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Abstract 22 

The distribution of microorganisms in built environments with high human traffic, such 23 

as food centres, can potentially have a significant impact on public health, particularly 24 

in the context of increasing worldwide incidence of food and fomite-related outbreaks. 25 

In several major Asian cities, public food centres are the main venue for food 26 

consumption and yet we lack a baseline understanding of their environmental 27 

microbiomes. We conducted city-wide metagenomic surveillance of food-centre 28 

microbiomes in Singapore (16 centres, n=240 samples) to provide a detailed map of 29 

microbial (bacteria, archaea, fungi, viruses) as well as non-microbial DNA abundances 30 

across two timepoints. Food-centre microbiomes were found to be enriched in food-31 

related DNA signatures compared to other environments such as hospitals and offices, 32 

with specific food-microbe associations (e.g. Enterobacteriaceae and fish) and food 33 

DNA providing a partial explanation for the microbial profiles observed (44% of 34 

variation explained). Machine learning analysis identified a small set of microbial 35 

species (n=22) that serve as highly accurate (>80%) location-specific signatures for 36 

various food centres, some of which persist even after 3 years. Profiling of antibiotic 37 

resistance genes (ARGs) and pathogens identified a surprising enrichment of ARGs 38 

in food centres relative to other non-healthcare environments (>2.5´), and an order of 39 

magnitude enrichment of key pathogenic species (e.g. Klebsiella pneumoniae, 40 

Enterobacter spp) even compared to hospital environments. These results highlight 41 

the contribution of diverse biotic and abiotic factors in shaping the unique microbiome 42 

profiles of different food-centre environments, and the potential for using metagenomic 43 

surveillance to understand the risk for infections and antibiotic resistance gene 44 

transmission.   45 
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Introduction 46 

Globally, the WHO estimates that there are more than 600 million food-borne illnesses 47 

every year leading to >400,000 deaths1. The rising incidence of antimicrobial resistant 48 

infections further compounds this challenge with new and emerging pathogens such 49 

as Group B Streptococcus2 being of significant public health concern. In several major 50 

Asian cities (e.g. Singapore, Kuala Lumpur and Bangkok), large public food centres 51 

(also known as hawker centres) are popular venues for daily food consumption for a 52 

significant proportion of the population3. Hawkers centers typically represent an 53 

improvement in plumbing infrastructure, water supply and sanitation to reduce the 54 

incidence of foodborne illnesses4. Nevertheless as communal eating spaces, they also 55 

have high foot traffic and sharing of tables, plates and utensils, potentially creating an 56 

environment conducive to the spread of pathogens. According to a 2020 report by the 57 

Singapore Ministry of Health, there were 1,894 and 473 cases of Salmonellosis and 58 

Campylobacteriosis in 2019, and >2500 reported food poisoning cases that were 59 

epidemiologically linked to food establishments5. Despite improved sanitation, food-60 

related gastroenteritis persists, highlighting the potential risk for disease transmission 61 

in public eateries. Enhanced surveillance in food centres through microbiological 62 

culture-based and genomic approaches thus has the potential to improve our 63 

understanding of the distribution of pathogens and antibiotic resistance determinants 64 

in the environment, and inform cleaning protocols and other risk mitigation strategies. 65 

A growing body of work has highlighted the use of metagenomics as a 66 

surveillance technology for built environments6, particularly in areas where there is 67 

high human traffic (e.g. subways7,8 and offices9,10) or where the risk of infection in 68 

vulnerable populations is higher (e.g. hospitals9,11 and neonatal ICUs12). The 69 

International MetaSUB consortium, in particular, has pioneered the global collection 70 

of metagenomic datasets from cities worldwide over many years to understand the 71 

distribution of environmental microbes and the antibiotic resistance genes (ARGs) that 72 

they carry13. In addition to 16S rRNA sequencing approaches which provide a 73 

convenient and cost-effective taxonomic survey of environmental microbiomes, 74 

shotgun metagenomics has been particularly popular for such surveys owing to its 75 

ability to provide multi-kingdom characterization of samples as well as information on 76 

ARGs. Despite this, relatively few studies have characterized the microbiomes of food 77 

centres, beyond the use of traditional culture techniques and PCR analysis for select 78 
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pathogens and ARGs14–16. While a few studies have used 16S rRNA sequencing to 79 

characterize bacterial genera in kitchens and slaughterhouses17,18, our understanding 80 

of food-centre microbiomes in relation to other built-environment microbiomes is still 81 

limited. In particular, while food centres are not as aggressively cleaned as hospitals19, 82 

they still have more frequent cleaning schedules than other public locations such as 83 

offices and subways. In addition, the use of antibiotics in food production20 has the 84 

potential to impact the resistome of food centres where large quantities of food are 85 

processed and consumed21. Finally, food-associated microbes, particularly from 86 

fermented foods that are common in Southeast Asian cuisine22,23 (e.g. in fish sauce, 87 

fermented bean paste and tempeh), as well as from food spoilage in a hot and humid 88 

environment24,25, could further lend unique microbial community profiles in food 89 

centres.   90 

To address this knowledge gap, we conducted a city-wide metagenomic 91 

surveillance of food-centre microbiomes in Singapore (16 centres, n=240 samples) to 92 

provide a detailed map of microbial (bacteria, archaea, fungi, viruses) as well non-93 

microbial DNA abundances across two timepoints. Notably, our analysis identified 94 

enrichment in food-related DNA in food centres compared to other environments, 95 

enabling the identification of specific food-microbe associations (e.g. 96 

Enterobacteriaceae and fish), as well as evidence that food associations could provide 97 

a partial explanation for the microbial profiles observed (44% of variation explained). 98 

