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Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but 

pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS 

gene prioritization tools are powerful, but often use complex black box models trained on 

datasets containing unaddressed biases. Here we present CALDERA, a gene prioritization 

tool that achieves similar or better performance than state-of-the-art methods, but uses just 

12 features and a simple logistic regression model with L1 regularization. We use a data-

driven approach to construct a truth set of causal genes in 406 GWAS loci and correct for 
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potential confounders. We demonstrate that CALDERA is well-calibrated in external datasets 

and prioritizes genes with expected properties, such as being mutation-intolerant (OR = 1.751 

for pLI > 90%, P = 8.45x10-3). CALDERA facilitates the prioritization of potentially causal genes 

in GWAS loci and may help identify novel genetics-driven drug targets. 

 

  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/


Retrospective analyses have found that drugs are more likely to be approved by regulators if 

there is human genetic evidence supporting a connection between the drug target and 

indication1,2. Indeed, 63% of drugs approved by the FDA between 2013 and 2022 were 

supported by human genetic evidence3, and the relative success of genetically-supported drug 

targets has not decreased over time4. 

 

Genome-wide association studies (GWAS) are a valuable tool for identifying associations 

between diseases and genetic variants. However, the vast majority of GWAS loci contain 

multiple genes and the vast majority of GWAS variants do not alter protein coding sequences. A 

key challenge in using GWAS data to identify potential drug targets is determining which genes 

are affected by disease-associated variants. Several gene prioritization tools have been 

developed to identify the most likely effector gene for a given GWAS signal such as Ei5, 

FLAMES6, and L2G7. These three tools all model the probability that each gene in a GWAS 

locus is a causal gene using 1) XGBoost, 2) a truth set of causal and non-causal trait-gene 

pairs, and 3) a variety of features. The FLAMES study performed a head-to-head comparison 

of these methods and found that FLAMES outperformed L2G and Ei, which in turn 

outperformed cS2G6. 

 

There are two main drawbacks to current gene prioritization tools. First, XGBoost models are 

challenging to interpret. While regression methods estimate a single effect size for each 

feature, the contribution of a given feature in an XGBoost model depends on the value of other 

variables. EI, FLAMES, and L2G all use more than 45 features—many of which are highly 

collinear—further complicating model interpretation. Second, models need to be trained on a 

ground truth dataset. Expert-curated causal genes have been shown to be biased towards 

genes in close proximity to GWAS hits and biased towards genes affected by coding credible 

set variants7. Although some methods try to mediate this by using a data-driven strategy for 

constructing ground-truth datasets6, none actively correct for potential sources of bias. 
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To address these issues we present a novel gene prioritization tool, CALDERA (CALling 

Disease-RelAted genes). CALDERA uses a logistic regression model with an L1 penalty 

(LASSO), a small number of features, a data-driven truth set, and covariates to account for 

biases in this truth set. We show that CALDERA achieves state-of-the-art performance whilst 

using a simpler and more interpretable model. 

 

Results 

Defining causal genes 

We constructed a set of putatively causal (and non-causal) trait-gene pairs using SuSiE8 

credible sets for 19 independent (genetic correlation < 0.2) UK Biobank traits9. Within a given 

trait, we defined causal genes as those that were 1) affected by a fine-mapped non-

synonymous variant (posterior inclusion probability [PIP] > 50%) and 2) within 300kb of a 

separate non-coding credible set (no non-synonymous variant PIP > 50%). We defined non-

causal genes as all other genes within 300kb of these non-coding credible sets. This resulted 

in a set of 406 putatively causal genes and 4,358 putatively non-causal genes across 19 

independent traits. 

 

Model performance using the full feature set 

Next, we trained LASSO and XGBoost models to predict causal gene status using a set of 52 

features derived from: distance to GWAS lead variant, non-synonymous variant PIP (all <50% 

by definition), number of local genes, activity-by-contact (ABC)10, enhancer-promoter 

correlation11–13, eQTL colocalization14, MAGMA15, promoter capture Hi-C (PCHi-C)16,17, 

summary data-based Mendelian randomization (SMR)18, transcriptome-wide association 

studies (TWAS)19, DEPICT20, NetWAS21, and polygenic priority score (PoPS)9. To assess 

model performance, we trained the models in a nested leave-one-trait-out cross-validation 

framework. Model performance in held-out traits was similar for both LASSO (Figure 1A, 
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Figure S1, area under the precision-recall curve [AUPRC] = 65.3%, 95% confidence interval 

[CI] = 60.6% to 69.8%) and XGBoost (AUPRC = 64.4%, 95% CI = 59.6% to 68.9%). This 

suggests an absence of strong feature-feature interactions and non-linear relationships 

between causal gene status and features (after feature transformation, see Methods). Due to 

similar model performance, we proceeded using the simpler LASSO model. 

