seed

F. Feature Scaling

Feature scaling, also known as data normalization. It
involves transforming numeric features into a common
scale, usually between 0 and 1, to prevent differences in
scales from affecting model performance. The code used for
feature scaling is presented in Table 8.

TABLE VIII. FEATURE SCALING

Code Description
from sklearn.preprocessing
import StandardScaler

Import StandardScaler class for
data scaling

sc = StandardScaler() Initialize a StandardScaler object
for scaling data

X_train_sc =
sc.fit_transform(X_train)

Scale training data (X_train) and
fit scaler to it

X_test_sc = sc.transform(X_test) Scale testing data (X_test) using
the same scaler

G. Model Building and Training

After preprocessing the data, various machine learning
models were developed and trained to predict the target
variable. Both the original and scaled datasets were used to
train the models, allowing for a comprehensive evaluation
of their performance.

a) Support Vector Classifier: The SVC was trained
with both the original and scaled data. Training the model
with the original data is presented in Table 9, and training
with scaled data is presented in Table 10.

TABLE IX. SUPPORT VECTOR CLASSIFIER TRAINED WITH ORIGINAL
DATA

Code Description

from sklearn.svm import SVC Import Support Vector Classifier
(SVC) from scikit-learn

svc_classifier = SVC() Initialize an SVC object with
default parameters

svc_classifier.fit(X_train, y_train) Train the SVC model on the
training data (X_train, y_train)

Code Description
y_pred_svc =

svc_classifier.predict(X_test)
Use the trained model to predict

labels for the testing data (X_test)

accuracy_score(y_test,
y_pred_svc)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_svc) with actual

labels (y_test)

TABLE X. SUPPORT VECTOR CLASSIFIER TRAINED WITH SCALED
DATA

Code Description

svc_classifier_sc = SVC()
Initialize another SVC object for

scaled data
svc_classifier_sc.fit(X_train_sc,

y_train)
Train the SVC model on scaled

training data (X_train_sc, y_train)
y_pred_svc_sc =

svc_classifier_sc.predict(X_test_s
c)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_svc_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_svc_sc) with actual

labels (y_test)

b) Logistic Regression Classifier: The LRC was
trained with both the original and scaled data. Training the
model with the original data is presented in Table 11, and
training with scaled data is presented in Table 12.

TABLE XI. LOGISTIC REGRESSION CLASSIFIER TRAINED WITH
ORIGINAL DATA

Code Description
from sklearn.linear_model import

LogisticRegression
Import Logistic Regression class

from scikit-learn

log_reg = LogisticRegression() Initialize a Logistic Regression
object with default parameters

log_reg.fit(X_train, y_train)
Train the Logistic Regression

model on the training data
(X_train, y_train)

y_pred_log_reg =
log_reg.predict(X_test)

Use the trained model to predict
labels for the testing data (X_test)

accuracy_score(y_test, y_pred_lr)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_log_reg) with

actual labels (y_test)

TABLE XII. LOGISTIC REGRESSION CLASSIFIER TRAINED WITH
SCALED DATA

Code Description
log_reg_sc =

LogisticRegression()
Initialize another Logistic

Regression object for scaled data

log_reg_sc.fit(X_train_sc,
y_train)

Train the Logistic Regression
model on scaled training data

(X_train_sc, y_train)

y_pred_log_reg_sc =
log_reg_sc.predict(X_test_sc)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_lr_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_log_reg_sc) with actual

labels (y_test)

c) K-Nearest Neighbor (KNN) Classifier: The KNN
was trained with both the original and scaled data. Training
the model with the original data is presented in Table 13,
and training with scaled data is presented in Table 14.