Using machine learning methods we identified a small set of microbial species (n=22) 99 

that can also serve as highly accurate (>80%) location-specific signatures for various 100 

food centres, some of which persist even after 3 years. Profiling of antibiotic resistance 101 

genes (ARGs) and pathogens identified a surprising enrichment of ARGs in food 102 

centres relative to other non-healthcare environments (>2.5´), and an order of 103 

magnitude enrichment of key pathogenic species (e.g. Klebsiella pneumoniae, 104 

Enterobacter spp) even compared to hospital environments. These findings highlight 105 

the diverse biotic and abiotic contributions that could shape the unique microbiome 106 

profiles of food-centre environments, and highlights the utility of food-centre 107 

metagenomic surveillance for future studies aimed at reducing the emergence and 108 

spread of food and fomite-associated infections and human gut colonization by multi-109 

drug resistant bacteria. 110 
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Results 111 

City-wide metagenomic surveillance of food centres highlights enrichment of 112 

food-related DNA signatures that partially explain microbial profiles 113 

To cover a diversity of food-centre environments in Singapore, we selected a 114 

geographically distributed set of sites located in the central, eastern and western parts 115 

of Singapore that span the densely populated urban landscape of the city-state (n=16; 116 

Figure 1A, Supplementary File 1). In each site, 10 tables were swabbed based on 117 

established MetaSUB protocols7 and subjected to deep shotgun metagenomic 118 

sequencing (20 million reads on average/sample, Methods), providing data for 119 

relatively comparable high-touch sites across various food centres (Figure 1B). A 120 

second set of 80 swabs were collected from these sites 3 years later to assess 121 

temporal stability, providing a complete dataset of 226 metagenomes (<6% of samples 122 

failed library preparation, Methods). The shotgun sequencing data was classified 123 

using a custom database of non-redundant genomes from NCBI to enable 124 

identification of microbial (e.g. bacteria, archaea, fungi, viruses) as well as non-125 

microbial (e.g. human, plant, animal) reads, and compared to control samples to 126 

identify and remove potential signals of laboratory and reagent contamination 127 

(Methods; Supplementary File 2). While the majority of identified taxa were microbial 128 

and bacterial as expected (median relative abundance=77%), a substantial proportion 129 

of DNA was also classified to non-microbial origins (median relative abundance=12%, 130 

Figure 1C) including diverse animal and plant orders (Supplementary Figure 1). We 131 

noted that several of the most abundant orders within the Animalia kingdom all had 132 

potential food origins including red meat, chicken, duck, oysters and fish 133 

(Supplementary Figure 1A), while plant orders highlighted potential food sources that 134 

are common in local cuisine including peppers, fleshy and leafy vegetables, rice and 135 

wheat (Supplementary Figure 1B). Interestingly, manual curation of food-related 136 

taxa highlighted that corresponding animal and plant orders were strongly enriched for 137 

food-related DNA in food-centre metagenomes (>90%, Fisher’s exact p-value<0.0001; 138 

Supplementary Figure 2, Methods). Correspondingly, the total relative abundance 139 

of food-related taxa was also significantly enriched in food-centre metagenomes 140 

relative to other locations such as hospital sites9, office9 and outdoor environments 141 

surveyed as part of MetaSUB Singapore13 (Wilcoxon p-value<0.01; Supplementary 142 

Figure 3A), with vegetables, fish and meat representing the dominant groups in food-143 
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centres (Supplementary Figure 3B). These observations highlight the ability to 144 

identify potential food-related DNA sources through metagenomic surveillance with 145 

particular relevance to food-centre surveillance.  146 

We next investigated the potential impact of various food sources on the 147 

microbial community using compositionality-aware correlation analysis with SparCC26 148 

(Methods). As a positive control, common skin commensal species from the 149 

Cutibacterium genus, were observed to be strongly correlated with the abundance of 150 

human DNA, in addition to weaker and non-specific associations of Vibrio with fish27 151 

and Salmonella with poultry28 (Figure 1D). Some bacterial (e.g. Bacillus) and fungal 152 

(e.g. Exophiala) genera were found to have high correlations with most food-related 153 

taxa (Spearman r>0.7; Group A, Figure 1D; Supplementary Figure 4), consistent 154 

with their known association with food environments and fermentation29,30. Another 155 

distinct group of species that includes clinically-relevant opportunistic pathogens from 156 

the family Enterobacteriaceae (e.g. Salmonella, Citrobacter, Klebsiella) had strong 157 

correlations with a subset of food-related taxa including fish species (e.g. carp), meat 158 

and rice (Group B, Figure 1D) that are commonly featured in Asian cuisine, a notable 159 

association that has not been previously described. Other strong associations were 160 

more specific to a small subset of food sources e.g. Sphingobacterium with salmon 161 

and Aspergillus with soldierfish and fruits (Group C; Figure 1D), which could indicate 162 

a specific source of origin for these organisms. Interestingly, while most of the detected 163 

correlations were positive (72%, 300/418), weaker negative correlations were also 164 

detected (Spearman r<0.5) and were often seen consistently in soil, plant-associated 165 

and environmental bacteria (e.g. Frankia, Rhodobacter, Azoarcus). Overall, these 166 

results highlight that while some microbes might be associated with food-related DNA 167 

abundances in general (Supplementary Figure 4), other environmental variables are 168 

likely to impact the observed distribution of microbes in food-centre metagenomes as 169 

well (percent variation explained by food-related taxa = 44%; Supplementary Figure 170 