 

 

Figure 1. A. Area under the precision-recall curve (±95% confidence intervals) for models predicting causal and 

non-causal genes for 19 independent traits. Full = the full set of 52 gene prioritization features, basic = the basic 

set of 12 gene prioritization features. B. Causal probability estimated by LASSO models using the basic feature set 

with (y-axis) and without (x-axis) correcting for gene-level covariates (GLCs). Each point represents a single trait-

gene pair. The solid black line represents an equivalent value for the x- and y-axis variables. 

 

Model performance using a basic set of features 

Applying these models to obtain predictions for a new GWAS of interest requires running a 

wide range of pipelines to construct the full feature set. We therefore tested the performance 

of a LASSO model that only used a basic set of features: distance to GWAS lead variant, non-

synonymous variant PIP, number of local genes, MAGMA, and PoPS. Despite the large 

reduction in the number of features, performance in held-out traits was similar for both the full 

feature set (AUPRC = 65.3%, 95% CI = 60.6% to 69.8%) and the basic feature set (AUPRC 
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= 65.2%, 95% CI = 60.4% to 69.6%, Figure 1A). We therefore proceeded using the basic 

feature set. 

 

Accounting for bias 

Genes nearest to GWAS lead variants (a proxy for causal genes) are more likely to be 

mutation-intolerant than genes nearest to matched control variants22. However, we defined 

causal genes using fine-mapped coding variants and, therefore, our set of causal genes was 

enriched for being mutation-tolerant (Fisher’s exact test for pLI < 10%: OR = 1.725, 95% CI = 

1.348 to 2.227, P = 6.0x10-6). A key strength of our models is the ability to account for sources 

of bias such as this. As such, we included a set of gene-level covariates pertaining to 

mutational constraint, gene length, and enhancer length. When generating predictions in the 

test set, covariate effects were removed by setting covariate values to their mean. Including 

covariates did not substantially affect model performance (Figure 1B, AUPRC = 65.3%, 95% 

CI = 60.5% to 69.7%). After covariate correction, however, predicted causal probabilities > 

20% decreased by an average of 3.0% (Figure 1B). This suggests that these predictions were 

inflated due to biases in the training data. We therefore performed all downstream analyses 

with the models trained using gene-level covariate bias correction. 

 

Model interpretation 

We trained a LASSO model on all 19 independent traits using the basic feature set and gene-

level covariates. To compare the contribution of each feature to the model, we plotted their 

coefficients (Figure 2), standardized to represent an increase of one standard deviation (SD). 

For all gene prioritization methods, relative features had larger standardized effects than 

global features, suggesting that relative value within a locus is more informative than absolute 

value. For relative and global features, there was a consistent rank ordering of gene 

prioritization methods (PoPS > MAGMA > coding PIP > distance). To help further visualize 

predicted feature effects, we plotted model-predicted causal probability across a wide range 

of actual feature values (Figure 3). 
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Figure 2. Standardized coefficients (feature standard deviation = 1) from a LASSO model predicting causal gene 

status for 19 independent traits using the basic feature set and gene-level covariates. PoPS = Polygenic Priority 

Score, MAGMA = MAGMA z-score, Distance = distance between gene and GWAS lead variant, Coding PIP = non-

synonymous variant posterior inclusion probability. Best-in-locus = a binary feature denoting the gene with the 

largest global value in a locus (excluding ties), relative = the global value for a gene subtracted by the best global 

value in the locus. Asterisks (*) denote features that have been transformed, see Online Methods for details. For 

distance and number of local genes, these transformations included multiplying values by -1 to ensure that 

increasing feature values leads to increased predicted causal probability.  
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Figure 3. Relationship between predicted causal gene probability and (A) PoPS, (B) MAGMA z-score, (C) distance 

between gene and GWAS lead variant (in base pairs), and (D) non-synonymous credible set variant posterior 

inclusion probability (PIP). The lower y-axis represents the probability that a given gene is causal for a given trait 

and has been logit-transformed. The x-axis represents global feature values ranging from the 5th to the 95th 

percentile (except for coding PIP, which ranges from the 0th to the 100th percentile). Histograms showing global 

feature distribution are plotted at the top of each panel. For coding PIP, the histogram y-axis was truncated at 20 

for clarity (count of first bin = 4,787). Dark green lines represent genes with the best focal feature value in the locus. 