TABLE XIII. K-NEAREST NEIGHBOR (KNN) CLASSIFIER TRAINED WITH
ORIGINAL DATA

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

Code Description

from sklearn.neighbors import
KNeighborsClassifier

Import K-Nearest Neighbors
(KNN) Classifier from scikit-

learn

knn = KNeighborsClassifier() Initialize a KNN Classifier object
with default parameters (k=5)

knn.fit(X_train, y_train) Train the KNN model on the
training data (X_train, y_train)

y_pred_knn = knn.predict(X_test) Use the trained model to predict
labels for the testing data (X_test)

accuracy_score(y_test,
y_pred_knn)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_knn) with actual

labels (y_test)

TABLE XIV. K-NEAREST NEIGHBOR (KNN) CLASSIFIER TRAINED WITH
SCALED DATA

Code Description

knn_sc = KNeighborsClassifier()
Initialize another KNN Classifier

object for scaled data

knn_sc.fit(X_train_sc, y_train)
Train the KNN model on scaled

training data (X_train_sc, y_train)

y_pred_knn_sc =
knn_sc.predict(X_test_sc)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_knn_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_knn_sc) with actual

labels (y_test)

d) Naive Bayes Classifier: The Naive Bayes Classifier
was trained with both the original and scaled data. Training
the model with the original data is presented in Table 15,
and training with scaled data is presented in Table 16.

TABLE XV. NAIVE BAYES CLASSIFIER TRAINED WITH ORIGINAL DATA

Code Description
from sklearn.naive_bayes import

GaussianNB
Import Gaussian Naive Bayes

(GNB) classifier from scikit-learn

nb = GaussianNB() Initialize a Gaussian Naive Bayes
object with default parameters

nb.fit(X_train, y_train) Train the GNB model on the
training data (X_train, y_train)

y_pred_nb = nb.predict(X_test) Use the trained model to predict
labels for the testing data (X_test)

accuracy_score(y_test,
y_pred_nb)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_nb) with actual

labels (y_test)

TABLE XVI. NAIVE BAYES CLASSIFIER TRAINED WITH SCALED DATA

Code Description

nb_sc = GaussianNB()
Initialize another Gaussian Naive

Bayes object for scaled data

nb_sc.fit(X_train_sc, y_train)
Train the GNB model on scaled

training data (X_train_sc, y_train)

y_pred_nb_sc =
nb_sc.predict(X_test_sc)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_nb_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_nb_sc) with actual labels

(y_test)

e) Decision Tree Classifier: The DTC was trained
with both the original and scaled data. Training the model
with the original data is presented in Table 17, and training
with scaled data is presented in Table 18.

TABLE XVII. DECISION TREE CLASSIFIER TRAINED WITH ORIGINAL
DATA

Code Description
from sklearn.tree import
DecisionTreeClassifier

Import Decision Tree Classifier
from scikit-learn

dt = DecisionTreeClassifier()
Initialize a Decision Tree

Classifier object with default
parameters

dt.fit(X_train, y_train)
Train the Decision Tree model on

the training data (X_train,
y_train)

y_pred_dt = dt.predict(X_test) Use the trained model to predict
labels for the testing data (X_test)

accuracy_score(y_test,
y_pred_dt)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_dt) with actual

labels (y_test)

TABLE XVIII. DECISION TREE CLASSIFIER TRAINED WITH SCALED DATA

Code Description

dt_sc = DecisionTreeClassifier()
Initialize another SVC object for

scaled data

dt_sc.fit(X_train_sc, y_train) Train the SVC model on scaled
training data (X_train_sc, y_train)

y_pred_dt_sc =
dt_sc.predict(X_test_sc)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_dt_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_svc_sc) with actual

labels (y_test)

f) Random Forest Classifier: The RFC was trained
with both the original and scaled data. Training the model
with the original data is presented in Table 19, and training
with scaled data is presented in Table 20.

TABLE XIX. RANDOM FOREST CLASSIFIER TRAINED WITH ORIGINAL
DATA

Code Description
from sklearn.ensemble import

RandomForestClassifier
Import Random Forest Classifier

from scikit-learn

rf = RandomForestClassifier()
Initialize a Random Forest

Classifier object with default
parameters

rf.fit(X_train, y_train)
Train the Random Forest model

on the training data (X_train,
y_train)

y_pred_rf = rf.predict(X_test) Use the trained model to predict
labels for the testing data (X_test)

accuracy_score(y_test, y_pred_rf)

Calculate the accuracy of the
model by comparing predicted
labels (y_pred_rf) with actual

labels (y_test)

