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Abstract 

Backgrounds: Alzheimer’s disease (AD), a leading cause of dementia, poses a growing global 

public health challenge. While recent studies have identified AD risk factors, they often focus on 

specific comorbidities, neglecting the complex interrelations and temporal dynamics. Our study 

addresses this by analyzing AD progression through longitudinal trajectories, utilizing clinical 

diagnoses over time. Using machine learning and network analysis, we created a computational 

framework to identify common AD progression patterns. 

 

Methods: We analyzed patient diagnoses from UC Health Data Warehouse’s Electronic Health 

Records, coded with the International Classification of Diseases, version 10 (ICD-10). Using the 

Fine and Gray model to detect significant temporal risk factors between diagnoses, we 

examined associations between diagnosis pairs and refined the patients' diagnostic trajectories, 

delineating all possible trajectory combinations. These refined trajectories were compared using 

Dynamic Time Warping and grouped into clusters with hierarchical clustering. We investigated 

common AD trajectories through network analysis and compared patient demographics, 

symptoms, and AD manifestations across clusters. The Greedy Equivalence Search algorithm 

was used to infer causal relationships within these trajectories. We rigorously evaluated these 

trajectories through association tests and comparison to controls, 

 

Results: Our analysis included 24,473 eligible AD patients, which was filtered to include 5,762 

patients with 6,794 unique AD progression trajectories. We identified four trajectory clusters: 1) 

a mental health cluster (e.g., anxiety disorder → depressive episode) (N_patient = 1,448); 2) an 

encephalopathy cluster (e.g., hypertension → other disorders of brain) (N_patient = 3,223); 3) a 

neurodegenerative disease cluster (e.g., transient cerebral ischemic attacks → other 

degenerative disease of nervous system) (N_patient = 1,502); and 4) a vascular disease cluster 

(e.g. hypertension → other cerebrovascular diseases) (N_patient = 1,446). Significant 

differences were observed in demographics, symptoms, and AD features across clusters. 

Causal analysis indicated that 26.2% of the identified trajectory connections were causal. We 

also observed patients with risk trajectories faced higher risks of AD compared to those without 

the trajectory or with only a single risk factor. 

 

Conclusion: We uncovered AD diagnosis trajectories, incorporating temporal aspects and 

causal relationships. These insights improve our understanding of AD development and AD 

subtypes, and can enhance risk assessment. Our findings can significantly benefit patient care 
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and medical research by moving toward earlier and more accurate diagnoses, along with 

personalized treatment, such as medical risk factors management and lifestyle modifications. 

 

 

 

Background 

Alzheimer's disease (AD) is a progressive neurological disorder that mainly affects older adults, 

causing memory loss, cognitive decline, and difficulty with daily activities. Nearly 7 million 

Americans currently live with AD, and this number is expected to rise to almost 13 million by 

2050. In 2021, Alzheimer's was the fifth-leading cause of death among people aged 65 and 

older [1]. It is a significant public health concern, heavily burdening healthcare systems, 

caregivers, and families. Health and long-term care costs for people with dementia are projected 

to reach $360 billion in 2024 and nearly $1 trillion by 2050 [1]. 

 

Recent research on AD has identified several risk factors, such as cerebrovascular diseases 

[2,3], brain injury [4], depression [5], diabetes [6,7], and hearing loss [8]. However, most studies 

have focused on individual diseases and their direct links to AD, often ignoring the complex 

interactions and timing of these conditions. Understanding how these risk factors work together 

and in what order they occur is crucial for developing effective strategies to prevent and manage 

AD. Studying the disease trajectory, defined as a sequence of health events over time, can 

address this limitation. These events are ordered chronologically, often happen irregularly, and 

include diagnoses, medications, procedures, and lab tests [9]. Understanding these trajectories 

is crucial because it reveals the timing and order of potential risk factors, which can improve 

clinical decision-making and personalized care.  

 

Current research on disease trajectories has several limitations. Much of the existing work 

builds on associated disease pairs, as in studies like Jensen et al. [10], which identify pairs of 

co-occurring sequential diseases with a statistically significant direction and combine these pairs 

into larger trajectories. Giannoula et al. [11] suggested a more straightforward approach 

involving matching diagnosis codes from patients' records and extracting matched diagnosis 

sequences. Network-based frameworks are also used, identifying the shortest paths between 

diseases in the network, as shown by Dervić et al. [12]. While these methods have advanced 

our understanding, they often rely on model assumptions that oversimplify complex disease 

interactions and overlook important intermediate steps and nuances in disease progression. 

Moreover, there is often a lack of rigorous evaluation of the identified trajectories in these 

studies.  

 

To address these gaps and provide a better understanding of AD progression, we developed a 

framework to identify common disease patterns from patients' electronic health records (EHRs). 