Light green lines represent genes with the average focal feature value in the locus. All other features were set to 

their mean, leading to low overall probabilities. Although transformed distances were used to train the model, 

untransformed values are presented to facilitate interpretation. We imputed missing MAGMA z-scores to the 

median (4.223), resulting in a spike in the distribution.   
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Calibration 

Model predictions for held-out traits were largely well-calibrated, although predictions between 

approximately 35% and 55% were slightly conservative (Figure 4A). Local recalibration (Figure 

4B, see Online Methods) did not negatively affect model performance (Figure 1A, AUPRC = 

65.5%, 95% CI = 60.7% to 69.9%) and more accurately reflected the probability that a given 

gene is causal for a given trait. Putting all previous results together, we present CALDERA: a 

LASSO model trained on a data-driven set of causal and non-causal genes using a basic set 

of 12 features—as well as a set of gene-level covariates to correct for bias—followed by local 

recalibration. 

 

 

Figure 4. Calibration plots before (A) and after (B) recalibration. The x-axis represents model predicted probability 

in held-out trait data and the y-axis represents the ground truth causal probability. The solid lines represent the 

fitted value from generalized additive models with shaded areas representing 95% confidence intervals. The 

dashed lines represent perfect calibration. 

 

CALDERA recovers known characteristics of GWAS genes 

Previous work has shown that putative GWAS genes are more likely to be mutation-intolerant 

(pLI > 90%), more likely to be transcription factors, and have a larger number of unique 

transcription start sites (TSSs)22. Even though CALDERA was trained on a set of causal genes 
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that was biased towards being mutation-tolerant, putatively causal CALDERA genes 

(predicted causal probability > 50% for any trait, n = 149) were more likely to be mutation-

intolerant than the remaining 2,043 genes in significant GWAS loci (22.8% versus 14.7%, P = 

8.45x10-3). We found similar results for the proportion of transcription factors (10.7% versus 

6.4%, P = 0.044) and the average number of unique TSSs (6.9 versus 2.7, P = 1.35x10-10). 

These results demonstrate that CALDERA can effectively overcome biases in its training 

dataset. It prioritizes genes with expected properties and successfully recovers causal GWAS 

genes, even when the training set is under enriched in genes with known causal GWAS gene 

characteristics. 

 

No evidence of bias due to causal genes shared between traits 

Although we only used traits with a global genetic correlation coefficient < 20%, 31 genes were 

causal for multiple independent traits. We repeated our analyses using a set of 189 non-

shared causal genes (2,053 non-causal genes). We observed little difference in AUPRC when 

using models trained in the dataset without shared causal genes (Figure S3, AUPRC = 64.5%, 

95% CI = 57.5% to 71.0%). Furthermore, there was negligible difference between a logistic 

regression model (AUPRC = 65.2%, 95% CI = 60.4% to 69.7%) and a generalized linear mixed 

model using the causal gene as a random effect (AUPRC = 65.2%, 95% CI = 60.4% to 69.7%). 

These results suggest that CALDERA performance was not substantially inflated due to 

shared causal genes shared across traits. 

 

Benchmarking performance against L2G 

L2G is a popular gene prioritization tool that has been shown to outperform other published 

methods6. We therefore compared the performance of CALDERA and L2G in two external 

gold standard datasets of causal and non-causal trait-gene pairs. First, we used the Open 

Targets gold standard dataset. Even though L2G was trained on this dataset, AUPRC was 

higher for CALDERA (Figure 5A, AUPRC = 76.6%, 95% CI = 67.6% to 83.7%) than for L2G 

(AUPRC = 72.7%, 95% CI = 63.4% to 80.4%). Second, we used a gold standard dataset 
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derived from burden tests of rare coding variants in the UK Biobank. Again, AUPRC was non-

significantly higher for CALDERA (Figure 5B, AUPRC = 50.0%, 95% CI = 42.4% to 57.7%) 

than for L2G (AUPRC = 46.7%, 95% CI = 39.2% to 54.4%). CALDERA predictions were well-

calibrated in both gold standard datasets (Figure S2). These results demonstrate that 

CALDERA achieves state-of-the-art performance while using a simpler and more interpretable 

model. 