TABLE XX. RANDOM FOREST CLASSIFIER TRAINED WITH SCALED
DATA

Code Description

rf_sc = RandomForestClassifier()
Initialize another Random Forest
Classifier object for scaled data

rf_sc.fit(X_train_sc, y_train)
Train the Random Forest model

on scaled training data
(X_train_sc, y_train)

y_pred_rf_sc =
rf_sc.predict(X_test_sc)

Use the trained model to predict
labels for scaled testing data

(X_test_sc)

accuracy_score(y_test,
y_pred_rf_sc)

Calculate the accuracy of the
model on scaled data by

comparing predicted labels
(y_pred_rf_sc) with actual labels

(y_test)

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

H. Result

In the study, several traditional machine learning
algorithms were evaluated on a dataset comprising
numerical features related to brain tumor detection. The
performance of each algorithm was assessed both on the
original data and after applying data scaling techniques to
standardize the features. The results demonstrated
significant improvements in model accuracy post-scaling.

The Support Vector Classifier (SVC) achieved a
baseline accuracy of 78.61% on the original data. However,
after scaling, the model's performance surged to 97.74%,
highlighting the crucial role of data scaling in boosting
accuracy.

Logistic Regression Classifier demonstrated a notable
accuracy of 90.96% on the original data. When applied to
scaled data, the model's performance further improved to
97.87%, indicating enhanced class separation and more
effective feature utilization.

The K-Nearest Neighbors (KNN) Classifier exhibited an
accuracy of 80.61% on the original data. However, its
performance improved to 97.74% on scaled data, suggesting
a positive impact from the scaling method employed.

Naive Bayes Classifier achieved a commendable
accuracy of 95.35% on the original data. Although scaling
had a minimal impact, the model's accuracy edged up to
95.48%, indicating a slight benefit from standardized
features.

The Decision Tree Classifier showcased an impressive
accuracy of 98.14% on the original data, and this accuracy
remained the same at 98.14% on scaled data, indicating no
significant impact from scaling.

Lastly, the Random Forest Classifier achieved an
outstanding accuracy of 98.27% on the original data, and
this accuracy remained the same at 98.27% on scaled data,
suggesting no significant impact from scaling.

The summarized results of all classifiers in Table 21:

TABLE XXI. SUMMARIZED RESULT OF ALL CLASSIFIERS

Classifiers
Accuracy (Original

Data)
Accuracy (Scaled

Data)

Support Vector Machine 78.61% 97.74%

Logistic Regression 90.96% 97.87%

K-Nearest Neighbors 80.61% 97.74%

Naive Bayes 95.35% 95.48%

Decision Tree 98.14% 98.14%

Random Forest 98.27% 98.27%

I. Discussion

 In this study, we conducted a comprehensive
evaluation of six machine learning classifiers: Support
Vector Classifier (SVC), Logistic Regression, K-Nearest
Neighbors (KNN), Naive Bayes, Decision Tree, and
Random Forest on a brain tumor dataset, with a specific
focus on the impact of data preprocessing on performance.
Our results underscore the critical role of feature scaling in
enhancing the performance of machine learning classifiers
in medical diagnostics, highlighting Random Forest's

potential as a reliable tool for automated brain tumor
detection.

a) Classifier Performance: While Random Forest
achieved the highest accuracy of 98.27% on both original
and scaled data, emerging as the top performer in both
scenarios, this highlights the importance of feature scaling
in unlocking the full potential of classifiers.

b) Implementations for Clinical Application: The
consistent high performance of Random Forest, combined
with its robustness to data distribution, has important
implications for clinical applications. Integrating
preprocessing steps can significantly enhance diagnostic
accuracy, particularly for classifiers that rely heavily on data
distribution. This finding suggests that Random Forest has
the potential to become a reliable model for automated brain
tumor detection, offering a valuable tool for clinicians in
diagnosing and treating brain tumors, due to its consistently
high performance on both original and scaled data.

c) Future Work: Future research could investigate the
use of advanced deep learning architectures to improve
tumor segmentation and detection. This includes exploring
3D CNNs for analyzing volumetric medical imaging data,
and GANs for generating synthetic tumor data to augment
real datasets. Additionally, multi-modal deep learning
models could be developed to combine imaging data with
clinical and genomic information. Transfer learning and
attention mechanisms could also be examined to adapt pre-
trained models to specific brain tumor types and improve
detection accuracy. By evaluating these approaches,
researchers can work towards enabling early intervention
and personalized treatment strategies.