We first used dynamic time warping (DTW) to align and compare the similarities between 

patients' diagnosis sequences. Next, we applied unsupervised machine learning to cluster these 

diagnosis sequences and used network-based methods to identify the common trajectories 

within each cluster. Finally, we thoroughly evaluated these identified trajectories through 
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association tests and comparing to controls. Our research contributes to the current literature by 

revealing the interconnected progression of various conditions leading to AD. By mapping these 

common trajectories, our findings can help predict disease progression and identify critical 

periods where timely medical or lifestyle interventions may significantly alter the course of the 

disease.  

 

Methods 

The general study design is illustrated in Figure 1. The first step involves sample selection and 

EHR preprocessing to ensure the dataset is clean, standardized, and relevant for understanding 

AD trajectories. In the next step, we cleaned AD patients' time-ordered diagnosis sequences by 

retaining connected diagnoses identified as significant patterns within a survival analysis 

framework. We then calculated the pairwise distances between these cleaned trajectories and 

clustered them into groups. Representative AD trajectories for each cluster were identified 

through network analyses. Finally, we conducted several analyses to evaluate the identified AD 

trajectory clusters. Detailed explanations for each step are provided in the following sections. All 

analyses were performed using R version 3.6 [13].  

 

Sample selection in the UC Health Data Warehouse 

Data source 

The data for this study was extracted from the University of California Health Data Warehouse, 

a secure central EHR repository for the University of California Health System. This system 

includes 18 health professional schools, six medical centers, and ten hospitals, and it 

encompasses data on 8.7 million patients seen since 2012. The data is de-identified to facilitate 
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clinical research under the guidance of institutional review boards, privacy and compliance 

officers, and information security officers [14].  

EHR preprocessing 

We first ensured the accuracy and completeness of the data by conducting patient-level 

cleaning. For each patient, we calculated key EHR features, including the length (in years) and 

density (encounters per year) of their medical records. Patients were included if they met the 

following criteria: complete records with no missing demographics (age, sex, race/ethnicity), at 

least two encounters on different dates with at least one encounter per year, and aged between 

65 and 90 at their last encounter. This age range was chosen to include patients likely to 

develop AD, with an upper limit set because the EHR dataset censors patients at this age [15]. 

 

At the record level, we truncated the International Classification of Diseases, 10th Revision 

(ICD-10) codes to their first three digits to standardize diagnoses to phenotypes of appropriate 

granularity [16]. The date of the first encounter with each three-digit ICD code was recorded as 

the diagnosis date. ICD codes from Chapters XV (Pregnancy, childbirth, and the puerperium), 

XVI (Certain conditions originating in the perinatal period), XVII (Congenital malformations, 

deformations, and chromosomal abnormalities), and XX (External causes of morbidity and 

mortality) were removed as they are less likely to be associated with an individual’s AD onset. In 

addition, ICD codes from Chapter XVIII (Symptoms, signs, and abnormal clinical and laboratory 

findings, not elsewhere classified) were excluded from the primary identification of disease 

trajectories as these are primary symptoms but were retained for downstream analyses. 

Case Definition 

Patients were identified as having AD if they had at least one encounter with an AD ICD 

diagnosis code (G30). The date of the first encounter with this diagnosis was considered the AD 

diagnosis date. Only diagnoses occurring on or before this date were retained for analyzing 

disease trajectories. 

Pairwise ICD codes association check in a sampled population 

We used a survival analysis framework to identify risk-associated diagnoses in patients by 

evaluating the association between pairwise ICD codes. This step was taken to simplify AD 

patients' trajectories (see details later in Trajectory Cleaning and backward-building).  

Sample Set 

To identify AD temporally associated risk factors, we selected all AD cases and matched non-

AD controls as the discovery sample. For eligible non-AD controls, we applied stricter EHR 

feature criteria to minimize underdiagnosis and misclassification of potential AD. These criteria 

included a record length of at least five years, a minimum of two encounters, and a record 

density of at least two encounters per year. We matched controls to AD cases using propensity 

score matching [17] based on age at the last visit, gender, race/ethnicity, and location sources, 

with a matching ratio of 1:1. For other pairwise ICD code associations, we tested within AD 

cases only, interpreting these as significant associations within the AD subpopulation. 
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Fine and Gray model 

We used the Fine and Gray (FG) proportional subdistribution hazards model [18] for our 

analysis. This model handles competing risks, such as death, by keeping them in the risk set 

indefinitely [18]. We calculated the follow-up time for each patient, considering both the time to 

event and censorship. Follow-up time can differ for the same individual depending on the 

specific outcome of interest. Exposure ICD codes were treated as binary variables, indicating 

whether the condition was present before the outcome. We included age, sex, race/ethnicity, 

and record length as predictor variables to control for patient baseline differences. We identified 

positive risk patterns using an adjusted p-value of ≤ 0.1 (False Discovery Rate for multiple 

testing [19]) and a Hazard Ratio (HR) > 1. 