 

Figure 5. Area under the precision-recall curve (±95% confidence intervals) for CALDERA and L2G model 

predictions in A) the Open Targets ground truth dataset or B) a ground truth dataset derived from burden tests of 

rare coding variants in the UK Biobank. 

Discussion 

In this work we have developed CALDERA, a simple tool for prioritizing genes in GWAS loci. 

CALDERA is interpretable, accounts for bias, and achieves state-of-the-art prediction 

performance. 

 

Since CALDERA uses a LASSO model, it is easier to interpret than XGBoost-based models. 

An increase in a given feature leads to a linear increase in the log odds that a given gene is 

causal. As shown in Figure 3, this makes it simple to visualize and understand the relationship 
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between features and CALDERA’s predicted causal probabilities. By contrast, this is not 

possible for XGBoost models, where the effect of increasing a given feature is typically 

dependent on the values of other features. CALDERA’s interpretability is further facilitated by 

the fact that it only uses 12 features to generate predictions—far fewer than FLAMES (47 

features), L2G (51 features), and EI (154 features). We have provided code to generate the 

12 CALDERA features—as well as CALDERA predicted causal gene probabilities—using only 

a PoPS output file, a MAGMA output file, and a file containing credible set information (see 

Code Availability). Overall, the predictions made by CALDERA are significantly easier to 

understand than those of other current methods. 

 

To account for biases in the CALDERA truth set, we used two strategies. First, we used a 

data-driven truth set, rather one that was manually curated by human experts. The L2G study 

found that some distance and coding features performed much better in manually-curated 

datasets than in data-driven datasets derived from CHEMBL7. This suggests that many of 

these causal genes were selected precisely because of their close proximity to a GWAS signal 

or due to a credible set coding variant. Second, we carefully considered potential sources of 

bias in our truth set based on how our causal genes were selected and attempted to account 

for these biases using gene-level covariates. To our knowledge, CALDERA is the first gene 

prioritization tool that attempts to actively correct for truth set biases. Failing to account for 

these biases led to systematic inflation of predicted causal probabilities greater than ~20% 

(Figure S1). Gene prioritization tools that do not correct for biases may suffer from similarly 

inflated predictions. Even though the CALDERA truth set was enriched for mutation-tolerant 

genes, CALDERA-prioritized genes were enriched for mutation intolerance, as expected22. 

 

Despite using a simpler model, CALDERA AUPRCs were higher than the L2G AUPRCs—

even in the L2G training dataset (Open Targets, Figure 5). The CALDERA model placed a 

large emphasis on PoPS and MAGMA (Figure 2), which are not present in the L2G model. 

Unlike most commonly used gene prioritization features, PoPS is a similarity-based method 
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that integrates genome-wide information9. The orthogonality of PoPS-derived information 

likely explains much of its large contribution to the CALDERA model. MAGMA z-scores 

capture the amount of statistical signal near a given gene body and might partially function as 

an alternative distance metric (r = 36% for global MAGMA and distance). Overall, these results 

suggest that the simplified CALDERA feature set sufficiently replaced the larger L2G feature 

set whilst maintaining state-of-the-art performance. 

 

There are some limitations to this study. We assumed that genes bearing a coding variant with 

PIP > 50% are causal for a given trait. While a variant with PIP = 50% should only have a 50% 

probability of being the causal variant, this probability should be much higher for coding 

variants23 and 73% of our causal genes had a coding variant PIP > 90%.  

 

More importantly, we also assumed that all non-coding credible sets within 300kb of one of 

these genes also acts through the same causal gene. Reprocessing published data22, we 

found that 87% of cis-eQTLs lie within 100kb of their effector gene and that the percentage of 

effector genes drops steeply as distance increases further (Figure S4). We found similar 

results for the distance between GWAS hits and their nearest gene, a proxy for the causal 

gene (Figure S4). By definition, the distance between GWAS hits and their true effector genes 

must be larger. Nevertheless, these data and others24 suggest that, beyond a certain distance, 

the probability of being a causal gene begins to decrease in an exponential-like fashion. As 

such, distal causal genes in the CALDERA truth set may be less reliable than more proximal 

genes. 

