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Abstract: 
 
Class 2 and 3 non-V600E BRAF mutations are oncogenic drivers in many cancer types.  
Currently, there are no established targeted therapies with proven efficacy for cancers with non-
V600E BRAF mutations. We developed the investigator-initiated, Phase II BEAVER clinical 
trial (NCT03839342) to evaluate the efficacy of BRAF and MEK inhibitors in patients with non-
V600E BRAF mutations. The best objective response rate was 14% (3/21). By analyzing 
genomic data from patient tumors, circulating tumor DNA (ctDNA), patient-derived xenograft 
(PDX) models generated from enrolled patients, and functional genomics of Class 2 & 3 BRAF 
mutant cell lines, we discovered MAPK-dependent and independent mechanisms of intrinsic and 
acquired resistance to BRAF/MEK inhibition. These included the acquisition of new mutations 
in NRAS, MAP2K1, RAF1, and RB in ctDNA at the time of disease progression. We observed an 
enrichment for alterations in genes that regulate cell cycle progression amongst non-responders 
and increased expression of genes mediating cell cycle progression in tumors Class 2 BRAF 
mutant cell lines with acquired resistance to BRAF/MEK inhibitors. In Class 3 BRAF mutant 
cancers specifically, PTPN11 (SHP2) was an essential gene. CDK4/6 and SHP2 were found to 
mediate intrinsic resistance to BRAF/MEK inhibition in Class 2 & 3 BRAF mutant tumors. 
Therapeutic strategies combining CDK4/6 or SHP2 inhibitors with BRAF/MEK inhibitors were 
more effective than BRAF/MEK inhibitors alone in vitro and in vivo, highlighting the need to 
explore therapeutic targets outside of the MAPK pathway in these hard-to-treat Class 2 & 3 
BRAF mutant cancers. 
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Introduction: 
 

BRAF is one of the most frequently mutated actionable oncogenes in cancer (1,2). 
Oncogenic Class 1 (V600) mutations in BRAF render this kinase constitutively active, leading to 
excessive Mitogen Activated Protein Kinase (MAPK) pathway activity, increased cell 
proliferation, and tumorigenesis. Combined inhibition of BRAF and its downstream kinase, 
MEK, is an effective therapeutic strategy for most cancer types with BRAF V600E mutations (3). 
However, non-V600 BRAF mutants account for approximately 30% of all oncogenic BRAF 
mutations in adult solid tumors (4), and currently there are no established targeted therapies for 
non-V600 BRAF mutant tumors.  

 
There are a wide array of oncogenic non-V600 BRAF mutations that can be  subdivided 

into Class 2 and 3 mutations (1). Unlike Class 1 BRAF mutants - which signal as monomers - 
Class 2 and 3 non-V600 BRAF mutants signal as dimers. Class 2 BRAF mutants form RAS-
independent dimers with intermediate-to-high kinase activity (5), whereas Class 3 BRAF 
mutations confer low kinase activity but form RAS-dependent dimers with other RAF proteins to 
hyperactivate the downstream MEK and ERK kinases (6). Indeed, RAS mutations frequently co-
occur with Class 3 BRAF mutations in cancer (4,6). In RAS wild-type tumors, the protein 
tyrosine phosphatase, SHP2, has been implicated as a key regulator of RAS activity that 
potentiates RAF dimerization (7,8). Once phosphorylated, ERK regulates cell cycle progression 
by inducing the transcription of Cyclin D1, promoting its assembly with the cyclin-dependent 
kinases, CDK4 and CDK6 (9). Cyclin-D-bound CDK4/6 and Cyclin-E-bound CDK2 kinases 
phosphorylate and inactivate the tumor suppressor RB (10). This step is essential for cells to 
progress through the G1-S phase of the cell cycle. Excessive cell-cycle progression is prevented 
in part by the tumor suppressor, p21, a p53-regulated cyclin-dependent kinase inhibitor protein, 
which inhibits the activity of CDK2 and in some contexts CDK4/6 (11). Therefore, in cells with 
loss-of-function TP53 mutations, progression through the cell cycle is a less tightly controlled 
process. Of note, TP53 mutations are also more likely to co-occur in tumors with Class 2 and 3 
vs. Class 1 BRAF mutations (4).  

 
RAS mutations can potentiate BRAF inhibitor-induced paradoxical activation of the 

MAPK pathway in BRAF wild-type tumors (12); thus, earlier studies proposed MEK inhibitor 
monotherapy for tumors with Class 2 and 3 BRAF mutations (13). However, one prospective 
clinical trial demonstrated a lack of clinical efficacy for trametinib monotherapy in these tumors 
(14). Subsequently, it was reported that BRAF monomer inhibitors do not promote paradoxical 
activation of the MAPK pathway even in RAS co-mutated non-V600E BRAF mutant tumors 
(15). Moreover, combined BRAF and MEK inhibition was more effective than MEK inhibitor 
monotherapy at inhibiting tumor growth in preclinical models of cancers with Class 2 or 3 BRAF 
mutations (15,16). A recent systematic review of primarily retrospective data  revealed response 
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rates as high as 50% in patients with Class 2 or 3 BRAF mutant solid tumors that were treated 
with combined BRAF + MEK inhibitors (17). We designed a Phase II clinical trial to 
prospectively evaluate the efficacy of Binimetinib (MEK inhibitor) and Encorafenib (BRAF 
inhibitor) for the treatment of Advanced solid tumors with non-V600E BRAF mutations 
(BEAVER trial). We also sought to characterize molecular mechanisms associated with 
treatment response and resistance in these tumors.  

 
 

Results: 
 
Clinical characteristics and outcomes of patients enrolled on the BEAVER trial 
 
The BEAVER trial was a Princess Margaret Cancer Centre investigator-initiated, Phase II 
clinical trial evaluating binimetinib and encorafenib (B+E) for the treatment of advanced solid 
tumors with non-V600E BRAF mutations, with a primary objective of overall response rate 
(ORR) by RECIST v1.1. Exploratory objectives included genomic and transcriptomic profiling 
to interrogate mechanisms of treatment response and resistance and development of patient-
derived xenograft (PDX) models of non-V600E BRAF mutant cancers (Figure 1a). Twenty-
seven patients were screened and 23 out of a planned 26 patients were enrolled in the BEAVER 
trial. The trial closed early due to poor accrual during the COVID-19 pandemic.  Enrolled 
patients’ characteristics are described in (Table S1). The tumor types included melanoma, 
colorectal and pancreaticobiliary (n=6 each), lung (n=2), and breast, uterine, and small bowel 
cancers (n=1 each). The median age was 59 years. Patients’ tumors had Class 1 (n=1), Class 2 
(n=9), and Class 3 (n=13) BRAF mutations.  
 
Twenty-one patients were evaluable for ORR. The best ORR was 14% (3/21), confirmed ORR 
was 5% (1/21) (Figure 1b). One patient with a Class 3 (BRAF D594G) ampullary cancer had a 
confirmed partial response (PR) and two melanoma patients with Class 2 BRAF mutations 
(K601E, G469S) experienced unconfirmed PRs. Four patients had stable disease (SD) as best 
response, two patients were non-evaluable (NE) for response, and 14 patients had progressive 
disease (PD) as best response. In the entire cohort, the median PFS was 2.3 months and the 
median OS was 6.1 months (Figure S1). This study did not meet the pre-specified criteria of 
4/26 responses required for further investigation of this regimen in this patient population. 
Twenty-three patients were evaluable for safety. The adverse event profile of B+E (Table S2) 
was similar to what has previously been reported for this regimen (18,19). In this cohort, 22% of 
patients experienced Grade 3 treatment related adverse events. There were no Grade 4 or 5 
treatment related adverse events and no new safety signals were identified.  
 
We performed secondary analyses to investigate clinical and genomic biomarkers of response 
and resistance. The ORR and PFS did not differ significantly according to BRAF mutation Class 
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(Figure S2). However, cancer type was associated with differences in response rate and PFS 
(Figure S3a). Moreover, patients with melanoma experienced longer PFS (4.0 months) than 
patients with or pancreaticobiliary (2.6 months) or colorectal or other tumor types (1.8 months; 
P=0.021; Figure S3b). 
 

Genomic characteristics of patients’ tumors 
 
Targeted panel sequencing of relevant cancer driver genes was performed on archival tumors or 
fresh pre-treatment tumor biopsies for all patients enrolled on the BEAVER trial. Co-occurring 
pathogenic variants were identified in 21/23 (91%) tumors (Figure 1c). Pathway analysis of the 
co-altered genes revealed enrichment for alterations in multiple potentially actionable pathways 
(Figure 1d). In this cohort 12/23 (52%) patients had a co-occurring MAPK pathway activating 
mutation in: NF1 (n=4), KRAS (n=3), NRAS (n=2), RAF1 (n=2) or MAP2K1 (n=1) genes at 
baseline. The most frequently co-altered gene was TP53, which was mutated in 9/23 (39%) 
tumors. All evaluable patients with tumor TP53 mutations had PD as best response (Figure 1c). 
Patients with melanoma or pancreaticobiliary tumors that were TP53 wild-type were 
significantly more likely to have SD or PR as best response (Figure S3d) and experienced longer 
PFS (4.4 months) compared to patients who had other cancer types or patients with 
melanoma/pancreaticobiliary cancer with TP53 mutations (1.2-1.6 months; P=0.004) (Figure 
1e).  
 