Patient trajectories preprocessing 

Trajectory cleaning and backward-building 

During preprocessing, diagnoses occurring at the same time as an AD diagnosis were moved to 

one step before the AD diagnosis. This ensured the retention of important diagnostic patterns, 

contributing to longer and more informative trajectories. We then identified all possible 

trajectories for patients with three or more steps, splitting them into multiple sequences and 

greedily concatenating them to form longer trajectories (Supplementary Figure 1). The 

backward-building approach started from the AD diagnosis, with the step preceding AD being 

an AD risk factor identified from the FG models. Only positively associated ICD pairs were 

connected, retaining only risk patterns in the diagnostic sequence and improving interpretability 

of longer disease trajectories For each diagnosis, we considered every possible connection in 

preceding nodes and split trajectories for multiple diagnoses at the same step. Greedy 

concatenation prioritized longer trajectories, retaining only those with three or more steps. 

 
Supplementary Figure 1. Simplify trajectories 
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Two-step-trajectory expansion 

To retain a significant portion of the AD population, we expanded the trajectories of patients with 

only two encounters (N = 6,265, approximately 25.6% of the total) to three-step trajectories 

using risk pairs from the FG models. We assumed that diseases could progress in a specific 

order, even if diagnoses occurred on the same visit date. An unweighted directed network 

based on significant pairs was constructed, starting from all co-occurring diagnoses leading to 

G30. This process expanded the records from two encounters to all possible three-step paths, 

adding 1,571 patients with expanded three-step trajectories. 

Sampling of trajectories 

In the final step, we adjusted extremely long trajectories. The number of steps in the cleaned 

trajectories ranged from three to 17. To minimize bias in the DTW alignment step (see details 

later in Calculate distances between trajectories), the maximum number of steps was set to 

nine, covering 99% of patients. For the 1% (N = 36) with trajectories longer than nine steps, we 

identified their nine-step trajectories by loosening greedy concatenation restrictions. Each 

patient was limited to a maximum of three trajectories, the median for eligible patients. For 

patients with more than three trajectories (N = 2,846), we performed sampling by distances to 

retain distinct trajectories. A DTW distance matrix was built for each patient, clustering based on 

distance with three clusters, and one trajectory was sampled from each cluster. 

Common AD trajectory identification 

Calculate distances between trajectories 

 
We used the DTW [20] algorithm to align and calculate distances between patient trajectories. 

DTW has advantages over Euclidean distance, particularly in handling sequences of varying 

lengths and temporal distortions. The core component of DTW is the average accumulated 

distortion, which is the sum of distances minimized during alignment [20]. Local dissimilarity 

measures the distance between two ICD diagnoses in each time series, which was determined 

based on the Systemized Nomenclature of Medicine, Clinical Terms (SNOMED) embedding 

similarities established in our previous work [21]. We applied the asymmetric P05 step pattern to 

align trajectories, with slope weights to each step. The Open-Begin-End Dynamic Time Warping 

(OBE-DTW) method was used to allow for partial alignment with free endpoints, enabling the 

skipping of longer segments [22]. A normalization constant ensured that accumulated distortions 

were comparable across paths of different lengths. Finally, we obtained a trajectory distance 

matrix with dimensions 6794 by 6794, representing the pairwise distances between unique 

patient trajectories. 

Trajectory clustering 

Next, we clustered the trajectory distance matrix. We tested k-means [23], hierarchical [24], and 

partition around medoids (PAM) [25] clustering methods. To determine the optimal number of 

clusters and the best clustering algorithm, we evaluated them using several indices: the 
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Calinski–Harabasz (CH) index, where higher values indicate better clustering; the Davies–

Bouldin (DB) index, where lower values are preferable; and the Silhouette (Sil) index, where 

higher values indicate better-defined clusters [26]. To ensure the robustness of our clustering 

results, we conducted a sensitivity analysis using the adjusted rand index, which measures the 

similarity between different clustering outcomes [27]. 

Network analyses 

To identify common AD trajectories in each cluster, we first built raw networks using patient 

trajectories, focusing on connections followed by at least 0.5% of patients, particularly paths to 

AD (G30). We then extracted the backbones of each cluster network using modularity vitality, 

which measures the significance of nodes and edges based on their contribution to modularity 

[28]. Higher modularity indicates a stronger community structure. We pruned the network by 

removing nodes and edges with the lowest contribution to the network structure one at a time, 

balancing simplicity with higher network modularity, and retaining only the most critical ones for 

the community structure. We ensured all paths to AD were retained in the simplified network by 

taking the intersection of remaining nodes and edges. The node with the highest contribution 

was identified as the central node for each cluster. We reported the top five trajectories shared 

by AD patients within each cluster as the typical trajectory and also examined the 

decomposition of central nodes with more than three digits. 