 

At the same time, there are well-documented examples where the causal gene lies further 

than 300kb from the credible set25. Nevertheless, CALDERA showed good calibration (Figure 

S2) in both the Open Targets and ExWAS gold standard datasets, which used 500kb and 

750kb windows, respectively. This suggests that CALDERA can be robustly applied to larger 

locus definitions than the ones on which it was trained. 
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Another limitation of CALDERA is that it was trained on features computed using in-sample 

linkage disequilibrium (LD) from one cohort (UK Biobank). Using out-of-sample LD reference 

panels can lead to errors in all three sources of CALDERA features—PoPS, MAGMA, and 

fine-mapped credible sets. Additionally, GWASes that meta-analyze multiple cohorts 

commonly have heterogeneous sample sizes across variants. This leads to misspecified 

credible set PIPs26, although MAGMA and PoPS can process variant-specific sample sizes 

and are therefore more robust. Prior to using CALDERA, we therefore advise the use of tools 

to check for discrepancies between GWAS summary statistics and the LD reference panel 

and the removal of failing variants or loci26,27.  

 

Finally, because LD patterns differ across ancestral populations, CALDERA predictions may 

not be well-calibrated in non-European populations. Unfortunately, this is challenging to test 

at present. Identifying the 406 causal trait-gene pairs in the CALDERA truth set required 

GWAS data for 19 independent traits, each of which was performed on hundreds of thousands 

of individuals. Fortunately, this is likely to be possible in the near future thanks to biobank-

scale initiatives in individuals of diverse ancestries, such as All of Us28. 

 

In conclusion, we present CALDERA, a model that allows for accurate and interpretable 

GWAS gene prioritization. CALDERA performance is similar to other state-of-the-art methods, 

but uses a more-interpretable model, requires fewer input features, and corrects for potential 

biases. Leveraging CALDERA could aid the prioritization of novel causal disease genes and 

the identification of novel drug targets. 

Online Methods 

Variant-to-gene evidence 
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We extracted predictive features for all trait-gene pairs from the original PoPS study9. These 

included distance to GWAS lead variant, non-synonymous variant PIP, ABC10, enhancer-

promoter correlation11–13, eQTL colocalization14, MAGMA15, PCHi-C16,17, SMR18, TWAS19, 

DEPICT20, NetWAS21, and PoPS9. We only included canonical ENSGIDs. To determine the 

number of local genes we included all GENCODE v4429 genes within 300kb of the focal 

credible set. 

 

Creating a set of causal and non-causal trait gene pairs 

To define a set of causal (and non-causal) trait-gene pairs, we used SuSiE credible sets for 

39 independent UK Biobank GWASes30 (Table S1 for independent traits). To minimize the risk 

of errors in SuSiE fine-mapping, we subsetted to the top 5 credible sets within each region. 

We identified credible sets containing a non-synonymous variant with PIP > 50% (“coding 

credible sets”) and the affected gene (“coding genes”). We designated the remaining credible 

sets as “non-coding credible sets” (no non-synonymous variant with PIP > 50%). We subsetted 

to non-coding credible sets within 300kb of a single coding gene for the same trait and with a 

maximum credible set width of 400kb. We extracted all protein-coding genes within 300kb of 

each of these non-coding credible sets, assigned the nearby coding gene as a “causal gene”, 

and assigned all others as “non-causal genes”. As such, the maximum locus size was 1Mb—

a 400kb credible set plus 300kb on either side. We chose a window of 300kb because previous 

work has shown that 90% of eQTLs are found within 130kb of their causal gene and 90% of 

GWAS hits are found within 108kb of the nearest gene (a proxy for the causal gene)22. We 

removed loci containing fewer than two genes and removed traits with fewer than five causal 

genes (19 traits remained). Finally, we joined variant-to-gene mapping evidence to this causal 

gene dataset by trait and gene. 

 

Feature engineering and missing data imputation 

We left data untransformed for PoPS9, MAGMA z-scores15, coding PIPs, Andersson and 

Ulirsch enhancer-promoter correlations11,13, Jung and Javierre PCHi-C interaction scores16,17, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

https://paperpile.com/c/jxOA1g/O155
https://paperpile.com/c/jxOA1g/UdT5
https://paperpile.com/c/jxOA1g/EyYp+yhOV+JurJ
https://paperpile.com/c/jxOA1g/EyYp+yhOV+JurJ
https://paperpile.com/c/jxOA1g/4Tgf
https://paperpile.com/c/jxOA1g/jrRc
https://paperpile.com/c/jxOA1g/o4Hx+CAUx
https://paperpile.com/c/jxOA1g/yEuY
https://paperpile.com/c/jxOA1g/iNNm
https://paperpile.com/c/jxOA1g/OJD3
https://paperpile.com/c/jxOA1g/8O85
https://paperpile.com/c/jxOA1g/O155
https://paperpile.com/c/jxOA1g/mXRk
https://paperpile.com/c/jxOA1g/f1mR
https://paperpile.com/c/jxOA1g/5RgK
https://paperpile.com/c/jxOA1g/O155
https://paperpile.com/c/jxOA1g/jrRc
https://paperpile.com/c/jxOA1g/EyYp+JurJ
https://paperpile.com/c/jxOA1g/o4Hx+CAUx
https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/


