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Abbreviation: 21 

 BH: Benjamini-Hochberg 22 

 BMI: Body mass index 23 

 C: Acylcarnitines 24 

 DE: Differential expression 25 

 DIABLO: Data Integration Analysis for Biomarker discovery using Latent cOmponents 26 

 DM: Differential methylation 27 

 DMR: Differentially methylated regions 28 

 DOHaD: Developmental Origins of Health and Disease 29 

 EWAS: Epigenome-wide association studies 30 

 FC: Fold Change 31 

 FDR: False positive results 32 

 KEGG: Kyoto Encyclopedia of Genes and Genomes 33 

 LOG: Logistic regression 34 

 PANDA: Preferential Attachment-based common Neighbor Distribution derived Associations 35 

 PC aa: Diacyl phosphatidylcholines 36 

 PC ae: Acyl-alkylphosphatidylcholines 37 

 PCC: Pearson correlation coefficients 38 

 PPI: Protein-Protein Interaction 39 

 RBF: Radial Basis Function 40 

 RF: Random Forest 41 

 RPART: Recursive Partitioning and Regression Trees 42 

 SOV: Source of variance 43 
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 SVD: Singular value decomposition 44 

 SVM: Supportive Vector Machine 45 

 kNN: k-Nearest Neighbour 46 

TSS: Transcription start site 47 

 uHSCs: Umbilical cord blood hematopoietic stem cells 48 

 UMAP: Uniform Manifold Approximation and Projection 49 

 VLCAD: Very long-chain acyl-CoA dehydrogenase 50 

 WGCNA: Weighted Gene Co-expression Network Analysis 51 

 52 
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Abstract 67 

Background: Maternal obesity is a health concern that may predispose newborns to a high risk 68 

of medical problems later in life. To understand the transgenerational effect of maternal obesity, 69 

we conducted a multi-omics study, using DNA methylation and gene expression in the 70 

CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics 71 

of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for 72 

Women and Children in Honolulu, Hawaii (collected between 2016 and 2018).  73 

Results: Differential methylation (DM) analysis unveiled a global hypermethylation pattern in 74 

the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical 75 

confounders. Comprehensive functional analysis showed hypermethylation in promoters of 76 

genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism. 77 

Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of 78 

uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including 79 

methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in 80 

adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the 81 

findings at the epigenetic level. Furthermore, the CpG sites associated with maternal obesity 82 

from these pathways also predicted highly accurately (average AUC = 0.8687) between cancer 83 

vs. normal tissues in 14 cancer types in The Cancer Genome Atlas (TCGA). 84 

Conclusions: This study revealed the significant correlation between pre-pregnancy maternal 85 

obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA 86 

methylation. Moreover, these maternal obesity epigenetic markers in uHSCs may predispose 87 

offspring to higher cancer risks. 88 

 89 
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Introduction 90 

Maternal obesity has emerged as a primary health concern during pregnancy, with its prevalence 91 

alarmingly increasing. According to a study by the Centers for Disease Control and Prevention, 92 

the percentage of women experiencing pre-pregnancy obesity in the United States escalated from 93 

26% to 29% between 2016 and 2019 1. Born to mothers with obesity, higher birth weight is 94 

associated with a higher incidence of childhood cancers such as leukemia and neuroblastoma 2,3, 95 

as well as greater risks of prostate and testicular cancers in men 4–6 and breast cancer in women 7.  96 

Moreover, maternal obesity may have a transgenerational effect and set the stage for increased 97 

chronic disease susceptibility later in the adulthood of offspring 8,9. The hypothesis of the utero 98 

origin of diseases proposes that numerous chronic diseases have their origins in the fetal stage, 99 

the earliest phase of human development 10,11. Some researchers have speculated higher stem cell 100 

burdens in newborn babies born from obese mothers 12. Altered hormonal environment and 101 

nutrient availability can induce critical changes in fetal stem cells 13, which may predispose these 102 

cells to malignant transformation, aligning with the idea of the cancer stem cell hypothesis that 103 

cancer cells have stem cell-like properties with an uncontrolled self-renewal program 14–16. In 104 

particular, a study showed increases in cord blood CD34+CD38- stem cell and CD34+ 105 

progenitor cell concentrations with maternal obesity 17, suggesting that the higher proportions of 106 

stem cells in cord blood may make the babies more susceptible to obesity and cancer risks. 107 

However, so far little work provides the direct molecular links as to how maternal obesity affects 108 

cellular function and increases the disease risk in offspring.  109 

To seek answers in this area, we conducted an epigenome-centered multi-omics study to directly 110 

pinpoint the effect of maternal obesity in umbilical cord blood hematopoietic stem cells 111 

(uHSCs).  Epigenetics is chosen as the center of multi-omics integration, as it is both inheritable 112 
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and susceptible to modification by diseases. Thus, it may serve as a plausible mediator in the 113 

transmission of the effects of maternal obesity to offspring.  We incorporate gene expression for 114 

cord blood stem cells and metabolomics data from the cord blood serum as the downstream 115 

readout of epigenetics changes. By elucidating these molecular connections, we provide a 116 

systematic understanding of how maternal obesity during pregnancy can influence the multiple 117 

types of molecular profiles of newborns. Such knowledge may ultimately help develop early 118 

therapeutic interventions at the molecular level to mitigate these transgenerational health risks 119 

due to maternal obesity. 120 

 121 

 122 

Methods 123 

 124 

Overview of the maternal pre-pregnancy cohort with baby cord blood 125 

In this study, baby cord blood samples from 72 pregnant women (34 obese; 38 non-obese) who 126 

delivered at Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (2015-127 

2018) were collected. The study was approved by the Western IRB (WIRB Protocol 128 

#20151223). Patients meeting the inclusion criteria were identified from pre-admission medical 129 

records with pre-pregnancy BMI > 30.0 (maternal obesity) or 18.5-25.0 (normal weight). 130 