Evaluation of common AD trajectories 

Patient characteristics across clusters 

After data cleaning, patients can have up to three unique trajectories, meaning they may belong 

to different clusters. We first examined the distribution of patients across clusters using a Venn 

diagram [29]. To compare patient characteristics across clusters, we excluded those who fell 

into more than one cluster (N = 463) from the primary analysis. However, we included all 

patients for sensitivity analysis to check for consistency. 

 

Distributions of demographic and EHR features were compared across clusters. ANOVA [30] 

and Kruskal-Wallis tests [31] were used to determine statistical significance. Additionally, we 

examined the distributions of symptoms (Chapter XVIII: Symptoms, signs, and abnormal clinical 

and laboratory findings) across clusters. We focused on symptoms related to cognition, 

perception, emotional state, and behavior at the three-digit ICD code level, as these are most 

relevant to AD. Symptoms from other systems were grouped into subchapters (two-digit ICD 

codes) for easier comparison. We analyzed symptoms occurring at all times, three years before, 

and one year before the first AD diagnosis. We also compared the time elapsed from the central 

node to AD for each cluster. Boxplots were used to visualize results, and the Wilcoxon Rank-

Sum test [32] was employed for pairwise comparisons. 

 

We compared AD features across different clusters, including age of onset, time from the first 

AD diagnosis to the most recent visit, and time to death (if applicable). Kaplan-Meier curves [33] 

were used to compare time from the first visit to the first AD diagnosis and from the first AD 

diagnosis to death. The log-rank test [34] was used to determine the statistical significance of 

survival curves. Finally, we examined the distributions of other ICD codes, comparing alive and 
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deceased patients within each cluster to identify potential risk factors leading to death within a 

cluster. 

Causal structural learning 

To determine the causality of the identified trajectories, we used the Greedy Equivalent Search 

(GES) algorithm [35] to learn the causal structure of AD from our EHR sample. GES is a score-

based method that starts with an empty, partially Directed Acyclic Graph (DAG) and greedily 

adds and removes edges to maximize the score, such as the Bayesian Information Criterion 

(BIC). This approach is computationally efficient providing insights into possible causal 

structures [36].  

 

We used the same 1:1 matched case-control sample from the FG modeling to learn the causal 

structure. To ensure the robustness of our results, we applied a 10-fold cross-validation 

approach. In each iteration, we learned the DAG with all the data, leaving one-fold out each 

time, and repeated this for ten iterations. We only selected causal edges that appeared in at 

least five of the ten iterations, ensuring consistent and reliable identification of causal 

relationships. 

Risk trajectories testing in AD and controls 

To confirm that the identified disease trajectories are real risk factors for AD, we tested the 

associations between these risk trajectories and the incidence of AD in a newly sampled 

population, treating the risk trajectory as a single binary variable. We redefined our control 

group to include only patients who have never been diagnosed with AD or any exclusive 

phenotypes previously defined [37]. We examined these associations using a similar FG 

proportional subdistribution hazards model framework. Two models were tested: one comparing 

those with the risk trajectory to all others, and another comparing those with the risk trajectory to 

those with any of the diagnoses in the risk trajectory. 

 

Results 

Sample description 

From the initial dataset, 919,590 patients from the University of California Health Data 

Warehouse met the inclusion criteria and were included in the study. Among these eligible 

patients, 24,473 (2.7%) had at least one documented AD diagnosis based on the ICD-10 code 

definition. 

 

In all AD patients, we examined co-occurring diagnoses with AD at the full-digit ICD level. We 

found that 73% of AD patients also had an F02.8 diagnosis (Dementia in other diseases 

classified elsewhere) at the same visit as their AD diagnosis, and 95% had an F02.8 diagnosis 

within 90 days before their AD diagnosis. This suggests that F02.8 is often a co-diagnosed 

given at the same time as AD [38] and may be due to co-mapping based on EHR medical 

vocabularies [39]. For example, G30 and F02.80 will both be mapped when “Alzheimer’s 

disease” is search and selected as a diagnosis codes. To avoid confusion in later trajectory 

analysis, we removed F02.8 diagnoses occurring within 90 days before the AD diagnosis but 

kept other instances of F02.8. 
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Pairwise ICD codes temporal associations 

Firstly, we used all AD cases and 1:1 matched non-AD controls to identify AD temporal risk 

factors. After matching based on age at the last visit, gender, race/ethnicity, and location 

sources, there were no significant differences in demographic and EHR feature distributions 

between cases and controls (Supplementary Table 1). 