Development of pre-clinical models of BRAF/MEK inhibitor resistant Class 2 & 3 
BRAF mutant cancers 

 
The response rate to B+E treatment in this population of patients with non-V600E BRAF 
mutations was substantially lower, and the PFS was shorter, than it is for patients with BRAF 
V600 mutations (18,19). Therefore, we sought to identify mechanisms of resistance to B+E in 
cancers with Class 2 and 3 BRAF mutations. To do this, we developed patient-derived xenograft 
(PDX) models from patients enrolled on the BEAVER trial. Fresh tumor biopsy samples from 13 
patients were implanted into NSG mice. The details of patients, biopsies and BRAF mutations 
are described in (Table S3). Of these, PDXs were successfully established from 9/13 (69%) 
patient samples (Figure 2a). Successful engraftment of a PDX was associated with an increased 
% change in target lesion size by RECIST 1.1 in the corresponding patient (Figure S4a). We 
performed whole exome sequencing on PDXs and confirmed the presence of a non-V600E 
BRAF mutation in 8/9 established PDXs (Figure S4b). Amongst the BRAF mutant PDXs, there 
was a high concordance of oncogenic alterations between the patient tumor and the established 
PDX (Figure S4b). We evaluated the ability of B+E to promote tumor growth inhibition in the 
non-V600E BRAF mutant PDXs in vivo (Figure S4c). We observed a significant indirect 
correlation between the amount of B+E induced tumor growth inhibition in PDXs in vivo with 
the change in target lesion size from the corresponding patients. PDXs that showed more tumor 
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growth inhibition with B+E in vivo were derived from patients that experienced less growth in 
target lesion size during B+E treatment (Figure 2b, Figure S4c). To expand our panel of 
preclinical models of B+E-resistant non-V600E BRAF cancers, we separately generated four 
independent Class 2 BRAF mutant cancer cell lines with acquired resistance to B+E (Figure 2c). 
These included two melanoma (HMV-II, FM95), one breast cancer (MDA-MB-231), and one 
prostate cancer (22RV1) cell line. Cells were grown continuously in the presence of B+E - in a 
1:5 ratio of binimetinib:encorafenib, to be consistent with the clinical drug dosing ratio - for 
several months. B+E resistance was confirmed by clonogenic assay (Figure 2d) and by 
comparing the IC50 of all parental/resistant pairs (Figure 2e, Figure S5a). Together, these 
models allowed us to study the intrinsic and adaptive mechanisms of resistance to B+E in Class 
2 and 3 BRAF mutant cancers. 
 

Characterization of cell cycle alterations in BRAF/MEK inhibitor resistant Class 2 
BRAF mutant cells 
 
MAPK pathway reactivation is a common feature of BRAF/MEK inhibitor resistance in 
melanomas with Class 1 BRAF mutations (20,21). We sought to determine if this phenomenon is 
recapitulated in Class 2 BRAF mutant cells. Therefore, we assessed the relative degree of MAPK 
pathway activity (via ERK phosphorylation, pERK) in parental and resistant Class 2 cells. The 
Class 2 BRAF mutant resistant melanoma cells lines (HMV-II, FM95) displayed robust MAPK 
re-activation, despite treatment with B+E (Figure 2f). However, MAPK pathway inhibition was 
minimal in parental MDA-MB-231 breast cancer cells and remained unchanged in resistant cells. 
Conversely, B+E potently inhibited MAPK pathway activity in both parental and resistant 
22RV1 prostate cancer cells. Our results demonstrate that Class 2 BRAF mutant cancers do not 
universally employ MAPK pathway reactivation as a resistance mechanism to BRAF/MEK 
inhibition. As the MAPK pathway regulates apoptosis, we evaluated the impact of B+E on 
apoptosis. B+E induced apoptosis in all Class 2 parental cell lines, and there was a significant 
reduction in B+E-induced apoptosis in the B+E-resistant melanoma cells. However, there was no 
significant difference in apoptosis levels between B+E-treated MDA-MB-231 and 22RV1 
parental/resistant cells (Figure S5b).  
 
The four pairs of parental/resistant cells were treated for 24hrs in the presence or absence of B+E 
and subjected to RNA sequencing (RNA-Seq) and analysis. In principal component analyses, the 
primary differential component was determined by cancer type rather than cell line resistance to 
BRAF/MEK inhibitors (Figure 3a). Gene Set Enrichment Analysis (GSEA) revealed 8 gene sets 
that were commonly enriched in at least 3/4 B+E-treated resistant cells compared to B+E-treated 
parental cell lines (Figure 3b, complete GSEA results in Table S4). This included two gene-sets 
(E2F targets & G2M Checkpoint) that were altered in the BEAVER trial patient tumors (Figure 
1d) and responsible for mediating cell cycle progression. Additionally, B+E treatment potently 
suppressed expression of genes in the E2F Targets and G2M Checkpoint gene sets in Class 2 
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parental cells, but this effect was abrogated in resistant cells (Figure 3c, 3d, Figure S6a). Drug-
induced MAPK pathway inhibition was confirmed by evaluating the MAPK pathway activity 
score (MPAS, (22), Figure S6a,b) and was observed in all Class 2 cell lines and did not differ by 
cancer type (Figure S6c). However, B+E did more potently suppress expression of the 
E2F/G2M gene sets in melanoma vs. non-melanoma cell lines (Figure S6c). Thus, we 
hypothesized that cell cycle progression may be altered as a resistance mechanism in our B+E-
resistant cells. 
 
Cell cycle progression is tightly regulated by the tumor supressor RB. RB is phosphorylated by 
cyclin-dependent kinases, CDK2, CDK4 and CDK6, liberating E2F to promote transcription of 
E2F target genes required for G1-S phase transition. CDK activity is regulated by cyclin D 
(CDK4/6) and cyclin E (CDK2). Therefore we asked whether resistant cells were characterized 
by changes in these proteins. In synchronized cells, a 48hr B+E treatment potently suppressed 
cyclin D protein (observed in FM95 after 24hr treatment, data not shown) and phosphorylated 
RB (pRB) levels in parental Class 2 BRAF mutant melanoma cells, to a lesser extent in MDA-
MB-231 cells but did not suppress cyclin D/pRB in 22RV1 cells (Figure 3e). In resistant cells, 
B+E treatment was not sufficient to inhibit RB phosphorylation. We did not observe any 
substantial or consistent differences in CDK protein expression level between parental and 
resistant cell lines (Figure 3e). Next, we assessed cell cycle distribution in parental and resistant 
cells. B+E treatment significantly increased G0/G1 arrest in all parental Class 2 cells and this 
B+E-dependent effect was abrogated in all resistant cells (Figure 3f). B+E reduced the 
percentage of cells in S and/or G2/M-phase in all parental cell lines, but this effect was 
diminished in resistant cells (Figure 3f, Figure S6d). Moreover, BEAVER trial patients with 
tumors harboring co-alterations in genes within the E2F Targets (CCNE1, PMS2, BRCA2, POLE 
and TP53) and/or G2M Checkpoints (SMAD3, BRCA2, and POLE and TP53) gene sets were 
intrinsically resistant to B+E treatment (Figure 3g). These data highlight the potential 
therapeutic value of targeting mediators of cell cycle progression to enhance the efficacy of B+E 
in Class 2 BRAF mutant cancers. 
 

Evaluating BRAF/MEK/CDK4/6 inhibitor combinations in Class 2 BRAF mutant 
cancers 
 
CDK4/6 kinases are critical in regulating G1-S-phase transition and represent actionable 
therapeutic targets in cancer. Therefore, we tested whether CDK4 and/or CDK6 are required to 
mediate resistance to B+E in Class 2 BRAF mutant cancer cells. In MDA-MB-231 cells, CDK4 
and CDK6 were knocked down by siRNA alone or in combination (Figure 3h). Knockdown of 
either CDK4 or CDK6 alone did not inhibit cellular proliferation or potentiate the growth-
inhibition effect mediated by B+E. However, simultaneous knockdown of CDK4 and CDK6 
inhibited the proliferation of DMSO-treated cells. Notably, the combined knockdown further 
potentiated cell growth inhibition mediated by B+E at low or high doses (Figure 3i). Together, 
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these data led us to investigate the therapeutic benefit of a combined CDK4/6 inhibition with 
BRAF and MEK inhibition in Class 2 BRAF mutant cancers. 
 