Pregnant women undergoing elected C-sections at >37 weeks gestation were included, to 131 

minimize confounding events during the labor. Patient exclusion criteria included pregnant 132 

women with preterm rupture of membranes, labor, multiple gestations, pregestational diabetes, 133 

hypertensive disorders, cigarette smokers, infection of human immunodeficiency virus or 134 

hepatitis B virus, and chronic drug use.  Demographic and phenotypic information was recorded, 135 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2024. ; https://doi.org/10.1101/2024.07.27.24310936doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.27.24310936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

including maternal and paternal age, ethnicity, gestational weight gain, gestational age, parity, 136 

and gravidity. For newborns, Apgar scores were documented at 1 minute and 5 minutes post-137 

delivery. The Apgar score serves as a comprehensive assessment of a newborn's health, with a 138 

normal range considered to be between 7 to 10 18.  139 

 140 

Sample preparation and methylation profiling 141 

The baby cord blood sample was collected in the operating room under sterile conditions at the 142 

time of the C-section (Pall Medical Cord Blood Collection Kit containing 25ml citrate phosphate 143 

dextrose). The umbilical cord was first cleansed with chlorhexidine swabs before cord blood 144 

collection. The total volume of collected blood was measured and recorded before aliquoting to 145 

conical tubes for centrifugation. The tubes were centrifuged at 200g for 10 min, and plasma was 146 

collected. The plasma volume was replaced with 2% FBS/PBS. Negative selection reagents were 147 

added to the blood and incubated for 20 min (Miltenyi Biotec, Auburn, CA). The cord blood was 148 

diluted with an equal volume of 2% FBS/PBS. A 20ml aliquot of the diluted blood was layered 149 

over a density gradient (15ml Lymphoprep) and centrifuged at 1200g for 20 min. The top layer 150 

containing an enriched population of stem cells was collected, centrifuged at 300g for 8 min, and 151 

then washed in 2% FBS/PBS. Red blood cells were lysed using ammonium chloride (9:1) with 152 

incubation on ice for 10 min, washed twice, and then resuspended in 100µl of 2% FBS/PBS. 153 

Cells were stained with Lineage FITC and CD34 APC for 45 min on ice, washed twice, and then 154 

sorted using the BD FacsAria III. Hematopoietic stem cells (CD34+/CD38-/Lin-) were collected 155 

and stored at -80°C until DNA/RNA extraction.   156 

DNA and RNA were extracted simultaneously using the AllPrep DNA/RNA extraction kit 157 

(Qiagen). DNA purity and concentration were quantified in Nanodrop 2000 and Picogreen assay. 158 
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Bisulfite conversion of 500 ng DNA was performed using the EZ DNA Methylation kit (Zymo), 159 

followed by sample processing for Infinium HumanMethylation450 bead chips (Illumina) 160 

according to the manufacturer’s instructions. Bead chips were analyzed at the Genomics Shared 161 

Resource at the University of Hawaii Cancer Center. 162 

 163 

Bulk RNA sequencing 164 

A total of 50 RNA samples were prepared for bulk RNA Sequencing. RNA concentration and 165 

RIN score were assayed using Nanodrop 2000 and Agilent Bioanalyzer. A total of 200 ng of 166 

high-quality RNA (RIN>7) was subjected to library construction (polyA) and sequenced on 167 

HS4000 (2x100) at the Yale Center for Genome Analysis, Connecticut to obtain at least 25M 168 

paired reads per sample. 169 

 170 

Methylation data pre-processing 171 

R version 3.6.3 was used for all downstream analyses. Raw intensity data (.idat) were extracted 172 

using the ‘ChAMP’ package (version 2.16.2) in R 19–22. Quality control and processing were 173 

performed following the ChAMP pipeline. Background controls were subtracted from the data, 174 

and raw data that did not pass detection P-value of 0.05 were removed. For each CpG site, the 175 

methylation score was initially calculated as the beta value, a fluorescence intensity ratio 176 

between 0 and 1. CpG sites whose probes had known underlying SNPs and association with XY 177 

chromosomes were removed from analysis due to potential confounding. After BMIQ 178 

normalization 23, the batch effect due to non-biological technical variation caused by experiment 179 

handling was removed using the ComBat function in the ChAMP package, confirmed by the 180 

singular value decomposition (SVD) plot. The M-values for differential analysis were 181 
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transformed from beta-values using lumi (ver 3.1.4) in R 24–27. A total of 410,765 CpG sites 182 

remained for downstream analysis after probe filtering, normalization, and batch removal.  183 

 184 

Source of variation analysis and confounding adjustment 185 

To eliminate potential confounding factors of pre-pregnant maternal obesity among the 13 186 

clinical factors, we conducted a source of variation analysis to identify the clinical factors that 187 

significantly contribute to the methylation level variation, as done before 28,29. The variables with 188 

F statistics greater than 1 (the error value) were determined as confounders and subjected to 189 

confounding adjustment. These factors include the baby’s sex, net weight gain during the 190 

pregnancy, maternal age, maternal ethnicity, paternal ethnicity, gravidity, and gestational age. To 191 

adjust for confounding, a linear regression model is built using the ‘limma’ package to fit 192 

methylation M values of each CpG site, using the confounding factors above. The remaining 193 

residuals on the M values were considered to be confounding-adjusted for the subsequent 194 

bioinformatics analysis of DNA methylation. 195 

 196 

Bioinformatics analysis of differential methylation (DM) 197 

A moderated t-test from the ‘limma’ R package (version 3.42.2) 30 was used for detecting DM 198 

CpG sites between healthy controls and cases with M values. The p-values were adjusted for 199 

multiple hypotheses testing using Benjamini-Hochberg FDR. CpG sites with FDR <0.05 were 200 

considered statistically significant. To minimize the effect of the gestational age, CpG sites 201 

located within the gestational-age-related differentially methylated regions (DMR) were 202 

removed. A total of 130 DMRs related to gestational age were identified using linear regression 203 

analysis performed with bumphunter 31 across eight public datasets including a total of 248 204 
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patients.: GSE31781 32, GSE36829 33, GSE59274 32,34, GSE44667 35, GSE74738 36, GSE49343 205 

37, GSE69502 38, and GSE98224 39,40. The complete list of DMRs was included in 206 