J. Conclusion

This comprehensive study demonstrated the significance
of data preprocessing in enhancing the performance of
machine learning classifiers for brain tumor detection. The
evaluation of six traditional machine learning algorithms -
Support Vector Classifier (SVC), Logistic Regression, K-
Nearest Neighbors (KNN), Naive Bayes, Decision Tree, and
Random Forest - revealed that Random Forest emerged as
the top performer, achieving the highest accuracy of 98.27%
on both original and scaled data, showcasing its robustness
and reliability. The findings suggest that Random Forest has
the potential to become a reliable model for automated brain
tumor detection, offering a valuable tool for clinicians. The
consistent high performance of Random Forest, combined
with its robustness to data distribution, has significant
implications for clinical applications, suggesting its
potential as a reliable model for automated brain
tumor detection. Future research could explore advanced
deep learning architectures, including 3D CNNs, GANs, and
multi-modal models, to further improve tumor segmentation
and detection accuracy. Additionally, investigating transfer
learning and attention mechanisms could help adapt pre-
trained models to specific brain tumor types, ultimately
enabling early intervention and personalized
treatment strategies.

REFERENCES
[1] B. Ju et al., “Oncogenic KRAS promotes malignant brain tumors in

zebrafish,” Molecular Cancer, vol. 14, no. 1, Feb. 2015, doi:
10.1186/s12943-015-0288-2.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

[2] A.-A. Nayan et al., “A deep learning approach for brain tumor
detection using magnetic resonance imaging,” International Journal
of Power Electronics and Drive Systems/International Journal of
Electrical and Computer Engineering, vol. 13, no. 1, p. 1039, Feb.
2023, doi: 10.11591/ijece.v13i1.pp1039-1047.

[3] M. Arabahmadi, R. Farahbakhsh, and J. Rezazadeh, “Deep Learning
for Smart Healthcare—A Survey on Brain Tumor Detection from
Medical Imaging,” Sensors, vol. 22, no. 5, p. 1960, Mar. 2022, doi:
10.3390/s22051960.

[4] K. M. Brindle, J. L. Izquierdo-García, D. Y. Lewis, R. J. Mair, and A.
J. Wright, “Brain tumor imaging,” Journal of Clinical Oncology, vol.
35, no. 21, pp. 2432–2438, Jul. 2017, doi: 10.1200/jco.2017.72.7636.

[5] H. Hooda, O. P. Verma, and T. Singhal, “Brain tumor segmentation:
A performance analysis using K-Means, Fuzzy C-Means and Region
growing algorithm,” May 2014, doi: 10.1109/icaccct.2014.7019383.

[6] M. Antonelli et al., “The Medical Segmentation Decathlon,” Nature
Communications, vol. 13, no. 1, Jul. 2022, doi: 10.1038/s41467-022-
30695-9.

[7] R. S. Misu, “Brain Tumor Detection Using Deep Learning
Approaches,” Jul. 2023. [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/2309/2309.12193.pdf

[8] D. Rosadi, W. Andriyani, D. Arisanty, and D. Agustina, “Prediction
of Forest Fire Occurrence in Peatlands using Machine Learning
Approaches,” 2020.
https://www.semanticscholar.org/paper/Prediction-of-Forest-Fire-
Occurrence-in-Peatlands-Rosadi-
Andriyani/3fc9ffcdb5e43f9f897b1777861a3d411b05d374

[9] M. Awad and R. Khanna, “Support Vector Machines for
Classification,” in Apress eBooks, 2015, pp. 39–66. doi: 10.1007/978-
1-4302-5990-9_3.

[10] H. A. A. Alfeilat et al., “Effects of Distance Measure Choice on K-
Nearest Neighbor Classifier Performance: A Review,” Big Data, vol.
7, no. 4, pp. 221–248, Dec. 2019, doi: 10.1089/big.2018.0175.