We assessed the efficacy of the CDK4/6 inhibitor, palbociclib, for inhibiting cell proliferation of 
Class 2 BRAF mutant parental cancer cells, when used alone or in combination with B+E. In line 
with our CDK4/6 knockdown experiments, treatment with palbociclib alone inhibited cell 
survival in 3/4 Class 2 BRAF mutant cell lines. The triple therapy combination 
(B+E+palbociclib; B+E+P) was more effective at inhibiting cell growth vs. B+E in all four Class 
2 cell lines tested (MDA-MB-231, FM95, 22RV1, H2087) (Figure 4a-d). Next, we investigated 
the effect of this combination on tumor growth in vivo in a Class 2 BRAF mutant PDX colorectal 
cancer model (BVR-O-17), and two additional Class 2 BRAF mutant melanoma PDX models 
(GCRC-Mel1, GCRC-2015). B+E+P significantly inhibited tumor growth in these Class 2 BRAF 
mutant PDX models compared to vehicle treatment (Figure 4e-g). We observed inhibition of the 
MAPK pathway via ERK phosphorylation in all 3 PDX models treated with B+E. Palbociclib 
alone did not inhibit ERK phosphorylation but effectively inhibited RB phosphorylation. B+E+P 
inhibited both ERK and RB phosphorylation in the 3 models, though some phosphorylation of 
these proteins remained in certain tumors (Figure 4h-j). Similar results were observed in Class 3 
BRAF mutant models (Figure S7a-c). We did not observe any increased toxicity with B+E+P 
compared to B+E, as evidence by no reduction in animals’ weights (Figure S7d). To further 
investigate the impact of B+E+P triple therapy on transcriptional outputs, we calculated the 
MAPK pathway activity score (MPAS) along with the E2F and G2M gene set scores from the 
RNA sequencing of these PDXs taken at the experimental end-point. B+E treatment significantly 
inhibited downstream MAPK pathway activity compared to vehicle-treated tumors; however, 
B+E did not impact transcript levels of E2F targets or G2M checkpoint gene sets. Conversely, 
treatment with Palbo alone inhibited expression of E2F targets and G2M checkpoints gene sets 
but did not impact MAPK pathway activity. However, B+E+P triple therapy significantly 
repressed all 3 gene sets (MPAS, E2F targets, and G2M checkpoint) compared to vehicle 
treatment in multiple PDX models (p<0.0001) (Figure 4k-m; Figure S8). These data reinforce 
the potential therapeutic benefit of combined MAPK pathway and CDK4/6 inhibition for the 
treatment of non-V600E BRAF mutant tumors. 
 

Identifying SHP2 as a therapeutic target in BRAF/MEK inhibitor resistant Class 3 
tumors 
We sought to identify potentially actionable genes that are essential for the growth of Class 3 
BRAF mutant tumors. To do this, we first mined the DepMap portal (23), (24) to define and 
compare the essential genes for growth of Class 3 (n=7) and Class 1 (n=117) BRAF mutant 
cancer cell lines(Figure 5a). We were interested in identifying genes that may be implicated in 
intrinsic B+E resistance in Class 3 BRAF mutant cancers. Multiple genes that were more 
essential in Class 3 cancer cells encoded proteins that were also constitutively activated in Class 
3 BRAF mutant tumors from patients enrolled on the BEAVER trial. For example, 4/13 (31%) of 
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patients with Class 3 BRAF mutations had co-occurring activating mutations in RAF1 or NRAS 
(Figure 1c). We next investigated whether any of these essential genes were associated with 
acquired resistance to B+E in patients with Class 3 BRAF mutant cancer. We used the TSO500 
targeted hybrid capture based next generation sequencing assay to quantify the mutations present 
in the ctDNA from two patients with Class 3 BRAF mutant cancer. Both patients initially 
experienced tumor regression with B+E treatment, but ultimately went on to develop disease 
progression (Figure 5b). Both patients had detectable ctDNA at baseline, but cleared their 
ctDNA after 1 cycle of B+E treatment. At the time of disease progression, one patient (BVR-O-
07) developed a new RAF1 mutation (p.R391W) that confers high kinase activity in a 
dimerization-dependent manner (25,26), and two new MAP2K1 mutations that are both RAF-
regulated, meaning that these MAPK2K1 mutations require upstream RAF activity to function as 
oncogenes (27). A second patient (BVR-M-08) developed a new TERT promoter mutation and 
five new oncogenic NRAS mutations – each at different allele frequencies, suggestive of multiple 
subclones. We also identified a newly acquired NRAS mutation at the time of PD in a patient 
with Class 2 BRAF mutant melanoma who initially experienced a partial response (BVR-M-05; 
Figure S9a). In contrast, we did not observe any new acquired MAPK mutations in patients with 
Class 3 BRAF mutant cancer who experienced PD as best response, although one patient (BVR-
O-13) did acquire a new loss of function mutation in the RB tumor suppressor at the time of PD 
(Figure S9b). Altogether, these somatic activating mutations in the MAPK pathway suggest a 
MAPK/ERK pathway-dependent mode of resistance that requires RAF-dimerization, which is a 
SHP2/RAS-dependent process. 
 
To identify additional genes that may be required for B+E-resistance, we investigated the 
transcriptomes of Class 3 BRAF mutant PDXs (n=5). Of these five PDXs, two were sensitive 
and three were intrinsically resistant to B+E (Figure 2b, Figure S4c). Principal component 
analysis of the PDX tumors revealed that the B+E sensitive tumors clustered together and away 
from the B+E-resistant tumors (Figure 5c). There were 3651 significantly differentially 
expressed genes between B+E-resistant vs. sensitive tumors (Figure S10a-b). The resistant 
tumors were significantly enriched for 3 gene sets, two of which were related to KRAS Signaling 
(Figure 5d). The enrichment of these gene sets supports the notion that RAS activation is 
involved in mediating resistance to B+E in the Class 3 BRAF mutant PDXs. Indeed, patients 
with activating KRAS/NRAS mutations experienced more tumor growth (relative increase in the 
sum of target lesion diameters) with B+E treatment compared to patients without RAS activating 
mutations at baseline (Figure 5e). Of the 1469 overexpressed genes in resistant vs. sensitive 
Class 3 PDXs, 28 were included in the list of essential genes for Class 3 BRAF mutant cancers 
(Figure 5f). Amongst these genes, PTPN11 was one of the most essential genes in Class 3 
cancer cell lines (Figure 5g) that was also more highly expressed in B+E-resistant Class 3 PDXs 
compared to B+E-sensitive PDXs (Figure 5h). PTPN11 encodes the nonreceptor protein 
tyrosine phosphatase, SHP2. SHP2 activates the MAPK and PI3K pathways (28) through 
forming a complex with GRB2, GAB1, and SOS1 to activate the RAS superfamily of small 
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GTPases (29), (30). In addition, SHP2 cooperates with several other proteins (EGFR, NRAS, 
CRAF) that were also found to be essential for the proliferation of Class 3 cancer cells (Figure 
5a). In our analysis, we found that the two outlier Class 3 BRAF mutant cell lines with lower 
PTPN11 gene essentiality scores (Figure 5h) harbor activating RAS mutations, hence the 
dispensability of PTPN11 in these cell lines. 

 
To confirm that PTPN11 is an essential gene in Class 3 BRAF mutant cells, we performed a two-
color CRISPR competition assay (Figure 5i-j). NCI-H1666 lung cancer cells stably expressing 
Cas9 were engineered to express either GFP in addition to a PTPN11-targeting gRNA, or 
mCherry in addition to a gRNA targeting the adeno-associated virus integration site (AAVS1) and 
were co-cultured together. Cells expressing 2 different PTPN11, but not non-targeting (NT), 
guide RNAs (gRNAs) were outcompeted by the AAVS1 gRNA-expressing cells (i.e. wildtype for 
PTPN11), hence validating the predicted PTPN11 gene essentiality for cell growth. Next, we 
assessed whether small molecule SHP2 inhibitors (SHP099, TNO155) could inhibit the growth 
of BRAF mutant cells in vitro (Figure 5k-l). As reported previously (7,31), we found that SHP2 
inhibitors did not inhibit proliferation of Class 1 and 2 BRAF mutant cell lines. In contrast, while 
Class 3 BRAF mutant cells were sensitive to SHP2 inhibition, those with co-occuring RAS 
mutations (2 melanoma cell lines, WM3670, WM3629) were also insensitive to SHP2 inhibitor 
monotherapy. Together these results highlight SHP2 as a potential mediator of intrinsic and 
acquired resistance to B+E and a promising therapeutic target in Class 3 BRAF mutant cancers. 

 
Evaluating BRAF/MEK/SHP2 inhibitor combinations in Class 3 BRAF mutant 
cancers 
 
We assessed whether the SHP2 inhibitor, TNO155, enhanced MAPK inhibitor-induced cell 
growth inhibition of Class 3 BRAF mutant cancer cells in vitro. The triple therapy combination 
(B+E+TNO155; B+E+T) was more effective at inhibiting cellular proliferation and inhibiting 
MAPK pathway activity vs. B+E and TNO (low dose of 100nM) in four Class 3 cell lines (H508, 
H1666, HT55, WM3670) (Figure 6a) and this corresponded with enhanced MAPK pathway 
inhibition by immunoblot in H508 and H1666 cells (Figure 6b). We did not observe any 
additional effect of adding SHP2 inhibitors to B+E in Class 2 BRAF mutant cancer cell lines 
(Figure S11a-b). Next, we investigated the effect of this drug combination on tumor growth in 
vivo using several Class 3 BRAF mutant PDX models. B+E+T significantly inhibited tumor 
growth or induced tumor regression in all PDX models tested, including those that were 
intrinsically resistant to B+E (BVR-O-12; BVR-O-15) (Figure 6c-f). However, this increased 
efficacy was also associated with increased weight loss with the B+E+T combination (Figure 
S11c). While we observed varying degrees of MAPK pathway inhibition in PDX models treated 
with TNO155 alone, B+E+T treatment consistently inhibited MAPK pathway (pERK) in all 
PDX models evaluated (Figure 6g-i). Similarly, we calculated the MPAS and found that B+E+T 
treatment significantly inhibited downstream MAPK pathway activity compared to vehicle-
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treated tumors, more so than those treated with B+E treatment (Figure 6j). Altogether, these data 
support the potential benefit of using Shp2 inhibitors  for the treatment of Class 3 BRAF mutant 
tumors to overcome resistance to BRAF/MEK inhibition. 
 