Supplementary Table 1. Hypermethylation and hypomethylation states were defined by the 207 

values of log2 Fold Change (log2FC) of M values in cases compared to controls: 208 

hypermethylation if bigger than 0, and hypomethylation if less than 0. Corresponding genes and 209 

feature locations of these differential CpG sites were annotated using 210 

IlluminaHumanMethylation450kanno.ilmn12.hg19 (ver 0.6.0) 41 .  211 

 212 

KEGG pathway enrichment analysis 213 

‘gometh’ function from R package “missMethyl” (version 1.26.1) 42–45 was used for KEGG 214 

pathway enrichment 46–48 with DNA methylation data. DM sites were used for pathway 215 

enrichment within five supergroups from KEGG pathways: Metabolism, Genetic Information 216 

Processing, Environmental Information Processing, Cellular Processes, and Organismal Systems. 217 

Pathways with adjusted p-values less than 0.05 were considered significant. Pathway scores for 218 

protein pathways (KEGG: Transcription, Translation, Folding, sorting and degradation) and 219 

immune pathways (KEGG: Immune system) were calculated with averaged beta values from the 220 

promoter region CpG sites. 221 

 222 

Weighted co-expression network analysis 223 

Firstly, we adjusted all beta values with clinical confounders, then summarized the DM CpG 224 

sites at the gene level by averaging the beta values in the promoter regions (those in the TSS200 225 

and TSS1500 promoter regions). Next, we transformed adjusted beta values to adjusted M values 226 

for the downstream adjacency matrix construction. We used adjusted M values for the weighted 227 
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gene co-expression network analysis (WGCNA) with R package ‘WGCNA’ (version 1.70-3) 228 

49,50. The soft threshold for the weighted adjacency matrix with an adjusted R2>0.8 was 7. The 229 

topological overlap matrix was constructed for hierarchical clustering. Modules were identified 230 

by the dynamic tree-cut algorithm. The networks were exported to Cytoscape with an edge 231 

weight greater than 0.03 in each module. The genes with the highest betweenness and degree in 232 

the WGCNA network were identified as the hub genes for different modules.  233 

 234 

Protein-protein interaction network analysis 235 

For the protein-protein interaction (PPI) network analysis, DM genes are used as the inputs and 236 

were mapped on the STRING database (version 10) 51. Significantly functionally associated 237 

protein pairs were identified using PANDA (Preferential Attachment based common Neighbor 238 

Distribution derived Associations) (version 0.9.9) 52. KEGG pathways associated with these 239 

protein pairs (in terms of genes) were found using PANDA. The bipartite network graph was 240 

visualized using Cytoscape (version 3.8.1) 53. 241 

  242 

Stemness score computation 243 

The stemness score was based on Shannon entropy and scaled plasticity, as proposed previously 244 

54. Shannon entropy has been widely applied in developmental biology, particularly in stem cell 245 

research 55–57. The formulas are shown below: 246 

 247 
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N is the total number of CpG sites. CpG is represented by the beta value on each CpG probe.  248 

The stemness score was calculated for all samples using all remaining 410,765 CpG sites after 249 

the preprocessing. A Wilcoxon rank test was performed between the stemness scores of the 250 

healthy and maternally obese groups. 251 

 252 

Bulk RNA-seq data processing  253 

The Illumina universal adapter regions of raw RNA-seq data were first trimmed using BBMap 254 

(version 38.91) 58. All raw sequences passed the quality control using fastqc (version 0.11.8) 59. 255 

The trimmed .fastq files were aligned by STAR (version 2.7.0f) 60 to the human Ensembl 256 

genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa) and Ensembl annotation 257 

(Homo_sapiens.GRCh38.94.gtf). The gene expression counts were calculated using featureCount 258 

61 from Subread (ver 1.6.4) 62. 259 

 260 

Differential expression (DE) of RNA-Seq data 261 

The statistically significant DE genes between healthy controls and maternally obese cases were 262 

found adjusting for the same clinical confounders for methylation analysis using the ‘DESeq2’ 263 

(version 1.26.0) 63 and ‘limma-voom’ function from ‘limma’ package 30. The p-values were 264 

adjusted for multiple hypotheses testing using BH adjustment. Genes with adjusted p-values less 265 

than 0.05 were considered statistically significant.  266 

 267 

Correlation analysis between bulk RNA-seq and methylation data 268 

A subset of 47 patients have done both methylation and RNA-seq assays. Differential expression 269 

analysis was done on the bulk RNA-seq data using the ‘limma’ package, with a threshold of BH 270 
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adjusted p<0.05 to be differential genes. Pearson correlation coefficients (PCC) were calculated 271 

between gene expression and methylation beta values from the promoter regions, among the 272 

same patients.  As mostly a negative correlation between gene expression and DNA methylation 273 

in the promoter region is expected, genes with a high negative correlation (PCC<-0.2) were used 274 

for pathway enrichment using TOPPFUN 64–66. Top genes of interest were selected with the 275 

absolute value Fold Change>1.5 in gene expression and gene-methyl correlation <-0.3 for hyper- 276 

and hypo-methylated CpG sites. 277 

 278 

Metabolomics analysis 279 

Metabolomics data were acquired from a previously published study involving 87 patients in the 280 

same cohort from three batches (metabolomics workbench study ID ST001114) 67. Targeted 281 

metabolites were generated with LC-MS, and untargeted metabolites were generated with GC-282 

MS. After the removal of compounds missing in more than 10% of samples, a total of 185 283 

metabolites remained, including 10 amino acids (AA), 40 acylcarnitines (C), 35 acyl/acyl 284 

phosphatidylcholines (PC aa), 38 acyl/alkyl phosphatidylcholines (PC ae) and 62 untargeted 285 

metabolites. The raw metabolite data were log-transformed, standardized, normalized using 286 

variance stabilization normalization (VSN), and batch corrected with ComBat function in sva 287 

pacakge68. Differential metabolites were identified by limma, with clinical confounders 288 

adjustment.  289 

 290 

Multi-omics integration on metabolomics, epigenomics, and transcriptomics  291 

A subset of 42 patients have the matched methylation, gene expression, and metabolomics data. 292 

We applied multi-omics integration with Data Integration Analysis for Biomarker discovery 293 
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using Latent cOmponents (DIABLO) implemented in the mixOmics package 69. DIABLO finds 294 

the correlated consensus latent variables among different omics in the supervised manner. Top 295 