DEPICT z-scores20, NetWAS scores21, and NetWAS Bon scores21. For TWAS19, we used the 

absolute value of the z-score. We log10-transformed Roadmap enhancer-promoter 

correlations12, eQTL colocalization posterior probabilities14, ABC-Max scores10, and SMR18 P 

values. For distance-related variables (GWAS lead variant to gene body, GWAS lead variant 

to transcription start site [TSS]), we added 1 kilobase prior to log10-transformation. We used a 

logit10 transformation to convert the inverse of the number of local genes (i.e. the prior 

probability that a gene is causal) to a log10 odds scale. For all log10- and logit10-transformed 

variables, we imputed missing or zero values to the minimum non-missing and non-zero value 

(except missing SMR P values, which were imputed to 1). For all other variables, missing data 

were imputed to 0 (except MAGMA z-scores, which were imputed to their median value). We 

multiplied the transformed SMR and distance-related values by -1 to ensure a positive 

relationship with causal gene status. 

 

Relative and best-in-locus features 

Within each locus, we assigned the gene with the largest value for a given feature as the “best-

in-locus”, excluding ties. In addition, we constructed “relative scores” within each locus by 

subtracting a gene’s value by the largest local value. This resulted in a full set of 52 features: 

17 groups multiplied by 3 types (global, best-in-locus, and relative), as well as the number of 

local genes. 

 

Basic feature set 

We aimed to create a minimal set of features that would yield a similar AUPRC to the full 

feature set. We selected distance, coding PIP, and the number of local genes based on their 

importance in the L2G and FLAMES models. We selected PoPS since, unlike the 

aforementioned features, it integrates information from outside of the focal locus. Because 

PoPS requires MAGMA results as an input, we also included MAGMA. 

 

Gene-level covariates 
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To account for bias introduced by our process for selecting causal genes, we curated a set of 

gene-level covariates22 related to genetic constraint (probability of being loss-of-function 

intolerant [pLI]31 and heterozygote selection coefficient [hs]32), gene length (total and coding 

sequence), and enhancer length (from ABC33 and Roadmap12 datasets). We log10-transformed 

all covariate values and imputed missing values to the minimum non-missing value except pLI 

(missing values imputed to 0.5) and hs (missing values imputed to the maximum non-missing 

value). We multiplied transformed pLI and hs values by -1 to ensure a positive relationship 

with causal gene status. We capped transformed pLI at its 99th percentile (34.3) due to a long 

tail. We also included binary indicator variables for gene-level covariate missingness, pLI < 

0.1, and pLI < 0.9. 

 

Model training, testing, and performance 

To maximize the applicability of model predictions to new traits, we trained models using a 

nested leave-one-trait-out (LOTO) cross-validation framework. In the outer fold, we held one 

trait out as a test set. In the remaining 18 traits, we trained LASSO and XGBoost models using 

an inner fold of LOTO cross-validation to select hyperparameters. We used these trained 

models to predict causal gene probability in the held-out test set. We then used these 

predictions to compute AUPRC using the pr.curve function and the auc.integral method from 

the PPROC R package34. We computed AUPRC 95% CIs using the logit method35. 

 

LASSO 

We trained LASSO models using the cv.glmnet function from the glmnet R package36, 

selecting the lambda value with the minimum mean cross-validated error. Where specified, 

we included gene-level covariates when training models, but set covariates values to their 

mean in the held-out test sets. 

 

XGBoost 
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We trained XGBoost models using the xgboost and mlr R packages. We used a binary logistic 

objective function and 100 hyperparameter sets. For each set, we randomly sampled 

hyperparameters from uniform distributions (see Table S2 for hyperparameters and their 

ranges). We did not include gene-level covariates when training or testing XGBoost models. 