5).  171 

In terms of microbial taxa, we noted that while bacterial and fungal species from 172 

the genus Klebsiella, Enterobacter, Acinetobacter, Moraxella and Candida were the 173 

most commonly seen in food centres metagenomes in this study, the relative 174 

proportion of these species varied by location and sampling surface (Supplementary 175 

Figure 6). For example, while food centres C, E, F and N were marked by high 176 
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abundance of Klebsiella species, food centres A, B, F, K, O exhibited profiles with a 177 

higher proportion of Moraxella species instead. Overall taxonomic alpha diversities 178 

were observed to be higher in food centres relative to other urban environmental 179 

metagenomes that we could compare to such as hospital, office and MetaSUB 180 

datasets (Supplementary Figure 7). Some food centres house market stalls that offer 181 

raw ingredients such as meat, vegetables and dairy (Supplementary File 1), and 182 

while the presence of such stalls was associated with higher microbial diversity 183 

(Wilcoxon p-value<0.05; Supplementary Figure 8A), the correlation between the 184 

number of stalls and Shannon diversity was weak (Pearson r=0.17; Supplementary 185 

Figure 8B). Furthermore, no significant correlation was evident when considering the 186 

number of individual food stalls within the surveyed food centres (Supplementary 187 

Figure 8C), suggesting that other intrinsic factors, such as geography and 188 

environment, may play an important role in shaping the higher diversities observed in 189 

the metagenomes of these food centres. Intriguingly, microbiomes within the same 190 

food centre exhibited greater similarity to each other than to those from different food 191 

centres (R2=0.873, p-value=10-4; Figure 1E). In addition, clustering of microbial 192 

taxonomic profiles resulted in clusters that were more similar to location-based groups 193 

than clusters based on non-microbial taxonomic profiles (Wilcoxon p-value<10-4; 194 

Supplementary Figure 9; Methods). Together, these observations indicate that while 195 

variability in food-centre microbiomes might partially reflect food-source variations, 196 

food-centre locations and related environmental factors are also likely to play a 197 

substantial role in shaping the diversity of microbiota compositions observed. 198 

Food-centre metagenomes exhibit location-specific microbial signatures that 199 

can show long-term persistence 200 

Based on the observation that food-centre metagenomic profiles cluster by location, 201 

we next investigated if a machine learning approach could be used to predict locations 202 

and identify location-specific metagenomic signatures. As metagenomic data is 203 

compositional and high-dimensional in nature, different normalization and feature-204 

selection approaches were explored to construct models (Figure 2A; Methods). 205 

Comparison of performance from different multi-class classification approaches (n=11) 206 

highlighted that while high AUC-ROC scores could be achieved (>0.95, 4-fold cross-207 

validation), linear classifiers generally performed better for this task relative to non-208 

linear models (e.g. quadratic discriminant analysis - QDA), and appropriate 209 
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normalization (ILR: isometric log-ratio transformation, CLR: centered log-ratio 210 

transformation) was essential to achieve good performance (Figure 2B). Interestingly, 211 

logistic regression (LogReg) classifiers exhibited the highest performance across 212 

datasets, providing interpretable model weights which are useful for identifying 213 

important features for subsequent biological investigations (Figure 2B). In addition, 214 

microbial features were more predictive of location than non-microbial features, with 215 

performance with microbial features alone being similar to the full model, indicating 216 

that location-specific metagenomic signatures are primarily microbial in information 217 

content (Figure 2B). 218 

To identify the essential subset of features, logistic-regression classifiers were 219 

trained with varying number of features, highlighting that as few as 20 features could 220 

be sufficient to achieve optimal performance (AUC-ROC>0.95, Precision>90%, 221 

Accuracy>80%; Figure 2C), though the use of principal components generally led to 222 

lower performance. The most informative features were then selected using recursive 223 

feature elimination with cross-validation (RFECV; Methods), yielding 28 species on 224 

average across cross-validation runs. Taking the union of species across 4 cross-225 

validation runs identified a core set of 22 species that were consistently selected in at 226 

least 3 out of 4 runs (Table 1). These 22 species collectively exhibited mean combined 227 

relative abundance of 4.5% across all samples, indicating that the identified microbial 228 

signatures represent non-dominant species in the metagenome that nevertheless 229 

have consistent differences across food centres (Figure 2D). Of note, several species 230 

are known to have environmental associations (e.g. Azorhizobium caulinodans and 231 

Dyella japonica  in soil samples31), while other species are known to have associations 232 

with foods (e.g. Clavispora lusitaniae and Lactobacillus farciminis in cheese and 233 

kimchi respectively32,33) and food additives (e.g. Cyberlindnera jadinii for its high 234 

glutamic acid content34), highlighting the diverse potential sources for these species. 235 

To assess the temporal persistence of food-centre microbial signatures, we 236 

applied the classifier model to a set of metagenomes (n=79) obtained from the same 237 

food centres more than 3 years later in 2022. Remarkably, the classifier yielded an 238 