 
 

In the AD cases and matched non-AD control sample (N = 48,946), the FG results identified 16 

ICD codes positively associated with the incidence of AD after adjusting for the false discovery 

rate, suggesting potential risk factors of AD (Table 1). Most of these risk factors were from the 

ICD Chapter on mental, behavioral, and neurodevelopmental disorders. Among these, 

unspecified dementia (F03) had the highest HR, indicating that patients with unspecified 

dementia have a 3.45-fold increased risk of developing AD compared to controls, even when 

accounting for the competing risk of death. Other risk factors included various mental, 

behavioral, neurodevelopmental disorders, and diseases of the nervous system. 

 

For other pairwise ICD code associations, we tested within AD cases (N = 24,473) only, 

focusing on ICDs with a prevalence of over 1% in the AD population (N_ICD = 302, excluding 

AD). We performed association tests using the FG model between these pairwise ICD codes. 

After adjusting for the false discovery rate, we found 32,654 pairs with significant positive 

associations, suggesting potential risky patterns in the diagnostic sequence. These risky 

patterns were used in the trajectory cleaning steps. 
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Common AD trajectories identification 

DTW alignment and clustering 

We started with the full cohort of AD patients (N = 24,473) from the University of California 

Health Data Warehouse to build AD trajectories. After trajectory cleaning and backward-

building, 5,762 AD patients with 6,794 unique 3-9 step trajectories were used for DTW 

alignment, among which 1,571 (27%) patients had expanded 3-step trajectories. The average 

number of steps in each trajectory was six, and each patient had an average of 2.3 trajectories 

after cleaning. 

 

We used the DTW algorithm [20] to align and calculate distances between patient trajectories. 

This produced a trajectory distance matrix with dimensions of 6794 by 6794, representing the 

pairwise distances between unique patient trajectories. Based on evaluation metrics, we 

selected k-means clustering with four clusters (Supplementary Figure 2). Sensitivity analyses 

showed moderate agreement between the different clustering methods, with adjusted rand 

indices of 0.13 between k-means and hierarchical clustering, 0.20 between k-means and PAM, 

and 0.23 between PAM and hierarchical clustering. 
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Trajectory cluster characteristics 

We identified four clusters from the AD patients, each with unique characteristics and some 

shared diagnoses and paths. Supplementary Figure 3 shows the raw networks of each cluster 

using patient trajectories followed by at least 0.5% of patients. Simplified networks after 

backbone extraction are shown in Figures 2A-D.  
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The first cluster centers around mental illness, with depressive episode (F32) as the central 

node (Figure 2A). It includes 1,448 patients with 1,266 unique diagnosis trajectories. Common 

preceding diagnoses leading to F32 are circulatory system diseases like essential hypertension 

(I10) and atrial fibrillation (I48), metabolic diseases such as disorders of lipoprotein metabolism 

(E78) and type 2 diabetes (E11), mental disorders like anxiety disorders (F41), musculoskeletal 

diseases such as dorsalgia (M54), and digestive system diseases like other functional intestinal 

disorders (K59). Representative trajectories include E78 → F32 → G30 and F41 → F32 → G30. 

Notably, 67% of patients in this cluster were diagnosed with unspecified depression (F32.A). 
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The second cluster focuses on brain diseases, with other disorders of the brain (G93) as the 

central node, involving 3,223 patients and 764 unique trajectories (Figure 2B). The most 

prevalent full G93 ICD code diagnosis within this cluster encephalopathy, unspecified G93.40 

(45%). Preceding diagnoses include circulatory system diseases like essential hypertension 

(I10) and other cerebrovascular diseases (I67), and genitourinary system diseases such as 

other diseases of the urinary system (N39) and benign prostatic hyperplasia (N40). 

Representative trajectories include I10 → G93 → [I67] → G30 and E78 → G93 → G30.  

 
 

The third cluster deals with neurodegenerative diseases, with other degenerative diseases of 

the nervous system (G31) as the central node, comprising 1,502 patients and 1,658 unique 

trajectories (Figure 2C). In this cluster, 70% of patients had mild cognitive impairment (MCI) of 
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uncertain or unknown etiology (G31.84), a full ICD code for G31. Prior diagnoses often include 

nervous system diseases like transient cerebral ischemic attacks (G45), genitourinary system 

diseases such as menopausal disorders (N95) and male erectile dysfunction (N52), and ear and 

mastoid process diseases such as other inflammation of eyelid (H01) and disorders of the 

lacrimal system (H04). Prominent trajectories are G31 → F01 (vascular dementia) → G30, H04 

→ G31 → G30, and G45 → G31 → G30.  