 

Recalibration 

We generated calibration plots using the cal_plot_logistic function from the “probably” R 

package. We locally-recalibrated predictions, once again using a nested LOTO framework. In 

each outer fold we trained models and used them to generate initial predictions in both the 

training set and the test set. Next, we trained a second LASSO model to predict causal gene 

status using the initial training set predictions (on the logit scale), as well as the relative 

predictions within each locus (focal - best). We applied this model to the initial test set 

predictions to get recalibrated predictions. 

 

Recovering known characteristics of GWAS genes 

We defined putatively causal CALDERA genes as the set of 149 unique genes with predicted 

causal probability > 50% for any trait. We defined putatively non-causal CALDERA genes as 

the remaining 2,043 unique genes in GWAS loci for these traits. Using linear or logistic 

regression, we tested for an association between putative causal gene status and: 1) pLI > 

90%, 2) whether a gene is a transcription factor, and 3) the number of unique TSSs across 

gene isoforms. We extracted these gene-level features from a study by Mostafavi and 

colleagues22. 

 

Benchmarking 

To compare CALDERA and L2G performance, we used the Open Targets and ExWAS 

benchmarking datasets from the FLAMES study6. We constructed CALDERA features using 

pre-computed values from the FLAMES study for PoPS (‘PoPS_Score’), MAGMA (‘MAGMA-

Z’), distance (‘distance’, also used to compute the number of genes within 300kb of each 
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GWAS signal), and coding PIP (‘VEP_sum’). Note that these coding PIP values are 

systematically smaller than the ones in the CALDERA truth set because PIP was multiplied 

by a shrinkage factor based on VEP effect (HIGH = 1, MODERATE = 0.6, LOW = 0.4, 

MODIFIER = 0.1). AUPRC values for CALDERA and L2G were calculated on the subset of 

genes with precomputed L2G scores. Seven traits in the ExWAS dataset were identical or 

highly correlated with traits used to train CALDERA. We therefore used a version of CALDERA 

excluding these traits (calcium, estimated bone mineral density, hemoglobin, hemoglobin A1c, 

adult height, low density lipoprotein cholesterol, total bilirubin). 
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Data availability statement 

All credible set and variant-to-gene mapping data for UK Biobank traits are available at 

https://www.finucanelab.org/data. All other data and code required to reproduce these 

analyses are available on GitHub at https://github.com/kheilbron/caldera.  

 

Gencode release 44: https://www.gencodegenes.org/human/release_44.html  

The Mostafavi et al. 202322 Zenodo repository: https://zenodo.org/records/6618073 

Code availability statement 

CALDERA is available as a set of open-source R scripts at 

https://github.com/kheilbron/caldera.  

 

Additional software and code:  

MAGMA: https://cncr.nl/research/magma/  

PoPS: https://github.com/FinucaneLab/pops  
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Supplementary Figures 

 

Figure S1. Comparisons of causal probabilities across models. A. XGBoost with the full feature set versus LASSO 

with the full feature set. B. LASSO with the full feature set versus LASSO with the basic feature set. C. LASSO with 

the basic feature set versus CALDERA. Each point represents a single trait-gene pair. The solid black line 

represents an equivalent value for the x- and y-axis variables. 
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Figure S2. Calibration plots for CALDERA (top) and L2G (bottom) in the Open Targets (left) and ExWAS (right) 

gold standard datasets. The x-axis represents model predicted probability in held-out trait data and the y-axis 

represents the ground truth causal probability. The solid lines represent the fitted value from generalized additive 

models with shaded areas representing 95% confidence intervals. The dashed lines represent perfect calibration. 
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Figure S3. Area under the precision-recall curve (±95% confidence intervals) for models predicting causal and 

non-causal genes for 19 independent traits. All causal genes: results from the CALDERA model, which was trained 

on 406 causal genes and 4,437 non-causal genes. Unique causal genes: results from a model trained on 189 

causal genes and 2,042 non-causal genes, where each causal gene is only represented once in the dataset. 
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Figure S4. The proportion of genes that lie in various distance bins for eQTLs and their actual effector genes, and 

for GWAS hits and their nearest genes. Data were reprocessed from Mostafavi et al. 202322.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

https://paperpile.com/c/jxOA1g/5RgK
https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/


References 

1. Nelson, M. R. et al. The support of human genetic evidence for approved drug 

indications. Nat. Genet. 47, 856–860 (2015). 

2. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as 

likely to be approved? Revised estimates of the impact of genetic support for drug 

mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019). 