AUC-ROC score exceeding 0.7 for food centres C, D, E, H, I, J, L, M and P, which is 239 

significantly higher than a permutation-based null model (9/15; Figure 2E). In addition, 240 

ordination analysis revealed that these food centres (stable – S) had less changes to 241 

their microbial profiles compared to other food centres (unstable – U), between the 242 
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two timepoints of sample collection over a period of three years (Figure 2F), further 243 

underscoring the persistent nature of microbial signatures in specific food-centres. 244 

Next, we fine-tuned the classifiers with a single sample from each food-centre from 245 

the second collection (20% of samples) and found a substantial rise in AUC-ROC 246 

scores, surpassing an average value of 0.8 (Figure 2G). These results suggest that 247 

location-specific microbial signatures in select food centres remain stable over 248 

extended periods of time, and in cases where the microbiome has shifted over time, 249 

the classifier can be fine-tuned with a small set of new data to improve classification 250 

performance.  251 

Generalizing beyond location-specific signatures, we explored if the microbial 252 

profiles carried geographical information. Testing for a distance-decay relationship35 253 

between microbial profiles (Bray-Curtis dissimilarity) and different food-centre 254 

locations in Singapore (Euclidean distance), we observed a weak but statistically 255 

significant correlation (r=0.082, Mantel test p-value<0.008). Training a classifier 256 

based on geographical cluster labels (Supplementary Figure 10) achieved slightly 257 

lower classification accuracy than for location labels (accuracy= 80%, AUC-ROC=0.9), 258 

while using more features (Supplementary Figure 11A). Among the features, 8 259 

species were found in at least 75% of the cross-validation runs (Supplementary 260 

Figure 10B), identifying 3 species that were not identified by the location-based 261 

classifier, including a newly isolated species from air samples in Singapore 262 

(Brachybacterium sp. SGAir0954; Supplementary Figure 11C). These results 263 

highlight the potential for environmental microbes in food centres to serve as forensic 264 

signatures of location and geography, as well as providing an important baseline for 265 

identification of potential pathogens and their resistance determinants.  266 

Enrichment of antibiotic resistance genes and pathogenic species in food-267 

centre microbiomes 268 

To assess the potential role that food-centre microbiomes may play in harbouring 269 

antimicrobial resistance determinants and facilitating their onward transmission, we 270 

profiled the relative abundance of antibiotic resistance genes (ARGs) in food-centre 271 

metagenomes (Methods). Food-centre metagenomes harboured relatively higher 272 

ARG abundance compared to other environmental metagenomes including office 273 

environments and outdoor environments profiled as part of a MetaSUB consortium 274 

study (>2.5´, Wilcoxon p-value<10-4; Figure 3A). Hospital environments were the 275 
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sites that exhibited highest median relative abundance of antibiotic resistance genes 276 

(Figure 3A), and this was true across different resistance gene classes, except for 277 

colistin resistance which was most enriched in food centres (>1.5´, Wilcoxon p-278 

value<10-4; Figure 3B). This is noteworthy, as colistin is often an antibiotic of last 279 

resort and its indiscriminate use in animal husbandry has been seen as a risk factor 280 

for transmission of resistance to human pathogens36. Interestingly, for a few other 281 

classes of antibiotic resistance (e.g. aminoglycosides, beta-lactamases and 282 

Fosfomycin), metagenomes of food-centres, a built environment where high human 283 

traffic is typically expected, resembled hospital environments in having higher median 284 

abundances than office and MetaSUB sites (Figure 3B, Supplementary Figure 12), 285 

highlighting the importance of food-centre microbiomes as sites for one-health 286 

surveillance. While overall levels of beta-lactamase resistance genes were similar, the 287 

profiles of specific resistance genes detected were found to belong to 3 major clusters, 288 

with cluster 1 being shared between food-centres and hospitals, cluster 2 being unique 289 

to food-centres, and cluster 3 being predominantly seen in hospitals (Figure 3C). In 290 

particular, beta-lactamase genes commonly found in pathogenic species such as 291 

Acinetobacter baumannii37, and Enterobacter cloacae38 (e.g. blaADC, blaCMH, blaACT, 292 

blaMIR) were relatively more abundant in food centres than in hospitals (Cluster 2; 293 

Figure 3C), suggesting that these pathogens may be enriched in food centres. 294 

Additionally, Carbapenemase genes (e.g. blaOXA) were also detected in both food 295 

centres and hospitals, but while several blaOXA variants from hospitals have known 296 

associations with plasmids, none of the blaOXA genes detected in food centres were 297 

linked to plasmids (Supplementary Figure 13), indicating that the risk of plasmid-298 

mediated transmission may be lower in food-centres than in hospitals. 299 

We next assessed the abundance of high-priority ESKAPE pathogens 300 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 301 

Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and 302 

Escherichia coli) in food-centres relative to other environments and found that they 303 

were surprisingly strongly enriched in food-centres (>3´, Wilcoxon p-value<10-4; 304 

Figure 3D). In particular, gram-negative Enterobacteriaceae such as K. pneumoniae, 305 

A. baumannii, Enterobacter and E. coli (but not P. aeruginosa) were found to be 306 

significantly enriched in food-centres than even in hospital environments (Wilcoxon p-307 

value<10-4; Figure 3D). Overall, these results highlight the utility of metagenomic 308 
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surveillance in food-centre environments for understanding the distribution of key 309 

pathogens and resistance genes, and for further studies into transmission risk.  310 