 
 

The final cluster centers on vascular diseases, with other cerebrovascular diseases (I67) as the 

central node, including 1,446 patients and 3,106 unique trajectories (Figure 2D). Common 

preceding diagnoses are musculoskeletal diseases like other joint disorders (M25), unspecified 

soft tissue disorders (M79), and dorsalgia (M54), and conditions caused by postprocedural 

states (Z98). Notable trajectories are E78 → I10 → I67 → G30, I10 → D64 (other anemias) → 

F03 → G30, and M25 → I67 → G30. In this group, 44% of patients had unspecified 

cerebrovascular disease (I67.9). 
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Evaluation of common AD trajectories 

Patient characteristics across clusters 

We analyzed the distribution of patients across clusters. Out of the total, 4,078 patients fell into 

only one cluster, 1,511 patients into two clusters, and 173 patients into three clusters. Figure 3 

illustrates the patient distribution with a Venn diagram. Notably, the MCI cluster tends to overlap 

with other clusters, indicating that AD patients often have comorbidities in addition to cognitive 

impairment trajectories. 

 
 

In the 4,078 patients with unique trajectory clusters, we observed significant demographic and 

EHR feature differences across the four identified clusters (Table 3). Patients in the 

encephalopathy cluster were younger at their most recent visit. The depression cluster had a 

higher proportion of female and Hispanic patients, while the vascular disease cluster had a 

higher proportion of Asian patients. The depression cluster also had a higher prevalence of 
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death. Patients in the vascular cluster generally had longer EHR records and more 

comorbidities. Sensitivity analyses, including all patients (multi-cluster patients included, N = 

5,762), showed similar results (Supplementary Table 2). 
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Regarding the distribution of cumulative symptoms, patients in the vascular cluster were more 

likely to experience symptoms involving cognition, perception, emotional state, and behavior 

than other clusters. However, when comparing symptoms within three years and one year 

before AD diagnosis, only differences in other symptoms and signs involving cognitive functions 

and awareness (R41), which includes memory loss (R41.3), and dizziness and giddiness (R42) 

were significant, with patients in the MCI and vascular clusters experiencing these symptoms 

more frequently (Supplementary Table 3A). Additionally, comparing symptoms across all 

systems (Supplementary Table 3B) revealed significant differences, with patients in the 

vascular disease cluster more likely to have symptoms from other systems.  
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In examining the features of AD, we noted significant variations in disease progression and 

prognosis among different clusters. Specifically, patients categorized in the vascular and MCI 

clusters tend to be older at the time of their initial AD diagnosis compared to those in other 

clusters. Those in the encephalopathy cluster, on the other hand, experienced a notably shorter 

duration from their first AD diagnosis to their last recorded visit, as detailed in Table 3. 

Furthermore, survival analysis using Kaplan-Meier curves and log-rank tests revealed 

substantial differences in the time from first visit to AD diagnosis among the four clusters. The 

sequence from shortest to longest time to diagnosis was as follows: encephalopathy, 

depression, MCI, and vascular disease clusters. Additionally, we observed a significantly shorter 

duration from AD diagnosis to death in the encephalopathy cluster compared to the vascular 

disease cluster among deceased patients, as illustrated in Figure 4. Additionally, the duration 
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from central nodes to the AD diagnosis is significantly shorter for patients in the encephalopathy 

cluster (G93) compared to those in other clusters (Figure 5). 

 
 

 
We further investigated potential risk factors for mortality by comparing the diagnosis 

distributions between alive and deceased patients within each cluster, as shown in 

Supplementary Table 4. Our focus was particularly on diagnoses that appeared more 

frequently among deceased patients. For instance, in the encephalopathy cluster, AD patients 
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diagnosed with other hypothyroidism (E03), essential hypertension (I10), and other disorders of 

the urinary system (N39) had a higher likelihood of mortality. Similarly, in the vascular disease 

cluster, patients diagnosed with atrial fibrillation and flutter (I48), unspecified pneumonia (J18), 

and acute kidney failure (N17) also showed a higher mortality rate. These findings suggest that 

such diagnoses may serve as cluster-specific indicators of increased mortality risk in AD 

patients. 

 
 

Single-cluster vs. multi-cluster patients 

Given the findings outlined above, the MCI cluster displayed the highest proportion of patients 

with trajectories across multiple clusters, as depicted in Figure 3. Therefore, we selected the 

MCI cluster to compare characteristics between patients belonging to a single cluster and those 

appearing in multiple clusters. Patients with only MCI cluster trajectories served as the 

reference group. We compared these patients to those with trajectories spanning two clusters 

(including MCI) and three clusters (including MCI), with the results presented in Table 4. 