DIABLO features for each omic were selected based on the loading values. We integrated the 296 

pathway-level methylation, gene, and metabolite interaction using pathview 70. 297 

 298 

Evaluation of maternal pre-pregnancy obesity biomarkers in cancer prediction 299 

We collected Infinium HumanMethylation450 data for a total of 14 cancer datasets (adjacent 300 

normal samples > 10): BLCA, BRCA, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, 301 

LUSC, PAAD, PRAD, THCA, UCEC from The Cancer Genome Atlas (TCGA data portal: 302 

https://portal.gdc.cancer.gov/). In total, 6428 samples were obtained, consisting of 5715 tumor 303 

samples and 713 adjacent normal tissues. To build the TCGA cancer classification model with 304 

maternal obesity biomarkers, we selected 186 hypermethylated CpG sites from the promoter 305 

regions of the genes involved in the top five significant pathways based on the missMethyl 306 

KEGG enrichment results. This includes cell cycle, ribosome, nucleocytoplasmic transport, 307 

ribosome biogenesis in eukaryotes, and mTOR signaling pathway.  308 

To handle imbalanced data, we randomly down sampled tumor samples to match the number of 309 

adjacent normal samples with twenty repetitions for each cancer using the ‘downSample’ 310 

function from ‘caret’ R package 71. We split the training and testing samples at a ratio of 80/20 311 

for each augmented dataset. We constructed five classification models with 5-fold cross-312 

validation using ‘caret’ R package 71, including logistic regression (LOG), Random Forest (RF), 313 

Supportive Vector Machine (SVM) with Radial Basis Function (RBF) kernel, GLMNET, and k-314 

Nearest Neighbour (kNN). We report accuracy, sensitivity, specificity, and F1 score for model 315 

performance as done before 72. 316 
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 317 

Results 318 

 319 

Overview of study design and cohort characteristics 320 

This study aims to investigate the transgenerational effect of pre-pregnancy maternal obesity on 321 

offspring. A total of 72 patients who elected to deliver full-term babies through C-sections were 322 

recruited from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii from 323 

2016 to 2018. Among them, 38 deliveries are in the healthy control group and 34 are cases with 324 

pre-pregnancy maternal obesity. We excluded natural virginal births, to avoid its potential 325 

confounding effect on multi-omics profiles. We also carried out stringent recruitment selection 326 

criteria, including matching the mothers’ ages as much as possible, as well as similar net 327 

gestational weight gain to minimize its confounding effect over maternal pre-pregnancy maternal 328 

obesity.  The overall study design is shown in Figure 1. Briefly, upon collecting the blood 329 

samples, umbilical cord blood hematopoietic stem cells (uHSCs) were enriched by FACS sorting 330 

with CD34+CD35-LIN-  markers (see Methods). We extracted DNA and RNA from these 331 

uHSCs for Illumina 450k  array based DNA methylation and bulk RNA-Seq sequencing 332 

respectively. The plasma from these cord blood samples was subject to untargeted metabolomics 333 

assays using GC-MS and targeted metabolomics assays using LC–MS 67.  Given the rationale 334 

that DNA methylation could be the mediator for exerting the transgenerational effect of maternal 335 

obesity 73,74, we carried out multi-omics data integration analysis in the DNA methylation-centric 336 

manner. 337 

 338 
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The demographic details and clinical information of these patients are summarized in Table 1. 339 

The distributions of the most representative variables are shown in Figure 2. Among categorical 340 

demographic variables, the distribution of baby sex had no statistical difference between obese 341 

and health groups, whereas the ethnicity distributions among mothers and fathers, parity and 342 

gravidity are statistically different (P<0.05) between the two groups (Figure 2A-2E). Besides 343 

maternal pre-pregnancy BMI, other maternal parameters such as maternal age, gestational week, 344 

net weight gain and hemoglobin are also not statistically significantly different between the two 345 

groups per study design (Figure 2F-2I, Table 1).  While mothers of Asian ethnicity are the 346 

majority in the control group, NHPIs account for the majority of the maternal-obese group, 347 

revealing the health disparity issue known in the state of Hawaii 75.  Moreover, the control group 348 

has lower parities and gravidities, compared to the cases. Babies born to obese mothers show 349 

significantly higher (P<0.05) body weights compared to the control group, as expected 76. Other 350 

parameters including the baby gender, head circumference, body length, and APGAR score at 5 351 

min after birth are not statistically significantly different between case and control groups 352 

(Figure 2J-2M).   353 

 354 

Global hypermethylation pattern revealed by CpG level methylation analysis 355 

For scientific rigor, it is critical to adjust for confounding in DNA methylation association 356 

analysis 77. Thus we performed the source of variance (SOV) analysis on the beta values of the 357 

DNA methylation with respect to physiological and phenotypic information, in order to assess 358 

potential confounding factors systematically 28,29,77. As shown in Figure 3A, marginal F-359 

statistics in the SOV analysis show that the dominating contribution to DNA methylation 360 

variation is maternal pre-pregnancy obesity status, confirming the quality of the study design 361 
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which aimed to minimize other confounders’ effect. The other minor confounding factors 362 

include baby sex, maternal age, maternal ethnicity, net weight gain during pregnancy, paternal 363 

ethnicity, gravidity, and gestational age (F-statistics>1). After adjusting these factors by linear 364 

regression, all have reduced F-statistics of less than 0.5 (Figure 3B) except maternal pre-365 

pregnancy obesity, confirming the success of confounding removal. 366 

Next, we conducted differential methylation (DE) analysis on the confounding adjusted DNA 367 

methylation data (Methods). We observed a global hypermethylation pattern in pre-pregnancy 368 

obese samples, with 10,254 hypermethylated vs. 5394 hypomethylated  CpG sites (Figure 3C). 369 

The top 20 differentially hypermethylated and hypomethylated CpG sites are reported in Table 370 

2, respectively. These CpG sites are related to a wide variety of biological functions, including 371 

inflammation (CD69, ADAM12), transcription factors (ZNF222, HMGN4, LHX6, TAF3),  372 

proliferation and apoptosis (HDAC4, DHRS4, LRCH3, SAFB2, CRADD, EBF3, PRKAR1B). 373 