 
Discussion: 
 

Here we describe the results of the investigator-initiated, Phase II BEAVER trial that evaluated 
the efficacy of BRAF/MEK inhibition in patients with advanced cancer with non-V600E BRAF 
mutations. We observed only minimal clinical efficacy of this regimen in a mixed patient 
population with a wide array of metastatic tumor types. This study did not meet the pre-specified 
criteria required for further investigation of this regimen in this patient population. We did, 
however, identify clinical, genomic, and transcriptomic characteristics that are associated with 
response and resistance to B+E, and these data could be useful in identifying specific sub-
populations wherein this regimen may be more effective.  
 
For example, we found that 3/5 patients with Class 2 and 3 BRAF mutant melanoma experienced 
tumor regression with B+E. While our study enrolled a small cohort of melanoma patients, this 
observation is supported by a separate clinical trial wherein 75% (3 out of 4) patients with Class 
2 melanoma experienced a PR with low dose dabrafenib + trametinib (32). These clinical 
observations were reinforced by our in vitro experiments demonstrating that Class 2 BRAF 
mutant melanoma are more MAPK-dependent than non-melanoma tumor types. B+E induced 
more apoptosis in melanoma vs. non-melanoma cells and more potently repressed E2F and G2M 
gene sets in melanoma vs. non-melanoma cells. Enhanced MAPK pathway activity in the 
presence of B+E was a common feature of B+E-resistant melanoma but not of non-melanoma 
cells. Amongst melanoma patients who initially experienced tumor regression with B+E (BVR-
M-05; BVR-M-08), newly acquired MAPK activating mutations in NRAS were observed at the 
time of disease progression, highlighting the MAPK-dependence of these tumors. Together, 
these data suggest that melanomas with Class 2 or 3 BRAF mutations may be more MAPK-
dependent than other tumor types, and that this MAPK pathway-dependence may confer 
increased sensitivity to B+E. However, even amongst responders with melanoma, the duration of 
response or disease control with B+E was short and newly acquired resistance mutations 
developed quickly, highlighting the need for alternative therapeutic strategies to be developed. 
 
The majority (86%) of patients did not respond to B+E treatment and we did not observe any 
newly acquired MAPK mutations at the time of progression in non-responders. These findings 
highlight that most tumors with Class 2 and 3 BRAF mutations may not be exquisitely dependent 
on MAPK pathway activity for tumor growth. Indeed, alterations in genes that regulate cell cycle 
progression were associated with intrinsic resistance to B+E and one patient, BVR-O-13, who 
experienced PD as best response, also developed a new loss-of-function mutation in the tumor 
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suppressor RB1 at the time of progression.  Moreover, p53 is a critical regulator of cell-cycle 
arrest in the context of cellular stress and DNA damage (33) and TP53 mutations have been 
implicated in mediating resistance to targeted therapy (34). TP53 was mutated in nearly 40% of 
tumors from patients on the BEAVER trial and all patients with TP53 mutations experienced PD 
as best response, whereas none of the patients who experienced PR had a TP53 mutation. 
Together, these data suggest that co-occurring alterations in cell cycle genes may uncouple the 
MAPK pathway from cell cycle regulation and nominate cell cycle mediators as potential 
therapeutic targets in these tumors. 
 
We showed that CDK4/6 inhibitors could be combined with BRAF/MEK inhibitors, and this led 
to more cell growth inhibition in vitro and tumor growth inhibition in vivo in Class 2 and 3 
BRAF mutant tumors. This therapeutic strategy may be particularly relevant in tumors where cell 
cycle progression is not uniquely regulated by the MAPK pathway. For example, in tumors 
where alterations in cell cycle regulators are present or in tumors with co-occurring MAPK-
independent oncogenic alterations. These include RAS-PI3K-AKT pathway alterations such as 
those present in the BVR-O-04, BVR-O-13 and BVR-O-17 PDXs that were more responsive to 
B+E+P triple therapy vs. B+E alone. The combination of BRAF/MEK/CDK4/6 inhibition has 
previously been reported to be more effective than BRAF/MEK inhibition alone in preclinical 
models of Class 1 BRAF mutant melanoma, in part by modulating the tumor immune 
microenvironment (35). Currently, there is one on-going clinical trial evaluating the combination 
of binimetinib, encorafenib and palbociclib in patients with BRAF V600 mutant metastatic 
melanoma (NCT04720768). Our preclinical data support the clinical investigation of this 
regimen for Class 2 & 3 BRAF mutant cancers. 
 
Several SHP2 inhibitors, including TNO155 are actively being investigated in clinical trials 
(NCT03114319, NCT03634982) for various types of cancers. We found that SHP2 inhibitors - 
when combined with BRAF/MEK inhibitors - could potentiate tumor regression and delay 
resistance, even in Class 3 BRAF mutant PDX models that were intrinsically resistant to B+E. 
Indeed, B+E+T led to a more profound inhibition of MAPK activity in Class 3 tumors compared 
to B+E treatment alone. It has been reported that some RAS mutations render tumors resistant to 
SHP2 inhibitors, however other KRAS mutant tumors are sensitive to Shp2 inhibitors ((36), (37), 
(7), (38)). Indeed, we found that multiple RAS co-mutated Class 3 BRAF mutant cancer cells 
were non-responsive to the SHP2 inhibitor monotherapy. Interestingly however, the addition of 
MAPK inhibitors potentiated responsiveness to TNO155 in NRAS G12D mutant WM3670 
melanoma cells and in NRAS G12V or KRAS A59T co-mutated colorectal cancer PDXs. These 
findings suggest that SHP2i/MAPKi combinations may be effective even in RAS co-mutated 
Class 3 BRAF mutant tumors. Two patients with Class 3 BRAF mutations initially experienced 
tumor regression accompanied by ctDNA clearance, but developed new MAPK mutations at the 
time of disease progression. BVR-O-07 developed a new RAF1 mutation and two new MAP2K1 
mutations that all require RAF-dimerization, which is a SHP2/RAS-dependent process. A second 
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patient with a Class 3 BRAF mutation developed 5 new NRAS mutations at the time of 
progression. We have shown that SHP2i/MAPKi combinations remain effective even in NRAS 
co-mutated models of Class 3 BRAF mutant cancer. Thus, theoretically all these newly acquired 
MAPK-activating mutations would remain sensitive to SHP2i/MAPKi combinations, 
strengthening the rationale for pursuing this therapeutic strategy in patients with Class 3 BRAF 
mutant cancer. One note of caution, however, is that this triple therapy was associated with more 
weight loss in mice compared to B+E alone, and thus alternative dosing schedules or alternative 
SHP2 inhibitors may be required to mitigate enhanced toxicity. 
 
Limitations of this study include the relatively small sample size and the fact that we did not 
complete enrollment of the BEAVER trial due to poor accrual. We cannot make any definitive 
claims about the efficacy of this regimen within specific cancer types because our sample size 
was too small.  
 
The genomic complexity of Class 2 and 3 BRAF mutant tumors, relative to Class 1 BRAF 
mutant tumors, remains an important therapeutic challenge. Our findings suggest that many 
Class 2 and 3 BRAF mutant cancers can readily develop MAPK-dependent and MAPK-
independent mechanisms of therapeutic resistance. Together, these data demonstrate that MAPK 
inhibition alone - even with novel and emerging next-generation MAPK inhibitors - may not 
yield deep and sustained therapeutic responses in these tumors. Future clinical trials aimed at 
developing precision therapies for Class 2 and 3 non-V600 BRAF mutations should incorporate 
inhibitors of proteins that regulate additional pathways beyond the MAPK pathway. Our data 
highlight CDK4/6 and SHP2 as viable therapeutic targets for future drug development strategies 
for these tumors. 
 
 

Materials & Methods: 
 
BEAVER Trial Study Design 
The BEAVER trial  (Binimetinib and Encorafenib for the Treatment of Advanced Solid Tumors 
With Non-V600E BRAF Mutations, NCT03839342) enrolled patients from June 2019 to 
November 2023. It was approved by the University Health Network research ethics board (REB 
ID: 18-6324).  
 
Key eligibility criteria were: patients with advanced solid tumors with non-V600E activating 
(Class 1 and 2) or inhibitory (Class 3) BRAF mutations, and no prior BRAF/MEK inhibitors. 
This was a single arm, open-label study. All patients received binimetinib (45mg PO BID) and 
encorafenib (450mg PO daily) on a 28-day cycle until intolerable toxicity or progression.  
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The primary objective was to evaluate the objective response rate (ORR) as per RECIST 1.1 
criteria (39). Secondary objectives were to evaluate: progression free survival (PFS), overall 
survival (OS) and disease control rate (DCR). Exploratory objectives were to: 1) evaluate the 
dynamic changes and molecular evolution of circulating tumor DNA (ctDNA) profiles, before 
during and after treatment with binimetinib and encorafenib 2) establish patient-derived 
xenograft (PDX) models of advanced solid tumors with non-V600E BRAF mutations 3) evaluate 
biomarkers of response, and to identify molecular mechanisms of resistance to binimetinib and 
encorafenib in tumors with non-V600E BRAF mutations. 
 