Notably, more than a third of the patients in the MCI cluster also had trajectories in the 

encephalopathy cluster. Compared to patients with only MCI trajectories, those with trajectories 

in multiple clusters were younger and exhibited a higher mortality rate. Consistent with single 

cluster comparisons shown in Table 3, females and individuals from the Hispanic group were 

more likely to have additional trajectories involving depression (e.g., two cluster depression 

Hispanic 13.8% vs. MCI only Hispanic 7.3%), while the Black group was more prevalent in 

multiple clusters compared to other racial and ethnic groups (e.g., three cluster Black 10.7-

12.3% vs. MCI only Black 6.1%). Regarding AD features, patients with multi-cluster trajectories 

were diagnosed at a younger age and experienced a shorter duration from AD diagnosis to 

death (e.g., three cluster 0.9-1.7 years vs. MCI only 2.4 years). 
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Causal structural learning and risk trajectories test in controls 

We employed causal structural learning with the GES algorithm to ascertain the causality of 

identified trajectories within the simplified networks of each cluster. Within these networks, 

26.2% of the edges were deemed causal. When analyzed by cluster, the percentages were as 

follows: 26.3% in the depression cluster, 42.9% in the encephalopathy cluster, 28.2% in the mild 

MCI cluster, and 24.1% in the vascular cluster. Details of these causal links are provided in 

Supplementary Figure 4. Among the AD risk factors identified through the FG model, six ICD 

codes were potentially causally associated with AD. These include unspecified dementia (F03), 

vascular dementia (F01), depressive episode (F32), unspecified mood disorder (F39), other 

disorders of the brain (G93), and other cerebrovascular diseases (I67). Notably, three of these 

codes (F32, G93, and I67) were identified as central nodes within each respective cluster. 

 

Finally, we applied a similar FG proportional subdistribution hazards model framework to test 

the top common trajectories of each cluster in a case-control sample, as detailed in Table 5. 

Our initial analysis focused on the associations between identified trajectories and AD, aiming to 

validate our hypothesis that these trajectories represent true risk factors for AD. We found that 

all representative risk trajectories in each cluster were positively associated with AD; in other 

words, patients with a given trajectory exhibited higher risks of developing AD compared to 

those without this trajectory. Subsequently, we compared the effect sizes between multi-step 

trajectories and single risk factors by evaluating the differences between patients with the risk 

trajectory and those possessing any of the factors within the trajectory. The results indicated 

that patients with most of these trajectories faced higher risks of AD compared to those with 

only a single risk factor.  
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Discussion 

In our study, we analyzed common disease patterns of AD using DTW, clustering, and network 

analyses based on EHRs from the University of California Health Data Warehouse. We used 

longitudinal records from 5,762 eligible AD patients to identify four distinct clusters of disease 

trajectories: the mental health cluster, the encephalopathy cluster, the MCI cluster, and the 

vascular disease cluster. Each cluster exhibited unique characteristics, along with some shared 

diagnoses and pathways. We rigorously evaluated these trajectories through association tests, 

comparison to controls, and causal structural learning, contributing new insights to the existing 

literature on AD. This comprehensive approach offers new insights into the temporal dynamics 

of AD progression and highlights critical windows for targeted interventions that could alter the 

disease's trajectory. 

 

The four clusters of AD trajectories identified in our study align with prior research linking mental 

illness, brain diseases, and vascular diseases to AD risk. Previous studies have demonstrated 

that conditions like depression are linked to an increased risk of AD [5,40], as they may induce 

neurodegenerative changes predisposing individuals to the disease. For instance, mechanisms 
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related to major depression, such as chronic inflammation and the hyperactivation of the 

hypothalamic–pituitary–adrenal axis, have been implicated in the pathogenesis of AD [41]. 

Similarly, encephalopathy is associated with progressive neurodegeneration and increased AD 

risk due to pathological changes like hyperphosphorylated tau [42]. Moreover, vascular 

conditions such as hypertension and cardiovascular diseases contribute to compromised 

cerebral blood flow and metabolic dysfunction, heightening AD risk [43].  

 

However, these earlier studies typically focused on individual risk factors and their direct 

associations with AD, often overlooking the sequential and cumulative impact of these 

conditions. Our research builds on this foundation by examining the complete spectrum of 

diseases potentially leading to AD, marking a novel approach in systematically exploring the 

multi-step disease progression. We are the first to incorporate the sequence of disease onset 

into AD research, underscoring that the timing and order of risk factors are crucial. Our findings 

suggest that understanding and predicting disease progression could significantly enhance 

intervention strategies. For example, we identified a possible trajectory of acute kidney failure 

(N17) → unspecified encephalopathy (G93) → AD (G30). Thus, monitoring kidney function and 

managing related symptoms could potentially delay or prevent the onset of neurological 

symptoms. Likewise, early mental health interventions might be prioritized if depression is 

identified before the onset of significant memory loss, potentially delaying or reducing the 

severity of AD. In addition, while it is well-established that cardiovascular disease can precede 

cognitive impairments [43], trajectories we identified from the vascular cluster (e.g. unspecified 

encephalopathy (G93) → other cerebrovascular disease (I67) → AD (G30)) suggest that 

specific sequences of vascular conditions might sharpen the focus on particular patient 

subgroups who are at an elevated risk for AD. For instance, the presence of cerebrovascular 

disease alone signals a risk, necessitating interventions such as blood pressure management. 