Discussion 311 

Despite their social and cultural importance in many major Asian cities, and increasing 312 

concerns over new food and fomite-associated pathogens, large-scale microbial 313 

genomic surveillance of food centres have not been reported before. Our study helps 314 

establish the feasibility of a shotgun metagenomics approach to rapidly conduct city-315 

wide surveillance (estimated sequencing cost <S$10,000), and highlights the utility of 316 

this data for tracking microbes and associated genes of concern in the environment. 317 

In addition to microbes, our work shows that metagenomics can reflect specific 318 

enrichment of food-associated non-microbial taxa in food-centres (Supplementary 319 

Figure 1-3), though further work is needed to understand how much this reflects food 320 

production and consumption patterns. By jointly detecting microbes and food-321 

associated taxa, metagenomics allows us to discover associations between them that 322 

may be relevant for tracking the source of food-related pathogens (Figure 1D). For 323 

e.g., we noted that while some microbes seem to be non-specifically associated to 324 

food-related taxa (such as Bacillus, Exophiala), potentially reflecting a joint seeding 325 

pattern or their general ability to grow better with food-derived nutrients, others have 326 

more specific associations consistent with prior studies on a food item of interest (e.g.  327 

Vibrio species in seafood27 and Salmonella in poultry28). Larger-scale analysis may 328 

thus help uncover more such associations, especially those that are for rarer microbial 329 

taxa and foods that are unique to a few food-centres. Further advances in databases 330 

of microbial and non-microbial genomes39,40, development of taxonomic classifiers 331 

that are more specific and sensitive41, long-read sequencing and genome-resolved 332 

metagenomics42,43 are expected to further aid such studies.   333 

A notable result from this study is that food-associated non-microbial taxa can 334 

potentially explain a substantial fraction, but not all, of the microbial variation observed 335 

in food-centres (44%; Supplementary Figure 5), indicating the importance of food 336 

sources in determining food-centre microbiomes. Additionally, it is also clear that there 337 

is a strong location-specific signature in metagenomic profiles, which is primarily 338 

microbially driven (Figure 2B). Similar “forensic” signatures have been reported in 339 

other studies as well44, but primarily over larger geographic distances (e.g. cities 340 

around the world8,45). The training of accurate location classifiers (Accuracy>80%) was 341 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.24310840doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.28.24310840


facilitated by appropriate pre-processing of relative abundance information from 342 

metagenomics, enabling highly compact signatures with as few as 20 species to be 343 

learnt (Figure 2C). Interestingly, these signatures are not defined by abundant taxa 344 

(e.g. Klebsiella, Enterobacter etc; Supplementary Figure 6) but by rarer taxa with 345 

diverse possible origins (Table 1). The higher biomass collection enable by our 346 

sampling protocol, as well as the stringency of our ‘kitome’ removal analysis 347 

(Methods), suggests that these signatures are not likely to be artefactual. In addition, 348 

metagenomic data from the second timepoint, more than 3 years later, highlights that 349 

some signatures can be remarkably robust over time (Figure 2E, 2F). This is despite 350 

large socio-environmental changes (COVID-19 pandemic related), as well as 351 

unavoidable technical differences (newer DNA extraction protocols; Methods) 352 

separating the two timepoints. Nevertheless, it highlights how microbes can serve as 353 

biomarkers and indicator species for food-centre locations, with further study needed 354 

to understand the reasons for a greater shift in these signatures in some sites (Figure 355 

2F). The ability to rescue classifier performance with a few additional datasets 356 

suggests that these shifts may not lead to a complete replacement of such signatures 357 

(Figure 2G). Overall, geographical factors appear to provide only a partial explanation 358 

for the observed location-specific signatures (Supplementary Figure 11), and larger 359 

datasets with detailed environmental information could help tease apart the 360 

contributions of diverse local factors in shaping food-centre microbiomes. 361 

Food-centre metagenomes were found to be surprisingly enriched for antibiotic 362 

resistance genes relative to other outdoor and indoor environments with high human 363 

contact (>2.5´; Figure 3A), with the not so surprising exception of hospital 364 

environments9. Of note, food-centres seem to be more similar to hospital 365 

environments in the enrichment of various clinically important antibiotic resistance 366 

gene classes (e.g. aminoglycosides, beta-lactamases, Fosfomycin; Figure 3B). This 367 

could in part be due to antibiotic usage in animal husbandry36 and agriculture46 globally, 368 

though the use of antibiotics to promote growth of animals is not allowed in Singapore 369 

and so, for example, the enrichment of colistin resistance is unexpected47. Other 370 

potential explanations include, higher human traffic than other sites, greater microbial 371 

biomass thriving on food-based nutrients, and specific environments and interventions 372 

(e.g. cleaning protocols) that enrich for bacteria carrying such resistance genes48. 373 

