Abstract
Backgrounds Alzheimer’s disease (AD), a leading cause of dementia, poses a growing global public health challenge. While recent studies have identified AD risk factors, they often focus on specific comorbidities, neglecting the complex interrelations and temporal dynamics. Our study addresses this by analyzing AD progression through longitudinal trajectories, utilizing clinical diagnoses over time. Using machine learning and network analysis, we created a computational framework to identify common AD progression patterns.
Methods We analyzed patient diagnoses from UC Health Data Warehouse’s Electronic Health Records, coded with the International Classification of Diseases, version 10 (ICD-10). Using the Fine and Gray model to detect significant temporal risk factors between diagnoses, we examined associations between diagnosis pairs and refined the patients’ diagnostic trajectories, delineating all possible trajectory combinations. These refined trajectories were compared using Dynamic Time Warping and grouped into clusters with hierarchical clustering. We investigated common AD trajectories through network analysis and compared patient demographics, symptoms, and AD manifestations across clusters. The Greedy Equivalence Search algorithm was used to infer causal relationships within these trajectories. We rigorously evaluated these trajectories through association tests and comparison to controls,
Results Our analysis included 24,473 eligible AD patients, which was filtered to include 5,762 patients with 6,794 unique AD progression trajectories. We identified four trajectory clusters: 1) a mental health cluster (e.g., anxiety disorder → depressive episode) (N_patient = 1,448); 2) an encephalopathy cluster (e.g., hypertension → other disorders of brain) (N_patient = 3,223); 3) a neurodegenerative disease cluster (e.g., transient cerebral ischemic attacks → other degenerative disease of nervous system) (N_patient = 1,502); and 4) a vascular disease cluster (e.g. hypertension → other cerebrovascular diseases) (N_patient = 1,446). Significant differences were observed in demographics, symptoms, and AD features across clusters. Causal analysis indicated that 26.2% of the identified trajectory connections were causal. We also observed patients with risk trajectories faced higher risks of AD compared to those without the trajectory or with only a single risk factor.
Conclusion We uncovered AD diagnosis trajectories, incorporating temporal aspects and causal relationships. These insights improve our understanding of AD development and AD subtypes, and can enhance risk assessment. Our findings can significantly benefit patient care and medical research by moving toward earlier and more accurate diagnoses, along with personalized treatment, such as medical risk factors management and lifestyle modifications.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by National Institutes of Health (NIH) National Institute of Aging (NIA) grant K08AG065519-01A1, UH2AG083254, and the Fineberg Foundation.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of University of California, Los Angeles waived ethical approval for this work because all EHRs were deidentified.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.