The BEAVER trial was a Simon 2-stage trial with the following statistical parameters: P0 = 0.05, 
P1 = 0.25, Alpha = 0.05, Power = 0.80. Seven patients were planned to be enrolled in the first 
stage. If 1 of 7 patients enrolled in the first stage achieved an objective response, the trial would 
advance to the second stage. In the second stage, up to 19 patients will be enrolled. If 4/26 
patients enrolled in the entire study population achieved an objective response, the study drugs 
would be considered worthy of further evaluation. Additional details are provided in the Clinical 
Trial Protocol. The clinical trial schematic in Figure 1 was created using Biorender.com 
 
Statistical analyses of clinical data 
Differences in objective responses according to clinical and genomic variables were assessed 
using Fisher’s exact test. Differences in tumor measurements according to genomic variables 
were assessed using an unpaired T-test. PFS and OS were visualized with a Kaplan-Meier curve 
and differences were assessed with a log-rank test. Statistical analyses were performed using 
Stata/MP v17.0. 
 
Sequencing of patients’ tumors and ctDNA 
All patients enrolled on the BEAVER trial provided tumor tissue from archival specimens or 
from biopsies of metastatic tumors obtained prior to treatment initiation. Fresh tumor biopsies 
samples were collected with an 18-gauge core needle using standard surgical techniques. FFPE 
tissue. Genomic DNA and RNA were co-isolated from FFPE using standardized procedures with 
the Maxwell RSC RNA FFPE kit (Promega) in the Advanced Molecular Diagnostics Laboratory 
(AMDL) at the University Health Network in Toronto, ON. Sequencing of tumor tissue was 
performed using either the Oncomine Comprehensive Assay v3 (OCAv3) or the Illumina 
TruSight Oncology 500 (TSO500) assay. The OCAv3 and TSO500 assays evaluate 161 and 532 
relevant cancer driver genes, respectively. For samples analyzed with the OCAv3 assay, 
sequencing was performed on the Ion S5 XL System and data analysis was performed using the 
Ion Reporter (ThermoFisher). Variant annotations were obtained from OncoKB. For samples 
analyzed with the TSO500 assay Sequencing was performed using the Illumina sequencing 
platform at the AMDL. Variant calls were generated using a custom bioinformatics pipeline with 
alignment to genome build GRCh37/hg19. Variant interpretation is based on results returned by 
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the Qiagen QCI platform (v 7.1.20210428) along with searches of cancer variant databases and 
biomedical literature. 
 
Cell-free (cfDNA) was extracted from blood plasma using MagMAX Cell-Free DNA Isolation 
kit and analyzed using the Illumina TSO500 ctDNA targeted hybrid capture based next 
generation sequencing assay. Sequencing was performed using the Illumina sequencing platform 
at AMDL. The coding regions and 5 bp of intronic regions were analyzed for variants. Variant 
calls were generated using the Illumina DRAGEN pipeline with alignment to genome build 
GRCh37/hg19. Variant interpretation is based on results returned by the Qiagen QCI platform (v 
9.2.0.20230922) along with searches of cancer variant databases and biomedical literature. 
Minimal acceptable coverage for all reported variants was >800x. Variants of established, 
potential or uncertain clinical significance - considered Tier I, Tier II, and Tier III variants, 
respectively - were reported.  
 
Generation of PDX models 
BVR PDX models were generated using fresh tissue from needle biopsies of metastatic tumors 
from patients enrolled on the BEAVER trial. Tissue fragments were implanted into the flanks of 
3 female NSG mice. Mice were monitored for tumor development by caliper measurement. P0 
tumors that grew were harvested and viable fragments were frozen or implanted as a P1 passage 
into female SCID mice. The development of GCRC PDXs was previously described (15). 
 
In vivo drug treatment experiments 
For drug-treatment experiments with BVR PDXs, SCID mice were implanted with early passage 
(P1-P3) PDXs and monitored until the tumor volume reached ~100mm3. Mice were then 
randomized to an indicated drug treatment regimen. All drug treatments were given by once or 
twice daily oral gavage. Drug treatment was held if BVR PDX-bearing mice lost >20% weight 
until they regained it. Tumor volume (V) was calculated as V = (length × width2)/2. The body 
weight of each mouse was recorded every 2 to 3 days. Mice were sacrificed at the days indicated 
or earlier if they reached a humane end-point. For each PDX model, Vehicle and Bini+Enco 
mice were reused in different tumor growth curves within the manuscript. Xenograft studies 
were designed and conducted following the institutional animal care guidelines, according to a 
protocol approved by the UHN Animal Care Committee. For GCRC PDXs, tumor fragments 
were explanted into cell culture and cells were counted. 1 million cells were implanted 
subcutaneously bilaterally (GCRC-Mel1) or unilaterally (GCRC-2015) into the flanks of female 
NSG mice. This study followed the institutional animal care guidelines, according to a protocol 
approved by the McGill Comparative Medicine and Animal Resources Centre. Treatment and 
tumor growth assessment was performed as described above for the BVR PDXs.  

 
Cell culture and generation of resistant cell lines 
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A375 (CRL-1619), SkMel28 (HTB-72), RKO (CRL-2577), HT29 (HTB-38), H2087 (CRL-
5922), H1666 (CRL-5885), and H508 (CCL-253) were purchased from ATCC. HT55 
(C919Q16) were purchased from Sigma. WM3629 (WM3629-01-0001) and WM3670 
(WM3670-01-0001) were purchased from Rockland. MDA-MB-231, 22RV1, HMV-II, FM95 
cells were from Dr. Peter Siegel. All cell lines were authenticated by whole-exome sequencing 
(Novogene). A375, H1666, H508, WM3629, FM95, HMV-II, H2087, and WM3670 cells were 
cultured in RPMI (Wisent, cat. no. 350-000CL) containing 10% FBS (5% FBS was used for 
H2087 cells) (Wisent, cat. no. 080-450) and 1% PS (Wisent, cat. no. 450201EL). SkMel28 and 
MDA-MB-231 cells were cultured in DMEM (Wisent, cat. no. 319-005-CL) containing 10% 
FBS (5% FBS was used for MDA-MB-231 cells) and 1% PS. RKO and HT55 cells were 
cultured in EMEM (Wisent, cat. no. 320-005-CL) containing 10% FBS and 1% PS. HT29 cells 
were cultured in McCoy’s 5A (Wisent, cat. no. 317-010-CL) containing 10% FBS and 1% PS. 
Resistant FM95 and HMV-II cells were cultured in media supplemented with 1% GlutaMAX 
(ThermoFisher, cat. no. 35050061). 22RV1, MDA-MB-231, and HMV-II binimetinib and 
encorafenib-resistant lines were generated by treating parental cells with increasing 
concentrations of binimetinib and encorafenib over a period of 8-12 months. The FM95 
binimetinib and encorafenib resistant line was generated by seeding cells at low density and 
treating them with a high dose for approximately 2 months. Following colony formation, single 
cell clones were further seeded in a 96-well plate to be expanded. 22RV1 and FM95 resistant 
lines were maintained in 500 nM encorafenib and 100 nM binimetinib. MDA-MB-231 and 
HMV-II resistant cells were maintained in 1000 nM encorafenib and 200 nM binimetinib. 
Parental cells were also kept in culture during this period and treated with DMSO as control. 
Resistance was confirmed with binimetinib and encorafenib IC50 values at least 3 times greater 
than those of the corresponding parental cells. All cell lines used in this manuscript were tested 
for mycoplasma every 2 weeks by PCR (abm, cat. no. G238). 
 
Immunoblotting 
Cells were lysed with 30-100uL of TNE lysis buffer [50 mM tris-HCl (pH 8.0), 150 mM NaCl, 
1% NP-40, 2 mM EDTA, 250 mM sodium pyrophosphate dibasic, 100 mM β-Glycerophosphate 
disodium salt hydrate, cOmplete Mini Protease Inhibitor tablet (Sigma, cat. no. 11836153001)] 
was added to cells on ice. Flash-frozen tumor tissue samples (from experimental endpoint) were 
pulverized in liquid nitrogen using a mortar and pestle and were lysed on ice with 100-300uL of 
TNE lysis buffer. Following centrifugation, protein lysates were quantified using Bradford 
protein reagent (Bio-Rad, cat. no. 5000006). Equal amounts of protein were loaded on 4-12% 
SDS-PAGE gels and were transferred onto PVDF membranes (Bio-Rad, cat. no. 1620264) by 
semidry transfer (Bio-Rad Trans-Blot Turbo Transfer System). Membranes were blocked (1% 
BSA) and incubated with primary antibodies overnight at 4°C (see Supplemental Methods for 
antibodies and dilutions). Membranes were washed, incubated in secondary antibodies, and 
antibody detection was performed using Immobilon Forte Western HRP Substrate (cat. no. 
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WBLUF0100). Bands were visualized using the Bio-Rad Chemi-Doc Imaging System or by X-
ray films. 
 
DNA and RNA extraction 
Parental and resistant cells were plated and the following day, treated for 24hrs with DMSO or 
the corresponding dose of Bini+Enco that the resistant cells are grown in. Flash-frozen tumor 
tissue samples were pulverized in liquid nitrogen using a mortar and pestle. Tumor tissue DNA 
and RNA was extracted with the Zymo Research Quick-DNA Microprep Kit (cat. no. D3020) 
and the Qiagen RNeasy Kit (cat. no. 74134), respectively, according to the manufacturer’s 
instructions. RNA quantification and quality assessment was performed using the NanoDrop 
Spectrophotometer ND-1000 (software version 3.8.1). 
 