Some top DM CpG sites are directly associated with obesity, including HDAC4 78 and PLEC179. 374 

 375 

We further examined the distributions of these differentially methylated sites, relative to the CpG 376 

island regions and promoter proximity. (Figure 3D-E). A big fraction (38.7%) of the DM sites 377 

are located in CpG islands 80,81, significantly higher than that from the Illumina 450K annotation 378 

(P<2E-16). CpG islands are more frequent in the hypermethylated sites (41.3%) than in the 379 

hypomethylated sites (33.6%), which is consistent with the global hypermethylation pattern. 380 

Relative to gene localization, DM sites are most frequent (32.1%) in the promoter regions 381 

(including 16.8% and 15.3% in TSS200 and TSS1500 respectively) as expected. 382 

 383 
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Functional analyses reveal the association between maternal obesity and cell cycle, immune 384 

function and metabolic changes in the cord blood of offspring 385 

To investigate the biological functions related to the epigenome alternation, we conducted 386 

systematic analysis of DM sites employing multiple methods: KEGG pathway enrichment 387 

analysis, Weighted Gene Co-expression Network Analysis (WGCNA), and Protein-Protein 388 

Interaction (PPI) network analysis.  389 

  390 

KEGG pathway enrichment analysis on hypermethylated CpG sites identified five significant 391 

pathways with FDR<0.05 (Figure 4A), including the cell cycle, ribosome, nucleocytoplasmic 392 

transport, ribosome biogenesis in eukaryotes, and mTOR signaling pathway. Cell cycle, 393 

ribosome, and nucleocytoplasmic transport pathways are essential to normal cell functioning. 394 

mTOR signaling pathway coordinates the nutrient-mediated metabolism, immune responses and 395 

cell cycle progression, and dysregulation of mTOR could lead to various diseases such as cancer 396 

and obesity 82. There was no significantly enriched pathway emerging from hypomethylated 397 

CpG sites. The maternally obese group shows significantly higher methylation levels in KEGG 398 

protein synthesis and immune system pathway collections compared to the control group, 399 

indicating repression in immune response as well as translation and protein synthesis (Figure 400 

4B-C).  Similarly, we further explored the differential potential, or stemness, of umbilical cord 401 

Hematopoietic Stem Cells (uHSCs). We first confirmed the homogeneity of uHSCs by single-402 

cell RNA sequencing UMAP plot (Supplementary Figure 2). We calculated the cell stemness 403 

scores using the DNA methylation beta values similar to others 83.  uHSCs derived from the 404 

maternally obese group exhibit significantly elevated stemness scores (P<0.01) in comparison to 405 

the control group (Figure 4D), confirming the results in KEGG pathway analysis. 406 
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 407 

Next, we applied WGCNA to cluster co-regulation of gene-level methylation, by averaging CpG 408 

sites to affiliated genes (see Methods). Five co-expression modules are identified, using the M-409 

values adjusted for clinical confounders (Supplementary Figure 1A), and all modules show 410 

positive correlations with maternal obesity except one. The largest turquoise module (Figure 4E) 411 

is related to cell cycle, protein synthesis, and transport and vesicle trafficking pathways through 412 

pathway enrichment analysis. Some hub genes in this module are identified, including INTU, 413 

ANAPC7, and AGBL5. These genes were reported essential for maintaining cell polarity 414 

(INTU)84, proliferation (ANAPC7) 85 and glycemic control (AGBL5) 86. The brown module 415 

(Figure 4F) is enriched with immune response pathways, in which TLR6 is identified as a hub 416 

gene. The other yellow module is related to ion homeostasis, and the gray module is related to 417 

the p53 pathway, apoptosis, cell senescence, and ER stress (Supplementary Figure 1B). The 418 

only negatively correlated blue module is associated with axon guidance and VEGF signaling 419 

pathway (Supplementary Figure 1B).   420 

 421 

Furthermore, we examined the PPI network, using the gene-level DNA methylation as surrogates 422 

(Figure 4G). The PPI analysis identifies 14 unique pathways (FDR < 0.05) predominantly 423 

associated with hypermethylated CpG sites in the TSS200 and TSS1500 regions. The top five 424 

largest pathways included ribosome, proteasome, cell cycle, axon guidance, RNA polymerase, 425 

and neuroactive ligand-receptor interaction. Taken all three types of systematic analyses 426 

together, cell cycle, immune function and protein synthesis are ubiquitously highlighted, 427 

suggesting that these biological functions in cord blood stem cells are negatively impacted by 428 

maternal obesity.  429 
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 430 

 431 

Multi-omics analysis reveals disruptions in cell cycle and metabolic pathways 432 

To systematically investigate the epigenetic, transcriptomic, and metabolomic alterations 433 

induced by maternal obesity, we performed multi-omics integration analysis on this cohort.  We 434 

employed DIABLO, a supervised integration method that extracts features associated with 435 

maternal obesity, based on the correlations in the embedding space 69. Figure 5A-C shows that 436 

methylation data provide the clearest separation between obese and control groups, confirming 437 

the value of the earlier DNA methylation-centered analysis.  438 

 439 

The top 25 features from each omic with the highest feature weights (loadings) following 440 

integrated canonical correlation analysis are demonstrated in Figure 5D-F.  The methylation 441 

features with the highest weights related to maternal obesity include CpG sites involved in cell-442 

cycle control, glucose metabolism, and adipogenesis (FOXO187), DNA repair (LIG3, SMUG1), 443 

erythropoietin pathway and differentiation (EPO, CSNK2A1, CSF1), which are hypermethylated 444 

in the obese group. Hypomethylation of LEP (encoding leptin) was also observed as a top 445 

feature, aligning with prior findings that maternal obesity is associated with elevated maternal 446 

leptin levels, a known marker of adipose tissue 88.  These featured CpG sites indicate repression 447 

in fat metabolism and DNA repair and reduced differentiation potential. In the transcriptomic 448 

space, many genes related to mRNA splicing (SRRM1, IGF2BP1, IGF2BP2, CNOT4) have 449 