[11] L. Jiang, D. Wang, Z. Cai, and X. Yan, “Survey of Improving Naive
Bayes for Classification,” in Lecture notes in computer science, 2007,
pp. 134–145. doi: 10.1007/978-3-540-73871-8_14.

[12] N. Pandiangan, M. L. C. Buono, and S. H. D. Loppies,
“Implementation of Decision Tree and Naive Bayes Classification
Method for Predicting Study Period,” Journal of Physics Conference
Series, vol. 1569, no. 2, p. 022022, Jul. 2020, doi: 10.1088/1742-
6596/1569/2/022022.

[13] G. Louppe, “Understanding Random Forests: From Theory to
Practice,” arXiv.org, Jul. 28, 2014. https://arxiv.org/abs/1407.7502

[14] N. Pandiangan, M. L. C. Buono, and S. H. D. Loppies,
“Implementation of Decision Tree and Naive Bayes Classification
Method for Predicting Study Period,” Journal of Physics Conference
Series, vol. 1569, no. 2, p. 022022, Jul. 2020, doi: 10.1088/1742-
6596/1569/2/022022.

[15] G. Urbanos et al., “Supervised Machine Learning Methods and
Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer
Classification,” Sensors, vol. 21, no. 11, p. 3827, May 2021, doi:
10.3390/s21113827.

[16] A. B. Abdusalomov, M. Mukhiddinov, and T. K. Whangbo, “Brain
Tumor Detection Based on Deep Learning Approaches and Magnetic
Resonance Imaging,” Cancers, vol. 15, no. 16, p. 4172, Aug. 2023,
doi: 10.3390/cancers15164172.

[17] S. Jones et al., “TULIP: An RNA-seq-based Primary Tumor Type
Prediction Tool Using Convolutional Neural Networks,” Cancer
Informatics., vol. 21, p. 117693512211394, Jan. 2022, doi:
10.1177/11769351221139491.

[18] M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed,
“A review on brain tumor diagnosis from MRI images: Practical
implications, key achievements, and lessons learned,” Magnetic
Resonance Imaging, vol. 61, pp. 300–318, Sep. 2019, doi:
10.1016/j.mri.2019.05.028.

[19] N. Sinhababu, M. Sarma, and D. Samanta, “Computational
Intelligence Approach to Improve the Classification Accuracy of
Brain Neoplasm in MRI Data,” ResearchGate, Jan. 2021, [Online].
Available:
https://www.researchgate.net/publication/348757327_Computational_
Intelligence_Approach_to_Improve_the_Classification_Accuracy_of
_Brain_Neoplasm_in_MRI_Data

[20] L. Mishra, S. Verma, and S. Varma, “Hybrid Model using Feature
Extraction and Non-linear SVM for Brain Tumor Classification,”
arXiv.org, Dec. 06, 2022. https://arxiv.org/abs/2212.02794

[21] D. Suresha, N. Jagadisha, H. S. Shrisha, and K. S. Kaushik,
“Detection of Brain Tumor Using Image Processing,” Mar. 2020, doi:
10.1109/iccmc48092.2020.iccmc-000156.

[22] K. Deeksha, D. M, A. Girish, A. S. Bhat, and L. H, “Classification of
Brain Tumor and its types using Convolutional Neural Network,”
2020. https://www.semanticscholar.org/paper/Classification-of-Brain-
Tumor-and-its-types-using-Deeksha.-
D./59340df15ba38a7bfa403540389d1faf2837c969

[23] M. Siar and M. Teshnehlab, “Brain Tumor Detection Using Deep
Neural Network and Machine Learning Algorithm,” Oct. 2019, doi:
10.1109/iccke48569.2019.8964846.

[24] G. Mathiyalagan and D. Devaraj, “A machine learning classification
approach based glioma brain tumor detection,” International Journal
of Imaging Systems and Technology, vol. 31, no. 3, pp. 1424–1436,
Apr. 2021, doi: 10.1002/ima.22590.

[25] J. Amin, M. Sharif, M. Raza, T. Saba, and M. A. Anjum, “Brain
tumor detection using statistical and machine learning method,”
Computer Methods and Programs in Biomedicine, vol. 177, pp. 69–
79, Aug. 2019, doi: 10.1016/j.cmpb.2019.05.015.