RNA-sequencing and Analysis 
Procedures to acquire RNA counts are described in supplemental methods. RNA counts were 
normalized using the DESeq2 (version 1.42.0) algorithm in R (version 4.3.2). The Wald test was 
used for p-value calculation and Benjamini-Hochberg false discovery rate (FDR) for the padj 
values. A baseMean cutoff of 50 was used for all heatmaps to filter out low counts. Gene Set 
Enrichment Analysis (GSEA) was performed on DESeq normalized counts with 1000 gene set 
permutations and comparing groups by Ratio of Classes metric.  
 
Clonogenic assays 
Crystal violet assays were performed as previously described (15) by treating cells with the 
indicated concentrations of drug(s) for 7-10 days. Crystal violet stains were re-solubilized by 
adding 1mL of methanol to each well and incubating at room temperature for 1h on a rocking 
shaker. 100µL of the resolubilized crystal violet solution was transferred into a 96-well plate and 
the relative absorbance was measured at 570 nm using a plate reader (Perkin Elmer Enspire 
2300). Assays were performed at least in triplicates. 
  
Functional Genomics  

siRNA transfections 
2.5 x 105 MDA-MB-231 cells were seeded in 6 well-plates and transfected, the following day, 
with the indicated concentrations of non-targeting, or CDK4-targeting, or CDK6-targeting 
siRNA (siGENOME SMARTPool; Dharmacon) using lipofectamine 2000 (Thermo Fisher 
Scientific), as per the manufacturer’s protocol. The following day, cells were trypsinized and 5 x 
103 cells from each condition were seeded in 48-well plates and incubated at least for 6hrs before 
adding DMSO or Binimetinib + Encorafenib at the indicated concentrations. After adding the 
drug treatments, plates were immediately placed in the IncuCyte where the confluence of cells in 
each condition was monitored over 72hrs. In parallel to seeding cells for the proliferation assays, 
the remaining of siRNA-transfected cells were re-seeded and maintained in 6 well-plates for the 
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same period (72hrs) to validate the siRNA efficiency at the experimental endpoint by 
immunoblotting. 

Two-color CRISPR competition assay 
This assay was performed as detailed previously (40) with some modifications. HEK293 FT cells 
were transfected with the LentiCas9-Blast vector (Addgene #52962) for lentiviral production. 
NCI-H1666 cells were then transduced with the produced viruses and selected with blasticidin (5 
µg/ml) for 5 days to generate a stable Cas9-expressing cell line. 
  
A non-targeting (NT) gRNA in addition to two gRNAs targeting PTPN11 were cloned 
individually in Lentiguide-gRNA-NLS-GFP-2A-PURO plasmid (Addgene #185473; provided 
by Dr. Stephane Angers). The LentiGuide-puro-NLS-mCherry plasmid (Addgene #185474) 
expressing a gRNA targeting the safe harbor AAVS1 locus was provided by Dr. Stephane Angers 
((41)). HEK293-FT cells were transfected with these vectors independently to produce 
lentiviruses. NCI-H1666-Cas9 cells were then transduced with the produced viruses for 24hrs 
and left to recover for the two following days before selecting with puromycin (1.5 µg/ml) for 4 
days. After selection, 75 x 103 H1666-NT gRNA or H1666-PTPN11 gRNA(s) were seeded with 
75 x 103 H1666-AAVS1 gRNA in a 12 well-plate and incubated overnight. The following day, 
plates were imaged by the G/O/NIR optical module of IncuCyte S5 (Sartorius) to define the 
GFP-positive and mCherry-positive cell count/representation as a reference timepoint (day 0; 
D0). Two days later, cells were split 1:10 and propagated in a new 12 well-plate. Cells were split 
again (1:10) in the following days if they passed 50% confluence until they were imaged at day 7 
(D7) as the endpoint.  
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Figure Legends: 
 
Figure 1: Clinical efficacy of binimetinib and encorafenib in patients with non-V600E 
BRAF mutations 
 
A) Schematic of BEAVER Trial Study Design. B) Waterfall plot of tumor measurements 
assessed by RECIST 1.1. *unconfirmed PR; **confirmed PR. C) Oncoprint indicating all 
oncogenic or likely oncogenic alterations that were identified using either a OCAv3 or TSO500 
NGS assay on archival or fresh tumor biopsies taken from all enrolled patients prior to initiating 
treatment on the study. D) The list of genes shown in the oncoprint was analyzed by Hallmark 
MSigDB pathways analysis to identify altered pathways that were enriched in this cohort. All 
enriched pathways that were Padj<0.05 are shown. E) Kaplan-Meier curve indicating the 
progression free survival of patients with either melanoma or pancreaticobiliary cancers vs. other 
cancer types that were either TP53 mutant or wildtype.  

 
Figure 2: Generation and characterization of preclinical models of BRAF/MEK inhibitor 
resistant Class 2 and 3 BRAF mutant cancer  
 
A) Tumor growth curves of P0 PDXs derived from patients enrolled on the BEAVER trial B) 
Correlation of tumor growth observed with Bini+Enco treatment in patients versus relative tumor 
growth inhibition achieved with bini+enco treatment in corresponding PDXs. Patient tumor 
growth measurement represents the % change in sum of target lesion diameter as per RECIST 
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1.1. R=-0.63; P=0.0467; Pearson correlation coefficient. C) Schematic of the two methods used 
to generate Bini+Enco resistant cell lines. Dose escalation protocol is shown on the left, and 
colony selection protocol is shown on the right. D) Representative crystal violet images from 
parental and resistant Class 2 BRAF cancer cell lines treated with DMSO or Bini+Enco (200nM 
Bini + 1000nM Enco) for 7-10 days. E) Bini+Enco IC50 values for each parental/resistant pair, 
N=3 biological replicates plotted. IC50s that were not achieved were represented as the maximal 
concentration tested (2000nM Bini + 10000nM Enco). Unpaired t-test *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. F) Representative immunoblots of MAPK pathway activity in the 
Class 2 BRAF mutant parental/resistant cancer cell lines. Cells were treated with Bini+Enco 
(100nM Bini + 500nM Enco) for 2, 24, 48, and 72hrs or DMSO (B+E 0) for 72 hours. 

 
Figure 3: Identification of altered cell cycle regulation in resistant Class 2 BRAF mutant 
cells 
 
A) Principal Component Analysis plot of the Bini+Enco and DMSO treated Parental/Resistant 
non-V600 BRAF Class 2 cell lines. B) Normalized Enrichment Score from GSEA comparing 
each Bini+Enco treated Parental/Resistant non-V600 BRAF Class 2 cell lines. Plotted Gene Sets 
from the top 15 most enriched common gene sets between the 4 cell lines. C) Heatmap of the 
Hallmark MSigDB E2F Targets gene set (genes = 198, baseMean>0) in the Bini+Enco and 
DMSO treated Parental/Resistant non-V600 BRAF Class 2 cell lines. D) Heatmap of the 
Hallmark MSigDB G2M Checkpoint gene set (genes = 196, baseMean>0) in the Bini+Enco and 
DMSO treated Parental/Resistant non-V600 BRAF Class 2 cell lines. E) Immunoblot of cell 
cycle proteins from synchronized cells treated with DMSO or Bini (100nM) + Enco (500nM) for 
FM95 and 22RV1 and Bini (200nM) + Enco (1000nM) for HMV-II and MDA-MB-231 for 
48hrs. F) Bar graph of the cell cycle phase distribution based on propidium iodide flow 
cytometry cell cycle analysis. Cells were synchronized overnight and treated with DMSO or Bini 
(200nM) + Enco (1000nM) for 24hrs. Differences were evaluated with a 2-way ANOVA with 
Tukey correction for multiple comparisons. G) Responses to Bini+Enco treatment amongst 
BEAVER trial patients, stratified according to the presence or absence of oncogenic alterations 
in genes within the E2F Targets or G2M Checkpoint gene sets (P=0.0226). H) MDA-MB-231 
cells were transfected with the indicated concentrations of siRNA and analyzed by 
immunoblotting at experimental endpoint. I) Proliferation assay comparing the response of 
siRNA-transfected MDA-MB-231 cells to either low (Bini 25nM + Enco 125nM) or high dose 
(Bini 200nM + Enco  1000nM) drug treatment. Two-way ANOVA, Tukey correction *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001.  