increased expression levels due to maternal obesity. Among the metabolite features, essential 450 

sugars (glucose, xylose), poly-unsaturated fatty acids (oleic acids, DHA, arachidonic acid), and 451 

phosphatidylcholine (PCs) are mostly decreased in the obese group; whereas most acylcarnitines 452 
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(C) are elevated. The metabolic changes show an overall accumulation of saturated fatty acid, 453 

but repression of fat breakdown, glucose, and unsaturated fatty acid generation. As poly-454 

unsaturated fatty acids (eg. arachidonic acid) have important anti-inflammatory effects, the 455 

results indicate a pro-inflammatory environment in offspring born of pre-pregnant obese 456 

mothers.  457 

 458 

CpGs associated with maternal obesity are highly predictive of cancer states 459 

Maternal pre-pregnancy obesity might predispose a higher risk of cancer and other diseases in 460 

babies’ later life, via epigenetic modification 12,17. To check this assumption, we built maternal 461 

obesity classification models using the 186 hypermethylated marker CpG sites obtained from top 462 

KEGG pathways (Supplementary Table 2).  These 186 CpG markers are from 144 genes 463 

predominantly associated with cell cycle regulation, protein synthesis, and immune function. We 464 

tested different classification methods including GLMNET, KNN, LOG, Random Forest (RF), 465 

SVM methods, and found that the RF model yields the highest accuracy (Supplementary 466 

Figure 4). We then applied this RF model to the normal adjacency and tumor tissues from DNA 467 

methylation data of 14 TCGA cancers, each having sufficient tumor adjacent normal samples 468 

(n>10). As shown in Figure 6A, the averaged random forest AUC  reached 0.8687 (0.7417-469 

0.9966) across all cancer datasets. Similarly, this RF model also yields high values in sensitivity, 470 

specificity, and F-1 scores across cancer types (Figure 6B). Thus, the CpGs epigenetic markers 471 

associated with maternal obesity are also strongly associated with tumorigenesis. Our result 472 

supports that maternal pre-pregnancy obesity may predispose offspring to increased cancer risk 473 

later in life through epigenetic modifications. 474 

 475 
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 476 

Discussion 477 

Maternal obesity is one of the most urgent health concerns worldwide. Pre-pregnancy maternal 478 

obesity could cause various pregnancy-related complications and predispose offspring to 479 

cardiometabolic complications and chronic diseases in the long term 9. Multiple cross-continental 480 

large cohort meta-analyses have shown that maternal obesity is directly associated with 481 

offspring’s risk of obesity, coronary heart disease, insulin resistance, and adverse 482 

neurodevelopmental outcomes based on longitudinal observational studies 9,89,90. To directly 483 

ping-point the molecular level changes in offspring by maternal pre-pregnancy obesity, we used 484 

cord blood stem cells as the studying material, which serve as a great surrogate revealing the 485 

newborn's metabolism and immune system changes at the time of birth 91. The current study 486 

expands on previous effects and investigates the direct impact of maternal obesity on uHSCs 487 

programming, the progenitor of the immune cell population, using a multi-omics (epigenetic, 488 

gene expression, and metabolite) analysis approach from a unique multi-ethnic cohort. 489 

 490 

Centered around methylation changes, three complimentary functional analysis approaches 491 

(KEGG, WGCNA, and PPI) consistently demonstrated that maternal obesity impacts multiple 492 

biological functions including hypermethylation in promoters of genes involved in cell cycle, 493 

ribosome biogenesis, and mTOR signaling pathways. Moreover, mTOR signaling pathway also 494 

plays a crucial role in metabolism and cell cycle regulation, disruption in this pathway leads to 495 

insulin resistance and long-term diseases 92. We observed a significant increase in stemness 496 

scores among uHSCs affected by maternal obesity, aligning with expected downregulation in the 497 

cell cycle gene expression due to observed hypermethylation in the promoters of these genes. 498 
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Higher stemness scores indicate enhanced quiescence, shifting the balance between stem cell 499 

maintenance and differentiation towards the former. Unlike adult HSCs, fetal/neonatal HSCs 500 

typically exhibit higher proliferation and self-renewal capabilities, crucial for blood cell 501 

regeneration and innate immune system development 93. Our findings provide strong epigenetic 502 

evidence that maternal obesity compromises the maturation processes in neonatal uHSCs, which 503 

may predispose newborns to immunological disorders. 504 

 505 

The subsequent multi-omics integration analysis expanded conclusions from methylation 506 

analysis to additional metabolomics readouts that are also linked to biological functions eg. cell 507 

cycle and inflammatory pathway. We thus propose the conceptual model to illustrate the effect 508 

of maternal pre-pregnancy obesity (Figure 7). Maternal obesity leads to nutrient deficiency with 509 

lower levels of essential amino acids and fatty acids in the newborn blood and disrupts the lipid 510 

metabolism homeosis in offspring. These metabolite changes further induce cell membrane 511 

instability and repress cell cycle progression, cell proliferation94, enhancing the dysregulation of 512 

these functions preexisting at the methylation level. Lipid dysregulation may also enhance the 513 

pro-inflammatory environment, which in turn induces complications in offspring later in life, 514 

such as cardiovascular diseases. Such a proposed model is also consistent with and further 515 

strengthens previous studies at the metabolomics or epigenome levels. For example, previous 516 

metabolomics studies of cord blood showed metabolic derangement predisposes newborns to 517 

cardiometabolic and endocrine diseases, and disrupt the normal hormone function and neonatal 518 

adiposity 88,95. Previous epigenome-wide association study (EWAS) with cord blood found a 519 

strong association between DNA methylation pattern and postnatal BMI trajectory until 520 

adolescent 96.  521 
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 522 

Perhaps another most significant finding of this study is that it provides direct and strong 523 

quantitative support to the long-speculated theory of the utero origin of cancers10,11. In particular, 524 

some researchers hypothesized there exist higher stem cell burdens in newborn babies born from 525 

obese mothers 12. Here we provide direct evidence that such stem cell burden is highly likely due 526 

to transgenerational DNA methylation modification on some key biological functions (cell cycle, 527 

ribosome function, and immune response) in the uHSCs. We demonstrated this by applying a 528 

random forest model using the 186 maternal obesity-associated CpG markers in uHSCs on 14 529 

cancer types across thousands of samples in TCGA. The random forest model achieved high 530 

classification accuracy in distinguishing between tumor and adjacent normal tissues. 531 