However, if a patient also has a history of encephalopathy prior to cerebrovascular issues, this 

might warrant an even more rigorous approach to managing these risk factors. Recognizing 

such detailed pathways not only enhances our understanding of disease progression but also 

facilitates personalized medical strategies. This could lead to earlier and more aggressive 

management of cardiovascular health in those at heightened risk for AD, ultimately improving 

outcomes.  

 

Our study adopts a unique approach to preprocessing patient records before extracting AD 

trajectories, distinguishing it from much of the existing trajectory research. EHRs contain a 

patient's comprehensive health history, which over the years, can accumulate into thousands of 

entries. However, many of these entries may not relate to AD and could introduce noise, 

complicating the analysis—especially given the smaller size of our AD dataset [44]. Among the 

AD patients we studied (N = 24,473), there was considerable variability in the number of unique 

three-digit ICD codes, ranging from one to 90, with a median of 40.5. This variability makes it 

challenging to compare patient trajectories directly. To address this, we implemented a cleaning 

process to simplify these trajectories by focusing only on positively associated ICD pairs 

identified from the FG models, thus retaining only those diagnostic patterns considered risky. 

Additionally, we sampled trajectories for patients with an extensive number of trajectories to 

minimize bias towards those with longer or more detailed histories. This preprocessing ensures 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24311084doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24311084
http://creativecommons.org/licenses/by/4.0/


that we maintain crucial diagnostic patterns, enhancing the quality and interpretability of the 

trajectories we analyze. This methodological rigor is essential for accurately interpreting the 

complex pathways leading to AD. 

 

We introduced another innovative aspect by applying clustering methods to AD trajectories. 

Clustering is crucial because it reveals significant differences in demographics, accompanying 

symptoms, and the progression of AD among the groups. Recognizing these distinctions is 

essential for understanding the multifaceted nature of AD, enabling more targeted research, and 

potentially informing more personalized treatment approaches. For example, differences in 

gender and race-ethnicity distributions across different clusters can lead to tailored public health 

initiatives and interventions that address specific risk factors and disease manifestations in 

diverse populations. Moreover, significant variations in AD progression and prognosis among 

different clusters, such as faster time to death in the encephalopathy cluster, highlight the need 

for differential treatment strategies and care plans that are sensitive to the expected disease 

trajectory. On the other hand, the fact that patients categorized in the MCI clusters tend to be 

older at the time of their initial AD diagnosis compared to those in other clusters suggests the 

possibility of late-onset disease management strategies and preventive measures that could 

delay the onset or progression of AD in at-risk older adults.  

 

 

Finally, to assess the robustness of our results, we rigorously evaluated the identified AD 

trajectories using association tests and causal structural learning. Association tests confirmed 

that patients with identified AD risk trajectories had higher risks of developing AD compared to 

those without these trajectories. Importantly, these multi-step trajectories posed greater risks 

than individual risk factors. This underscores the significance of examining disease risk factors 

collectively and sequentially. However, the results from causal structural learning are more 

exploratory in nature.  

 

Our study faces limitations. Unlike survey studies where data collection follows a regular 

schedule, patients do not visit hospitals consistently, which challenges the chronological capture 

of disease progression in EHRs. Multiple diagnoses are often recorded in a single visit, which 

may not accurately reflect the intrinsic order of disease progression. Another limitation is that 

the different clustering methods we used showed moderate agreement (adjusted rand indices: 

0.13-0.23), which is not surprising given the complexity of the data and the fact that many 

individuals fell into multiple clusters—1,511 in two clusters and 173 in three clusters. This 

variability in clustering outcomes suggests that there may not be distinct boundaries between 

different clusters, reflecting the likelihood that individuals may experience multiple comorbidities 

before the onset of AD. However, the absence of clear cluster boundaries does not diminish the 

importance of identifying these clusters. There are also limitations to causal structure learning 

and related methods to identify true causal relationship as they performed in observational data.  

 

In conclusion, our study has successfully identified and analyzed distinct progression patterns in 

AD by utilizing a comprehensive computational framework to examine longitudinal trajectories. 

This methodological advancement enables us to delve beyond the traditional analysis of 
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isolated comorbidities, providing a deeper understanding of the complex interrelations and 

temporal dynamics that characterize AD progression. The insights gained from our detailed 

trajectory analysis enhance our understanding of AD, potentially improving diagnostic accuracy 

and enabling the development of more effective preventative strategies. By elucidating the 

pathways of AD progression and their causal relationships, our research lays a solid foundation 

for future studies aimed at designing targeted interventions. These could significantly enhance 

patient care and outcomes by addressing the disease's complexity and tailoring medical and 

care strategies to meet the specific needs associated with different AD progression types. This 

innovative approach opens new avenues for research and offers significant potential for 

advancing patient care in AD. 
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