 
Figure 4: Evaluation of CDK4/6 + BRAF/MEK inhibition in Class 2 BRAF mutant tumors 
 
Quantification of clonogenic assays of cancer cells with endogenous Class 2 BRAF mutations 
that were treated with combinations of BRAF, MEK and CDK4/6 inhibitors, encorafenib, 
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binimetinib and palbociclib respectively in A) HMV-II melanoma B) FM95 melanoma C) 
22RV1 prostate cancer and D) H2087 NSCLC cells. Tumor growth curves of E) GCRC-Mel1, 
F) GCRC-2015, and G) BVR-O-17 PDXs treated with vehicle, palbociclib (80mg/kg/day) 
(palbo) for all PDXs, binimetinib (15mg/kg/d) + encorafenib (75mg/kg/d) (bini + enco) for 
GCRCMel1 and BVR-O-17, and binimetinib (20mg/kg/d) + encorafenib (75mg/kg/d) (bini + 
enco) for GCRC-2015. For the triple therapy of binimetinib + encorafenib + palbociclib 
(B+E+P), the doses of the respective drugs were 15/75/80 mg/kg/d for GCRCMel1, 20/75/80 
mg/kg/d for GCRC2015, and 15/50/80 mg/kg/d for BVR-O-17. One vehicle-treated mouse 
(BVR-O-17) reached a humane end-point on Day 14. Corresponding immunoblots of tumors 
taken at experimental endpoint from mice bearing PDXs (H) GCRC-Mel1, I) GCRC-2015, and 
J) BVR-O-17 that were treated with vehicle, bini+enco, palbociclib, or bini+enco+palbo. Each 
lane represents protein lysate from a different biological replicate (tumor). K) MPAS calculated 
from the RNA expression of 10 genes comprising the MPAS signature from BVR-O-04 (circle), 
BVR-O-17 (triangle), and GCRC-Mel1 (square) treated with Vehicle, Bini+Enco, Palbo, or 
Bini+Enco+Palbo. L) E2F Targets score calculated from the RNA expression of 198 genes 
comprising the Hallmark MSigDB E2F Targets gene set from BVR-O-04 (circle), BVR-O-17 
(triangle), and GCRC-Mel1 (square) treated with Vehicle, Bini+Enco, Palbo, or 
Bini+Enco+Palbo. M) G2M Checkpoint score calculated from the RNA expression of 190 genes 
comprising the Hallmark MSigDB E2F Targets gene set from BVR-O-04 (circle), BVR-O-17 
(triangle), and GCRC-Mel1 (square) treated with Vehicle, Bini+Enco, Palbo, or 
Bini+Enco+Palbo. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
 
Figure 5: Identification of SHP2 as a therapeutic target in Class 3 BRAF mutant tumors 
 
A) Dot plot analysis of Class 3 (n=7) vs Class 1 (n=117) BRAF mutant cancer cell lines with 
gene effect size (x-axis) plotted against -log10(P-value). Low effect size suggests gene 
essentiality in Class 3 vs Class 1 BRAF mutant cancer cell lines. B) Two patients (BVR-O-07 
and BVR-M-05) with Class 3 BRAF mutant cancer experienced tumor regression with 
Bini+Enco treatment. Results of ctDNA analysis from samples taken prior to treatment, after 
completing 1 cycle (28 days) treatment and at progression is shown. Genes highlighted in boxes 
indicate mutations that were detected in ctDNA taken at time of progression that were not 
detected (ND) prior to starting treatment. VAF = variant allele frequency. C) Principal 
Component Analysis plot of the Bini+Enco and Vehicle treated Patient Derived Xenografts with 
Class 3 BRAF mutations (BVR-O-04/O-10/O-12/O-15/O-17). D) Normalized Enrichment Score 
from GSEA comparing Bini+Enco and Vehicle treated MAPKi Sensitive vs. MAPKi Resistant 
PDXs with Class 3 BRAF mutations (BVR-O-04/O-10/O-12/O-15/O-17). Plotted Gene Sets from 
the top 10 most enriched common gene sets between the 5 PDXs. E) Dot plot presenting the 
percentage change from baseline in target lesion size. Each dot represents a patient enrolled in 
the BEAVER trial with a RAS mutant (n=5) or RAS wild-type tumor (n=16). RAS mutation 
status was determined based on NGS of tumor tissue from archival or pre-treatment biopsies. F) 
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Venn diagram showing unique and common genes between the CRISPR screen data from the 
DepMap in A) and significantly overexpressed genes in MAPKi-resistant PDXs vs their sensitive 
counterparts. G) Violin plot shows PTPN11 gene essentiality in Class 1 (n=117), Class 2 (n=15), 
and Class 3 (n=7) BRAF mutant cell lines from the DepMap genome-wide CRISPR-Cas9 
essentiality screen. H) Relative PTPN11 gene expression in Bini+Enco and Vehicle treated 
MAPKi Sensitive vs. MAPKi Resistant PDXs. I) Representative images showing either H1666 
cells expressing PTPN11-gRNA or NT-gRNA (both in green) co-cultured in a 1:1 ratio 
independently with H1666 cells expressing AAVS1-gRNA in magenta, at Day 0 and Day 7. J) 
Relative change in percentage of green population over total population was monitored over 7 
days. K) SHP099 and L) TNO155 IC50 values across BRAF mutant cell lines, N=3 biological 
replicates plotted. 
 
Figure 6: Evaluation of SHP2 + BRAF/MEK inhibition in Class 3 BRAF mutant tumors  
 
A) Quantification of clonogenic assays of cancer cells with endogenous Class 3 BRAF mutations 
that were treated with combinations of BRAF, MEK and SHP2 inhibitors, encorafenib, 
binimetinib and TNO155 respectively in H508 (colorectal), H1666 (NSCLC), HT55 (colorectal) 
and WM3670 (melanoma) cells. Drug doses: H508 and HT55 - Bini 80nM, Enco 400nM, TNO 
100nM and 1µM; H1666 - Bini 40nM, Enco 200nM, TNO 100nM and 1µM; WM3670 - Bini 
120nM, Enco 600nM, 100nM and 1µM. N=3 biological replicates plotted. One-way ANOVA on 
AUC *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  B) Corresponding immunoblots of 
conditions from A) after 2hrs treatment. Tumor growth curves of C) BVR-O-10, D) BVR-O-12, 
and E) BVR-O-13 PDXs treated with Vehicle, Binimetinib (15mg/kg/d) + Encorafenib 
(75mg/kg/d) (Bini+Enco), TNO155 (10mg/kg/d) (TNO), or Binimetinib (15mg/kg/d) + 
Encorafenib (75mg/kg/d) + TNO155 (10mg/kg/day) (B+E+TNO). F) BVR-O-15 PDX treated 
with Vehicle, Binimetinib (15mg/kg/d) + Encorafenib (50mg/kg/d) (Bini+Enco), TNO155 
(10mg/kg/d) (TNO), or Binimetinib (15mg/kg/d) + Encorafenib (50mg/kg/d) + TNO155 
(10mg/kg/day) (B+E+TNO). One B+E+T-treated mouse (BVR-O-15) reached a humane end-
point on Day 20. One-way ANOVA on AUC with Tukey correction for multiple comparisons 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Corresponding immunoblots of tumors taken at 
experimental endpoint from mice bearing PDXs (G) BVR-O-12, H) BVR-O-13, and I) BVR-O-
15 that were treated with Vehicle, Bini+Enco, TNO155, or Bini+Enco+TNO. Each lane 
represents protein lysate from a different biological replicate (tumor). J) MPAS calculated from 
the RNA expression of 10 genes comprising the MPAS signature from BVR-O-12 (triangle), 
BVR-O-13 (square), and BVR-O-15 (circle) treated with Vehicle, Bini+Enco, TNO, or 
Bini+Enco+TNO. 
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Figure 1: Clinical efficacy of binimetinib and encorafenib in patients with non-V600E BRAF 
mutations 
 
A) Schematic of BEAVER Trial Study Design. B) Waterfall plot of tumor measurements assessed 
by RECIST 1.1. *unconfirmed PR; **confirmed PR. C) Oncoprint indicating all oncogenic or 
likely oncogenic alterations that were identified using either a OCAv3 or TSO500 NGS assay on 
archival or fresh tumor biopsies taken from all enrolled patients prior to initiating treatment on the 
study. D) The list of genes shown in the oncoprint was analyzed by Hallmark MSigDB pathways 
analysis to identify altered pathways that were enriched in this cohort. All enriched pathways that 
were Padj<0.05 are shown. E) Kaplan-Meier curve indicating the progression free survival of 
patients with either melanoma or pancreaticobiliary cancers vs. other cancer types that were either 
TP53 mutant or wildtype.  
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Figure 2: Generation and characterization of preclinical models of BRAF/MEK inhibitor 
resistant Class 2 and 3 BRAF mutant cancer  
 
A) Tumor growth curves of P0 PDXs derived from patients enrolled on the BEAVER trial B) 
Correlation of tumor growth observed with Bini+Enco treatment in patients versus relative tumor 
growth inhibition achieved with bini+enco treatment in corresponding PDXs. Patient tumor 
growth measurement represents the % change in sum of target lesion diameter as per RECIST 1.1. 
R=-0.63; P=0.0467; Pearson correlation coefficient. C) Schematic of the two methods used to 
generate Bini+Enco resistant cell lines. Dose escalation protocol is shown on the left, and colony 
selection protocol is shown on the right. D) Representative crystal violet images from parental and 
resistant Class 2 BRAF cancer cell lines treated with DMSO or Bini+Enco (200nM Bini + 1000nM 
Enco) for 7-10 days. E) Bini+Enco IC50 values for each parental/resistant pair, N=3 biological 
replicates plotted. IC50s that were not achieved were represented as the maximal concentration 
tested (2000nM Bini + 10000nM Enco). Unpaired t-test *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. F) Representative immunoblots of MAPK pathway activity in the Class 2 BRAF 
mutant parental/resistant cancer cell lines. Cells were treated with Bini+Enco (100nM Bini + 
500nM Enco) for 2, 24, 48, and 72hrs or DMSO (B+E 0) for 72 hours. 
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Figure 3: Identification of altered cell cycle regulation in resistant Class 2 BRAF mutant cells 
 