Uncontrolled cell division, immune evasion, and chronic inflammation are well-established 532 

hallmarks of cancer 97, and these featured 186 CpG sites were implicated in relevant biological 533 

pathways that were intimately connected with cancer development. Aforehand results revealed a 534 

significant increase in stemness scores among uHSCs affected by maternal obesity, which aligns 535 

with the observed hypermethylation and subsequent downregulation of key cell cycle genes. This 536 

heightened stemness may predispose these cells to malignant transformation if these epigenetic 537 

modifications persist, leading to an elevated stem cell burden, disrupting normal cell cycle 538 

control, weakening immune surveillance, and ultimately increasing susceptibility to cancer. 539 

 540 

In summary, this newborn study demonstrates the direct impact of maternal pre-pregnancy 541 

obesity and on newborn blood at the multi-omics level, which includes increased cell cycle 542 

arrest, impairment in the uHSCs differentiation capacity, more inflammation, and disruption in 543 

lipid metabolism. We also showed maternal obesity-associated epigenetic modifications are 544 
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closely related to cancer markers, which could potentially help mitigate the transgenerational 545 

health risks. 546 
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Figure legends 869 

 870 

Figure 1. Overview of the study design and analysis. In the preparation step, cord blood 871 

plasma samples are collected for metabolome profiling and stem cell sorting. DNA and RNA 872 

extraction assays are performed on the enriched stem cells for the methylation and RNA-seq 873 

analyses. Downstream analyses are mainly focused on the methylation data. Bulk RNA-seq data 874 

were used for validations for methylation discoveries. (Created with BioRender.com) 875 

 876 

Figure 2. Mother and newborns statistics of the multi-ethnic cohort from Hawaii. (A-E) 877 

Categorical variables including baby sex, maternal ethnicity, paternal ethnicity, parity and 878 

gravidity between control and obese groups are shown in the barplots. P-values using Chi-square 879 

test are annotated comparing control and obese groups. (F-I) The distributions of maternal age, 880 

gestation age, maternal net weight gain during pregnancy, and maternal hemoglobin between 881 

control and obese groups are compared. Mean and standard deviation are shown in boxplot. P-882 

values using t-test are annotated. (J-M) The distributions of baby weight, baby head 883 

circumference, baby length, and APGAR score after 5 minutes of delivery between control and 884 

obese groups are compared. Mean and standard deviation are shown in boxplot. P-values using t-885 

test are annotated.  886 

 887 

Figure 3. DNA methylation analysis on uHSCs. 888 

(A-B) Source of variance plot before and after confounding adjustment. F-statistics are reported 889 

for each clinical factor. F statistics greater than 1 are considered to have confounding effects in 890 

addition to the case/control difference due to pre-pregnancy maternal obesity. (C) Volcano plot 891 
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of -log(BH adjusted p-values) against logFC. The cutoff line for adjusted p-value < 0.05 is 892 

shown as the red horizontal line. The hyper/hypo threshold is shown as a blue vertical line where 893 

logFC=0. Non-significant methylation CpG sites after the differential analysis were shown in 894 

gray. Significant CpG sites are colored. After the removal of gestational age-related CpG sites, 895 

10,254 CpG sites are hypermethylated and 5,394 sites are hypomethylated. (D-E) Normalized 896 

location distribution of differentially methylated CpG sites according to their CpG features in 897 

terms of isle regions and gene regions based on the chip annotation. Isle regions include shelf, 898 

shore, island, and open-sea. Gene regions include gene body, intergenic region (IGR), TSS200, 899 

TSS1500, 5’UTR, 3’UTR, and 1st Exon. 900 

 901 

Figure 4. Pathway and network analysis.  (A) KEGG pathway enrichment for 902 

hypermethylated CpG sites from promotor region. Enriched KEGG pathway names, adjusted p-903 

values (-log10 transformed), and the size of enriched gene list are reported for CpG sites from 904 

TSS200+TSS1500 regions. The red dotted line shows the threshold cutoff for FDR at -905 

log10(0.05). (B-C) Violin plots of averaged beta values for KEGG protein pathway collection 906 

and immune pathway collection with Wilcoxon P-values. (D) Violin plots of cell entropy scores 907 

between control and obese groups with Wilcoxon P-values. (E-F) WGCNA network analysis 908 

results. WGCNA modules are shown for both the control and the obese group. The top two 909 

modules with largest degrees are turquoise and brown modules. Each node represents a gene. 910 

Genes co-expressed in each module are annotated. (G)Protein-protein interaction (PPI) network. 911 

Bipartite graphs represent enriched KEGG pathways and associated genes with significant PPIs. 912 

Red nodes represent genes with hypermethylated CpG sites. Blue nodes represent genes with 913 

hypomethylated CpG sites. Yellow nodes represented the enriched KEGG pathways. Number of 914 
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inter-pathway PPIs are annotated in the rectangular boxes. 915 

 916 

Figure 5. Multi-omics integration analysis  917 

(A-C) Omics-specific sample plots from DIABLO showing the separation of obese and control 918 

samples in methylation data, gene expression data, and metabolomics data respectively. (D-F) 919 

Importance plot of top 25 features in methylation, gene expression and metabolomics modalities 920 

with the highest loadings extracted from the embedding space. The color represents the condition 921 

which features contribute the most. 922 

 923 

Figure 6. TCGA cancer classification model with maternal obesity markers 924 

(A) Receiver operating characteristic (ROC) curves of 14 TCGA random forest models built 925 

with maternal pre-pregnancy obesity associated CpG markers on testing datasets. Area under the 926 

curve (AUC) scores are annotated for each cancer type. (B) Random forest classification models 927 

performances (AUC, Sensitivity, Specificity, and F1) on testing datasets. Mean and standard 928 

deviation of the evaluation metrics are calculated over iterations. 929 

 930 

 931 

Figure 7.  A proposed model of maternal obesity’s impact on neonatal development.  932 