While the public health ramifications of this enrichment remain to be determined (e.g. 374 
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chromosomally integrated carbapenemases in food-centre microbiomes may not be 375 

as concerning as plasmid-borne genes detected in hospital environments49), it is clear 376 

that food-centre environments should be an important node for one-health surveillance 377 

efforts. This is particularly the case because of the unexpectedly strong enrichment of 378 

several ESKAPE pathogens of concern, even relative to hospital environments (>10´ 379 

for several gram-negative Enterobacteriaceae; Figure 3D), and the need to 380 

understand if this has an impact on the risk for transmission and infections. Overall, 381 

this study highlights the valuable information that metagenomic surveillance can 382 

provide about microbes as well as non-microbes in food-centre environments, serving 383 

as the basis for further large-scale cross-sectional and interventional studies to 384 

understand the diverse factors that shape them, their impact on public health, and the 385 

utility of various cleaning and behavioural intervention strategies to reduce infection 386 

risk. 387 

388 
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Materials and Methods 389 

Sample collection 390 

Microbiome sampling was done on food centre table surfaces using Isohelix DNA 391 

Buccal Swabs (SK-4S) based on MetaSUB protocols7. Samples were collected from 392 

16 different geographically spread-out locations from around Singapore that represent 393 

popular food centres in densely populated regions (Figure 1A). Sampling was done 394 

at two different timepoints (March 2019 and July 2022) within 1 week, where all sites 395 

from the same food-centre were sampled on the same day. The second collection was 396 

delayed due to lockdowns during the COVID-19 pandemic period. During the first 397 

timepoint, 10 different table surfaces were swabbed (total n=160), while 5 tables were 398 

swabbed at the second timepoint (total n=80). Swabbing was done with two swabs 399 

applied over separate halves of a table, each for a duration of two minutes, and the 400 

samples were combined. Swabs were stored in Zymo DNA/RNA Shield™ immediately 401 

after collection and the corresponding tubes were subsequently stored at -80˚C prior 402 

to DNA extraction. 403 

DNA extraction and sequencing 404 

Extraction of total DNA from swabs was performed via a combination of mechanical 405 

and chemical lysis. Briefly, samples were homogenized on the FastPrep Instrument 406 

(MP Biomedicals) at 6 ms–1 for 40 s, followed by centrifugation (5mins, 13000 rpm) 407 

and Proteinase K treatment of supernatant (56°C for 20mins). Purified DNA was 408 

obtained using the Maxwell RSC Blood DNA Kit (Promega, AS1400) for the first 409 

collection and QIAamp PowerFecal Pro DNA Kit (Qiagen) for the second collection 410 

according to manufacturer’s instructions. DNA concentration was quantified on the 411 

Qubit dsDNA HS Assay Kit (Life Technologies, Q32854). Samples with low DNA 412 

concentration according to the assay were excluded from the study (First collection, 413 

n=13; Second collection, n=1). Metagenomic libraries for all samples were prepared 414 

with the NEBNext® Ultra™ II FS DNA kit (New England Biolabs, E7805L) according 415 

to the manufacturer’s instructions. Paired-end sequencing (2×150bp reads) was 416 

performed on the Illumina HiSeq X™ Ten platform. Negative control samples (n=5, 417 

blank swabs in DNA/RNA shield) underwent identical DNA extraction and sequencing 418 

procedures.  419 
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Taxonomic abundance analysis 420 

Illumina paired-end reads were first trimmed for adapters and filtered for low quality 421 

reads using fastp (v0.20.1 -q 25 -p 20)50. The remaining reads were used for 422 

taxonomic profiling with Kraken251 (v2.0.8) using a custom index (kraken2build –max-423 

db-size 60000) built from the NCBI NT (non-redundant nucleotide) genome database. 424 

Taxonomic abundances at the species and genus level were estimated using 425 

Bracken52 (v2.5).  426 

Abundance profiles were filtered such that species with relative abundance less than 427 

0.01% were excluded to reduce the impact of false-positive calls. To assess the 428 

potential impact of reagent and laboratory contamination on taxonomic profiles, DNA 429 

quantification was done for negative control libraries (n=5) and found to be a 100-fold 430 

smaller than libraries for all collected food-centre samples, suggesting that 431 

reagent/laboratory contamination is unlikely to impact the taxonomic profiles for our 432 

relatively high-biomass environments (enabled by 2-swab sampling of the entire table). 433 

As a conservative measure to reduce the impact of contaminants, species that were 434 

present in negative controls were labelled as putative contaminants if their abundance 435 

was inversely correlated (pearson correlation >0.3) with DNA concentration in food-436 

centre metagenomes, and correspondingly removed from food-centre microbiome 437 

profiles before further analysis. Species from Animalia and Plantae were manually 438 

curated to be food-related if they were known to be common ingredients in local cuisine 439 

(Supplementary File 3).  440 

Taxonomic co-occurrence analysis 441 

Taxonomic co-occurrence relationships between microbial and non-microbial species 442 

were inferred through the application of the SparCC26 method, as implemented in 443 

FastSpar v0.0.1053 with default parameters. Correlations with absolute coefficients 444 

exceeding 0.3 and a statistical significance threshold of p-value<0.05 were retained. 445 

The resulting correlations were visually represented using a heatmap, generated with 446 

the seaborn clustermap function in Python, employing the Euclidean distance metric.  447 

Ordination analysis 448 

Ordination analysis was performed using the Uniform Manifold Approximation and 449 

Projection algorithm54 (UMAP, n_neighbour=10, min_dist=0.1, n_components=2). The 450 