A) Principal Component Analysis plot of the Bini+Enco and DMSO treated Parental/Resistant 
non-V600 BRAF Class 2 cell lines. B) Normalized Enrichment Score from GSEA comparing each 
Bini+Enco treated Parental/Resistant non-V600 BRAF Class 2 cell lines. Plotted Gene Sets from 
the top 15 most enriched common gene sets between the 4 cell lines. C) Heatmap of the Hallmark 
MSigDB E2F Targets gene set (genes = 198, baseMean>0) in the Bini+Enco and DMSO treated 
Parental/Resistant non-V600 BRAF Class 2 cell lines. D) Heatmap of the Hallmark MSigDB G2M 
Checkpoint gene set (genes = 196, baseMean>0) in the Bini+Enco and DMSO treated 
Parental/Resistant non-V600 BRAF Class 2 cell lines. E) Immunoblot of cell cycle proteins from 
synchronized cells treated with DMSO or Bini (100nM) + Enco (500nM) for FM95 and 22RV1 
and Bini (200nM) + Enco (1000nM) for HMV-II and MDA-MB-231 for 48hrs. F) Bar graph of 
the cell cycle phase distribution based on propidium iodide flow cytometry cell cycle analysis. 
Cells were synchronized overnight and treated with DMSO or Bini (200nM) + Enco (1000nM) for 
24hrs. Differences were evaluated with a 2-way ANOVA with Tukey correction for multiple 
comparisons. G) Responses to Bini+Enco treatment amongst BEAVER trial patients, stratified 
according to the presence or absence of oncogenic alterations in genes within the E2F Targets or 
G2M Checkpoint gene sets (P=0.0226). H) MDA-MB-231 cells were transfected with the 
indicated concentrations of siRNA and analyzed by immunoblotting at experimental endpoint. I) 
Proliferation assay comparing the response of siRNA-transfected MDA-MB-231 cells to either 
low (Bini 25nM + Enco 125nM) or high dose (Bini 200nM + Enco  1000nM) drug treatment. Two-
way ANOVA, Tukey correction *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
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Figure 4: Evaluation of CDK4/6 + BRAF/MEK inhibition in Class 2 BRAF mutant tumors 
 
Quantification of clonogenic assays of cancer cells with endogenous Class 2 BRAF mutations that 
were treated with combinations of BRAF, MEK and CDK4/6 inhibitors, encorafenib, binimetinib 
and palbociclib respectively in A) HMV-II melanoma B) FM95 melanoma C) 22RV1 prostate 
cancer and D) H2087 NSCLC cells. Tumor growth curves of E) GCRC-Mel1, F) GCRC-2015, 
and G) BVR-O-17 PDXs treated with vehicle, palbociclib (80mg/kg/day) (palbo) for all PDXs, 
binimetinib (15mg/kg/d) + encorafenib (75mg/kg/d) (bini + enco) for GCRCMel1 and BVR-O-
17, and binimetinib (20mg/kg/d) + encorafenib (75mg/kg/d) (bini + enco) for GCRC-2015. For 
the triple therapy of binimetinib + encorafenib + palbociclib (B+E+P), the doses of the respective 
drugs were 15/75/80 mg/kg/d for GCRCMel1, 20/75/80 mg/kg/d for GCRC2015, and 15/50/80 
mg/kg/d for BVR-O-17. One vehicle-treated mouse (BVR-O-17) reached a humane end-point on 
Day 14. Corresponding immunoblots of tumors taken at experimental endpoint from mice bearing 
PDXs (H) GCRC-Mel1, I) GCRC-2015, and J) BVR-O-17 that were treated with vehicle, 
bini+enco, palbociclib, or bini+enco+palbo. Each lane represents protein lysate from a different 
biological replicate (tumor). K) MPAS calculated from the RNA expression of 10 genes 
comprising the MPAS signature from BVR-O-04 (circle), BVR-O-17 (triangle), and GCRC-Mel1 
(square) treated with Vehicle, Bini+Enco, Palbo, or Bini+Enco+Palbo. L) E2F Targets score 
calculated from the RNA expression of 198 genes comprising the Hallmark MSigDB E2F Targets 
gene set from BVR-O-04 (circle), BVR-O-17 (triangle), and GCRC-Mel1 (square) treated with 
Vehicle, Bini+Enco, Palbo, or Bini+Enco+Palbo. M) G2M Checkpoint score calculated from the 
RNA expression of 190 genes comprising the Hallmark MSigDB E2F Targets gene set from BVR-
O-04 (circle), BVR-O-17 (triangle), and GCRC-Mel1 (square) treated with Vehicle, Bini+Enco, 
Palbo, or Bini+Enco+Palbo. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
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Figure 5: Identification of SHP2 as a therapeutic target in Class 3 BRAF mutant tumors 
 
A) Dot plot analysis of Class 3 (n=7) vs Class 1 (n=117) BRAF mutant cancer cell lines with gene 
effect size (x-axis) plotted against -log10(P-value). Low effect size suggests gene essentiality in 
Class 3 vs Class 1 BRAF mutant cancer cell lines. B) Two patients (BVR-O-07 and BVR-M-05) 
with Class 3 BRAF mutant cancer experienced tumor regression with Bini+Enco treatment. 
Results of ctDNA analysis from samples taken prior to treatment, after completing 1 cycle (28 
days) treatment and at progression is shown. Genes highlighted in boxes indicate mutations that 
were detected in ctDNA taken at time of progression that were not detected (ND) prior to starting 
treatment. VAF = variant allele frequency. C) Principal Component Analysis plot of the 
Bini+Enco and Vehicle treated Patient Derived Xenografts with Class 3 BRAF mutations (BVR-
O-04/O-10/O-12/O-15/O-17). D) Normalized Enrichment Score from GSEA comparing 
Bini+Enco and Vehicle treated MAPKi Sensitive vs. MAPKi Resistant PDXs with Class 3 BRAF 
mutations (BVR-O-04/O-10/O-12/O-15/O-17). Plotted Gene Sets from the top 10 most enriched 
common gene sets between the 5 PDXs. E) Dot plot presenting the percentage change from 
baseline in target lesion size. Each dot represents a patient enrolled in the BEAVER trial with a 
RAS mutant (n=5) or RAS wild-type tumor (n=16). RAS mutation status was determined based on 
NGS of tumor tissue from archival or pre-treatment biopsies. F) Venn diagram showing unique 
and common genes between the CRISPR screen data from the DepMap in A) and significantly 
overexpressed genes in MAPKi-resistant PDXs vs their sensitive counterparts. G) Violin plot 
shows PTPN11 gene essentiality in Class 1 (n=117), Class 2 (n=15), and Class 3 (n=7) BRAF 
mutant cell lines from the DepMap genome-wide CRISPR-Cas9 essentiality screen. H) Relative 
PTPN11 gene expression in Bini+Enco and Vehicle treated MAPKi Sensitive vs. MAPKi 
Resistant PDXs. I) Representative images showing either H1666 cells expressing PTPN11-gRNA 
or NT-gRNA (both in green) co-cultured in a 1:1 ratio independently with H1666 cells expressing 
AAVS1-gRNA in magenta, at Day 0 and Day 7. J) Relative change in percentage of green 
population over total population was monitored over 7 days. K) SHP099 and L) TNO155 IC50 
values across BRAF mutant cell lines, N=3 biological replicates plotted. 
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Figure 6: Evaluation of SHP2 + BRAF/MEK inhibition in Class 3 BRAF mutant tumors  
 
A) Quantification of clonogenic assays of cancer cells with endogenous Class 3 BRAF mutations 
that were treated with combinations of BRAF, MEK and SHP2 inhibitors, encorafenib, binimetinib 
and TNO155 respectively in H508 (colorectal), H1666 (NSCLC), HT55 (colorectal) and WM3670 
(melanoma) cells. Drug doses: H508 and HT55 - Bini 80nM, Enco 400nM, TNO 100nM and 1µM; 
H1666 - Bini 40nM, Enco 200nM, TNO 100nM and 1µM; WM3670 - Bini 120nM, Enco 600nM, 
100nM and 1µM. N=3 biological replicates plotted. One-way ANOVA on AUC *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001.  B) Corresponding immunoblots of conditions from A) 
after 2hrs treatment. Tumor growth curves of C) BVR-O-10, D) BVR-O-12, and E) BVR-O-13 
PDXs treated with Vehicle, Binimetinib (15mg/kg/d) + Encorafenib (75mg/kg/d) (Bini+Enco), 
TNO155 (10mg/kg/d) (TNO), or Binimetinib (15mg/kg/d) + Encorafenib (75mg/kg/d) + TNO155 
(10mg/kg/day) (B+E+TNO). F) BVR-O-15 PDX treated with Vehicle, Binimetinib (15mg/kg/d) 
+ Encorafenib (50mg/kg/d) (Bini+Enco), TNO155 (10mg/kg/d) (TNO), or Binimetinib 
(15mg/kg/d) + Encorafenib (50mg/kg/d) + TNO155 (10mg/kg/day) (B+E+TNO). One B+E+T-
treated mouse (BVR-O-15) reached a humane end-point on Day 20. One-way ANOVA on AUC 
with Tukey correction for multiple comparisons *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
Corresponding immunoblots of tumors taken at experimental endpoint from mice bearing PDXs 
(G) BVR-O-12, H) BVR-O-13, and I) BVR-O-15 that were treated with Vehicle, Bini+Enco, 
TNO155, or Bini+Enco+TNO. Each lane represents protein lysate from a different biological 
replicate (tumor). J) MPAS calculated from the RNA expression of 10 genes comprising the 
MPAS signature from BVR-O-12 (triangle), BVR-O-13 (square), and BVR-O-15 (circle) treated 
with Vehicle, Bini+Enco, TNO, or Bini+Enco+TNO. 
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