 933 

 934 

 935 

 936 

 937 
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Tables 938 

Table 1. Summary statistics of the study cohort.  939 

 Control (n=38) Case (n=34) 

Maternal Age 31.3±5.6 31.6±4.9 

Gestational Week 38.9±0.5 39.0±0.3 

Net Weight Gain 32.0±11.6 30.9±14.6 

Hemoglobin 11.6±1.6 11.0±1.4 

Maternal 
Ethnicity 

Asian 21 8 

Caucasian 11 4 

NHPI 6 22 

Paternal 
Ethnicity 

Asian 19 11 

Caucasian 11 2 

NHPI 8 21 

Baby Sex 
Female 17 21 

Male 21 13 

Parity 

0 7 3 

1 21 7 

2 9 11 

More 1 13 

Gravidity 

1 6 2 

2 15 5 

3 13 8 

4 3 6 

5 1 4 

More 0 9 

Demographic and clinical statistics are reported for the control and maternally obese groups. 940 
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Table 2. Top 20 hypermethylated CpG sites and top 20 hypomethylated CpG sites. 941 

CpG  Gene  Island  Group  logFC  P.Value  adj.P.Val  Type 

cg12303247    SYT11  OpenSea    3'UTR  2.188 2.44E-05 6.09E-03 Hyper 

cg16818768    PSMG1   Island  TSS1500  1.605 2.15E-05 5.74E-03 Hyper 

cg05995465    HDAC4  OpenSea    5'UTR  1.604 1.65E-03 4.65E-02 Hyper 

cg01937701    DHRS4   Island   TSS200  1.592 1.96E-10 2.45E-05 Hyper 

cg22243583    DLEU1  S_Shore     Body  1.522 2.53E-06 2.01E-03 Hyper 

cg16927136   RPL35A  OpenSea  TSS1500  1.507 2.39E-10 2.45E-05 Hyper 

cg08899199      ST7  S_Shore     Body  1.4 7.34E-07 1.13E-03 Hyper 

cg05054115    DHRS4   Island   TSS200  1.389 6.66E-08 3.73E-04 Hyper 

cg12878710    LRCH3   Island   TSS200  1.387 1.27E-06 1.48E-03 Hyper 

cg05130022    HMGN4  N_Shore   TSS200  1.386 1.51E-04 1.45E-02 Hyper 

cg05643303    HOXC8   Island   TSS200  1.345 2.70E-05 6.34E-03 Hyper 

cg07449543  CHORDC1  S_Shore   TSS200  1.342 6.32E-05 9.53E-03 Hyper 

cg25016112   DENND3  OpenSea     Body  1.314 1.22E-03 4.01E-02 Hyper 

cg09552166     MSL2  N_Shore   TSS200  1.296 2.30E-05 5.92E-03 Hyper 

cg01003902    SAFB2   Island   TSS200  1.269 1.04E-08 1.42E-04 Hyper 

cg11028445   FAM96A  N_Shore  TSS1500  1.265 1.97E-04 1.65E-02 Hyper 
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cg10317138   ADAM12  N_Shore     Body  1.229 5.06E-04 2.60E-02 Hyper 

cg09757277   ZNF222  S_Shore    5'UTR  1.229 9.88E-08 4.27E-04 Hyper 

cg04117338    CRADD  N_Shore    5'UTR  1.209 1.66E-03 4.67E-02 Hyper 

cg07354583     CD69  OpenSea     Body  1.205 5.94E-07 1.02E-03 Hyper 

cg04043455        EBF3  S_Shelf     Body  -2.031 6.12E-04 0.029 Hypo 

cg20784950       PLEC1  N_Shore     Body  -1.812 1.96E-05 0.005 Hypo 

cg09976051         AGA  N_Shore     Body  -1.516 1.67E-04 0.015 Hypo 

cg13862711        LHX6   Island     Body  -1.469 1.65E-03 0.047 Hypo 

cg16434331    SLC39A11  OpenSea     Body  -1.411 9.52E-08 0 Hypo 

cg05636467        EBF3  S_Shelf     Body  -1.335 1.65E-03 0.047 Hypo 

cg16858146        TAF3  S_Shelf     Body  -1.33 3.15E-05 0.007 Hypo 

cg24796644       MDGA1   Island     Body  -1.242 1.48E-05 0.005 Hypo 

cg11064039     PRKAR1B   Island    5'UTR  -1.227 1.58E-03 0.046 Hypo 

cg06833656        TBCD  OpenSea     Body  -1.219 2.68E-06 0.002 Hypo 

cg25430507       NXPH2  S_Shore  TSS1500  -1.152 2.08E-06 0.002 Hypo 

cg03485608       NXPH2  N_Shore     Body  -1.152 2.72E-06 0.002 Hypo 

cg00928596    MIR365-1  OpenSea   TSS200  -1.148 7.32E-05 0.01 Hypo 

cg12601963  NCRNA00200   Island     Body  -1.132 2.58E-06 0.002 Hypo 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted A

ugust 13, 2024. 
; 

https://doi.org/10.1101/2024.07.27.24310936
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.07.27.24310936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 

cg22772691     SLC12A7  S_Shelf     Body  -1.123 1.79E-04 0.016 Hypo 

cg02584267        EBF3  OpenSea     Body  -1.121 2.39E-04 0.018 Hypo 

cg19282259  NCRNA00200   Island   TSS200  -1.104 3.49E-06 0.002 Hypo 

cg08010094       NXPH2  S_Shore  TSS1500  -1.094 1.04E-03 0.037 Hypo 

cg06916001    MIR365-1  OpenSea   TSS200  -1.088 5.74E-05 0.009 Hypo 

cg03721387   KRTAP24-1  OpenSea    3'UTR  -1.04 4.29E-06 0.003 Hypo 

logFC, p-values, BH adjusted p-values, and CpG annotations are reported for the top 20 differentially hypermethylated CpG sites 942 

ordered by the adjusted p-values by ‘limma’ packages. Hypermethylated CpG sites are defined as logFC>0, whereas hypomethylated 943 

CpG sites are defined as logFC<0. 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 
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