Spearman distance metric, which ranges from 0 to 2, was used to measure similarity 451 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.24310840doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.28.24310840


between subsets of taxonomic profiles. The selection of Spearman distance metric 452 

over a more conventional Bray-Curtis dissimilarity metric was aimed at capitalizing on 453 

a rank-based methodology to avoid biasing towards highly abundant species. This 454 

step is valuable for measuring similarities between profiles containing only a subset of 455 

taxa in a microbiome, such as those representing signature species. 456 

Canonical correspondence analysis  457 

Canonical correspondence analysis (CCA) was performed using the R package 458 

vegan55 (v2.6.4) to investigate the relationship between microbial composition 459 

variations and food-related taxa abundances. In total, 35 food-related orders were 460 

examined (Supplementary File 3). Percentage of microbial variation explained by 461 

food-related taxa was obtained from the ratio of constrained inertia to total inertia. The 462 

biplot and model inertia results are shown in Supplementary Figure 5. 463 

Clustering and cluster similarity 464 

Metagenomes were initially clustered based on their microbial abundance profiles or 465 

profiles for food-related taxa. These cluster assignments were subsequently 466 

compared both against the true location labels of the samples and among themselves 467 

using clusim56 (v0.4), with higher scores denoting increased similarity. To assess the 468 

robustness of clustering, we conducted 10-fold cross-validation to generate multiple 469 

similarity scores across the three pairs of comparisons (microbe-food, food-location, 470 

microbe-location; Supplementary Figure 9). Additionally, a null model was 471 

established through random permutations of cluster labels to compute similarity scores 472 

and test for statistical significance (one-sided Wilcoxon text). 473 

Training of machine learning models 474 

Multi-class machine learning classifiers were trained to predict the most likely source 475 

of a sample based on its metagenomic profile. To limit the number of features in the 476 

training dataset, we restricted the models to the top 200 species based on median 477 

abundances. Taxonomic profiles were normalized using various approaches including 478 

total sum scaling (TSS), cumulative sum scaling (CSS, metagenomeSeq57 v3.18), 479 

centered log-ratio (CLR) and isometric log-ratio (ILR) as described by Thomas et al.. 480 

A pseudo count of 1 was applied across the dataset to allow for log transformation. 481 

Classifiers were trained using 11 different algorithms, including logistic regression, 482 

multi-layer perceptron, support vector classifier (linear basis function), K-nearest 483 
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neighbor, Gaussian naïve Bayes, random forest, decision tree, Adaboost, quadratic 484 

discriminant analysis, Gaussian process, and support vector classifiers (radial basis 485 

function), as implemented in the python scikit-learn package. Binary classifiers were 486 

adapted for multi-label classification using a one-vs-rest approach. The classifiers 487 

were first trained on a randomly selected training dataset (n=110) and applied to a 488 

withheld test dataset (n=37) to assess classifier performance. This process was 489 

repeated 4 times for different splits of the dataset and the mean accuracy and AUC-490 

ROC scores (one-vs-rest, average using ‘macro’) from the test datasets was reported. 491 

Subsequent analysis was limited to the logistic regression classifier as it performed 492 

the best. To test for statistical significance of classification scores at each food-centre 493 

location, a null model was trained from 5 sets of random permutations of the food-494 

centre labels. A one-sided Wilcoxon rank-sum test was performed subsequently to 495 

identify locations with significantly higher classification performance. 496 

Geographical association analysis 497 

Food-centres were grouped together using hierarchical clustering based on Euclidean 498 

distances of their geographical location. Mantel’s test (scikit bio v0.1.3) was performed 499 

between a distance matrix of Bray-Curtis dissimilarity scores between taxonomic 500 

profiles and a second distance matrix of Euclidean distances calculated from 501 

geographical coordinates of the food-centres. 502 

Resistome analysis 503 

Antibiotic resistance gene (ARG) profiles were calculated using SRST258 (v0.1.4; --504 

min_coverage 100, hits with identity <99% were filtered out) using a curated version 505 

of the CARD database59 (v3.0.8). Alignment counts to ARGs were normalized by total 506 

reads per sample and gene length to calculate RPKM values. Resistome profiles were 507 

aggregated based on the ontology grouping of resistance genes in the CARD 508 

database, including grouping by gene class and resistance mechanism. 509 

Data Availability 510 

Sequencing reads are available from the European Nucleotide Archive under project 511 

PRJEB73308. Source code and data for reproducing figures are available under MIT 512 

license at: https://github.com/CSB5/food_centre_microbiome.  513 
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Tables 514 

Table 1: Details for core species that act as location-specific microbial 515 

signatures. 516 

Species Location 
Mean 
RA 
(%) 

Habitat Type Ref. 

Mycolicibacterium 
boenickei M 0.04  Gram+ 60 

Cyberlindnera jadinii D, M 0.95 Food Yeast 34 

Klebsiella sp. 
FDAARGOS_511  0.04 Gut Gram- 6101/03/2024 

10:07:00 

Clavispora lusitaniae N 0.18 Food, Gut Yeast 62 

Aquitalea sp. USM4  0.05 Aquatic Gram- 63 

Lodderomyces 
elongisporus L 0.07 

Food, Soil, 
Blood 

Yeast 64 

Dyella japonica C, H, M 0.40 Soil Gram- 65 

Kushneria konosiri F, G 0.05 Food (Salt) Gram- 66 

Mycolicibacterium 
litorale C, M 0.05 Soil Gram+ 60 

Salinicola tamaricis F 0.08 Plant Gram- 67 

Rhodobacter sp. 
LPB0142 A, J, P 0.07 Aquatic Gram-  

Pseudomonas 
oleovorans J, O 0.13 

Aquatic, 
lipid-rich 

Gram- 68 

Azorhizobium 
caulinodans A, C 0.11 Soil, Plant Gram- 31,69 

Kluyvera georgiana F 0.34 
Wastewater, 
Soil 

Gram- 70 

Enterobacter cloacae N 0.16 
Plant, Soil, 
Humans 

Gram- 71 

Leuconostoc lactis I 0.04 Food Gram+ 72 

Rhizobium sp. S41 G 0.06  Gram-  

Staphylococcus 
saprophyticus F 0.09 Skin Gram+ 73 
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Xanthobacter 
autotrophicus C, J, P 0.06 Wastewater Gram- 74 