[26] G. L. Prajapati and A. Patle, “On Performing Classification Using
SVM with Radial Basis and Polynomial Kernel Functions,” 2010.
https://www.semanticscholar.org/paper/On-Performing-
Classification-Using-SVM-with-Radial-Prajapati-
Patle/69b4be28b03ce4c4f40bbac9d129b80d4f40ab70

[27] D. Patel, “Support Vector Machine | Classifier - Deep Patel -
Medium,” Medium, Jul. 08, 2023. [Online]. Available:
https://deeppatel23.medium.com/support-vector-machine-classifier-
7eb334cb306d

[28] V. K. Ayyadevara, “Logistic Regression,” in Apress eBooks, 2018,
pp. 49–69. doi: 10.1007/978-1-4842-3564-5_3.

[29] Y. K. Salal, M. Hussain, and P. Theodorou, “Student Next
Assignment Submission Prediction Using a Machine Learning
Approach,” in Lecture notes in electrical engineering, 2021, pp. 383–
393. doi: 10.1007/978-3-030-71119-1_38.

[30] A. M. & P. J. P. & P. M. Pardalos, “k-Nearest Neighbor
Classification,” ideas.repec.org, 2009, [Online]. Available:
https://ideas.repec.org/h/spr/spochp/978-0-387-88615-2_4.html

[31] E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic Tenets of
Classification Algorithms K-Nearest-Neighbor, Support Vector
Machine, Random Forest and Neural Network: A Review,” Journal
of Data Analysis and Information Processing, vol. 08, no. 04, pp.
341–357, Jan. 2020, doi: 10.4236/jdaip.2020.84020.

[32] S. Raschka, “Naive Bayes and Text Classification I - Introduction and
Theory,” ResearchGate, Oct. 2014, doi: 10.13140/2.1.2018.3049.

[33] I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications,
variations and vulnerabilities: a review of literature with code
snippets for implementation,” Soft Computing, vol. 25, no. 3, pp.
2277–2293, Sep. 2020, doi: 10.1007/s00500-020-05297-6.

[34] N. A. Pathak and N. S. Pathak, “Study on Decision Tree and KNN
Algorithm for Intrusion Detection System,” International Journal of
Engineering Research And, vol. V9, no. 05, May 2020, doi:
10.17577/ijertv9is050303.

[35] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable Decision
Sets,” Aug. 2016, doi: 10.1145/2939672.2939874.

[36] A. Kumar, H. C. Arora, N. R. Kapoor, K. Kumar, M. Hadzima-
Nyarko, and D. Radu, “Machine learning intelligence to assess the
shear capacity of corroded reinforced concrete beams,” Scientific
Reports, vol. 13, no. 1, Feb. 2023, doi: 10.1038/s41598-023-30037-9.

[37] “New Machine Learning Algorithm: Random Forest,” in Lecture
notes in computer science, 2012, pp. 246–252. doi: 10.1007/978-3-
642-34062-8_32.

[38] T. M. Tomita et al., “Sparse projection oblique randomer forests,”
Johns Hopkins University, May 01, 2020.
https://pure.johnshopkins.edu/en/publications/sparse-projection-
oblique-randomer-forests

[39] A. Liaw and M. Wiener, “Classification and Regression by
RandomForest,” ResearchGate, Nov. 2001, [Online]. Available:
https://www.researchgate.net/publication/228451484_Classification_a
nd_Regression_by_RandomForest

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

[40] Umairali, “models/brain_tumor_detection/brain_dataset.csv at main ·
1umairali/models,” GitHub.
Available: https://github.com/1umairali/models/blob/main/brain_tum
or_detection/brain_dataset.csv

[41] “Brain Tumor,” Kaggle, Jul. 26, 2020.
Available: https://www.kaggle.com/datasets/jakeshbohaju/brain-
tumor

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.28.24311114doi: medRxiv preprint

https://doi.org/10.1101/2024.07.28.24311114
http://creativecommons.org/licenses/by/4.0/