Dyella jiangningensis  0.09 Soil, Rock Gram- 75 

Enterobacter sp. T2  0.06 Wastewater Gram+ 76 

Luteibacter rhizovicinus M 0.04 Food Gram- 77 

  517 
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Figure Legends 518 

Figure 1: Distribution of microbial and non-microbial taxa in food-centre 519 

metagenomes. (A) Map of Singapore showing population density and locations of the 520 

16 food centres that were sampled. (B) Schematic showing a typical food centre 521 

setting and sample collection approach for the project. (C) Boxplots showing kingdom-522 

level taxonomic abundances (microbial and non-microbial) based on shotgun 523 

metagenomics data (first timepoint). (D) Heatmap of correlation coefficients between 524 

microbial genera and non-microbial orders as determined by SparCC (first timepoint; 525 

*=key known associations). Only correlations with p-value<0.05 are shown. In addition, 526 

only taxa which have at least one correlation value>0.5 are shown. (E) Uniform 527 

Manifold Approximation and Projection (UMAP) analysis showing the degree of 528 

similarity of taxonomic profiles across food centres based on a Spearman distance 529 

metric (first timepoint). PERMANOVA analysis was done based on food-centre labels 530 

to obtain the R2 and p-value. 531 

Figure 2: Predicting food-centre locations based on microbial profiles. (A) 532 

Schematic of workflow used to assess various normalization techniques and do 533 

feature selection. (B) Area-under-curve of the receiver operating characteristic curve 534 

(AUC-ROC) for predicting the source of a taxonomic profile using different classifiers 535 

(linear models in red text) and normalization techniques. The scores were calculated 536 

based on classification of held-out test datasets and 4-fold cross-validation runs. (C) 537 

Performance of classifiers with increasing number of features evaluated using 3 538 

scoring metrics - classification accuracy, AUC-ROC score and average precision from 539 

the precision-recall curve. Scores are averaged over all food centres. (D) 3D 540 

Histogram showing the normalized abundances of 22 microbes that were identified as 541 

microbial signatures for various food centres. (E) Boxplots showing the AUC-ROC 542 

classification performance across food-centres using a logistic-regression classifier 543 

trained with samples from the first collection to classify samples collected 3 years later. 544 

Scores are averaged across the classifiers from 4 cross-validation runs. Star notation 545 

indicates significant p-values based on the one-sided Wilcoxon rank-sum test (****: p-546 

value<10-4, ***: p-value<10-3,**: p-value<10-2, *: p-value<0.05). (F) UMAP plot of 547 

microbial signature profiles from both the first and second collection. Only the 548 

centroids from each food-centre cluster are shown. Lines connect the centroids of 549 
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each food-centre at both timepoints and their opacities increase with shorter distances 550 

to indicate higher similarity based on the Spearman distance metric. Inset shows 551 

UMAP distances between timepoints for all pairs of tables in food-centres which have 552 

stable (S) and unstable (U) classification models (Figure 2E). Star notation indicates 553 

significant p-values based on the one-sided Wilcoxon rank-sum test (****: p-value<10-554 
4). (G) Comparison of classification performance between classifiers with and without 555 

fine-tuning. Fine-tuning describes the process where the model is trained with the 556 

original dataset plus a small subset of additional data from the second collection (1 out 557 

of 5 samples per food-centre). The mean AUC-ROC scores averaged across food-558 

centres and cross-validation runs are shown (line) along with the 95% confidence 559 

interval (shading). Wilcoxon rank-sum test was performed on AUC-ROC scores from 560 

models utilizing 20 features. 561 

Figure 3: Distribution of antibiotic resistance genes and pathogens across food 562 

centres. Boxplots showing (A) antibiotic resistance gene (ARG) abundance (reads 563 

per kilobase per million, RPKM) across 4 location classes: food-centres, hospital sites, 564 

office and outdoor environments surveyed as part of MetaSUB Singapore (n=221, 429, 565 

23 and 99 respectively; two-sided Wilcoxon rank-sum test, ****: p-value<10-4). (B) 566 

ARG abundance (RPKM) for various classes of antibiotics across the 4 different 567 

locations. Statistically significant differences between food-centres and other locations 568 

are shown (two-sided Wilcoxon rank-sum test, ****: p-value<10-4, ***: p-value<10-3,**: 569 

p-value<10-2, *: p-value<0.05). (C) Hierarchically-clustered heatmap showing 570 

carbapenemase gene abundances (RPKM) in various locations. (D) Strip plots 571 

showing the median relative abundance of each ESKAPE pathogen across 4 different 572 

location classes (two-sided Wilcoxon rank-sum test, ****: p-value<10-4).  573 
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