3. Rusina, P. V. et al. Genetic support for FDA-approved drugs over the past decade. Nat. 

Rev. Drug Discov. 22, 864 (2023). 

4. Minikel, E. V., Painter, J. L., Dong, C. C. & Nelson, M. R. Refining the impact of genetic 

evidence on clinical success. Nature 629, 624–629 (2024). 

5. Forgetta, V. et al. An effector index to predict target genes at GWAS loci. Hum. Genet. 

141, 1431–1447 (2022). 

6. Schipper, M. et al. Gene prioritization in GWAS loci using multimodal evidence. 

medRxiv (2023) doi: https://doi.org/10.1101/2023.12.23.23300360. 

7. Mountjoy, E. et al. An open approach to systematically prioritize causal variants and 

genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 

(2021). 

8. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable 

selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series 

B Stat. Methodol. 82, 1273–1300 (2020). 

9. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes 

underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023). 

10. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from 

thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019). 

11. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. 

Nature 507, 455–461 (2014). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/oNsE
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/wZwp
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/UKY9
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/zLOc
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/Gxab
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/ivhP
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/nyZQ
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/2cFs
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/O155
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/UdT5
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
http://paperpile.com/b/jxOA1g/EyYp
https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/


12. Liu, Y., Sarkar, A., Kheradpour, P., Ernst, J. & Kellis, M. Evidence of reduced 

recombination rate in human regulatory domains. Genome Biol. 18, 193 (2017). 

13. Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-

variant resolution. Nat. Genet. 51, 683–693 (2019). 

14. Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. 

Am. J. Hum. Genet. 99, 1245–1260 (2016). 

15. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-

set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

16. Jung, I. et al. A compendium of promoter-centered long-range chromatin interactions in 

the human genome. Nat. Genet. 51, 1442–1449 (2019). 

17. Javierre, B. M. et al. Lineage-Specific Genome Architecture Links Enhancers and Non-

coding Disease Variants to Target Gene Promoters. Cell 167, 1369–1384.e19 (2016). 

18. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 

complex trait gene targets. Nat. Genet. 48, 481–487 (2016). 

19. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association 

studies. Nat. Genet. 48, 245–252 (2016). 

20. Pers, T. H. et al. Biological interpretation of genome-wide association studies using 

predicted gene functions. Nat. Commun. 6, 5890 (2015). 

21. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-

specific networks. Nat. Genet. 47, 569–576 (2015). 

22. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in 

discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 

1866–1875 (2023). 

23. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of 

complex trait heritability. Nat. Genet. 52, 1355–1363 (2020). 

24. Fauman, E. B. & Hyde, C. An optimal variant to gene distance window derived from an 

empirical definition of cis and trans protein QTLs. BMC Bioinformatics 23, 169 (2022). 

25. Claussnitzer, M. et al. FTO Obesity Variant Circuitry and Adipocyte Browning in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/yhOV
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/JurJ
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/4Tgf
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/jrRc
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/o4Hx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/CAUx
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/yEuY
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/iNNm
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/OJD3
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/8O85
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/5RgK
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/54Df
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/EfOe
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/


Humans. N. Engl. J. Med. 373, 895–907 (2015). 

26. Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant 

resolution. Cell Genom 2, (2022). 

27. Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data 

heterogeneity and errors. Nat. Commun. 12, 7117 (2021). 

28. All of Us Research Program Genomics Investigators. Genomic data in the All of Us 

Research Program. Nature 627, 340–346 (2024). 

29. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. 

Nucleic Acids Res. 47, D766–D773 (2019). 

30. Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. 

medRxiv (2021) doi:10.1101/2021.09.03.21262975. 

31. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 

285–291 (2016). 

32. Agarwal, I., Fuller, Z. L., Myers, S. R. & Przeworski, M. Relating pathogenic loss-of-

function mutations in humans to their evolutionary fitness costs. Elife 12, (2023). 

33. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. 

Nature 593, 238–243 (2021). 

34. Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall 

and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015). 

35. Boyd, K., Eng, K. H. & Page, C. D. Area under the Precision-Recall Curve: Point 

Estimates and Confidence Intervals. in Machine Learning and Knowledge Discovery in 

Databases 451–466 (Springer Berlin Heidelberg, 2013). 

36. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear 

Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010). 

 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.24311057doi: medRxiv preprint 

http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/gz9n
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/CMYO
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/ssiB
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/PWiw
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/mXRk
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/f1mR
http://dx.doi.org/10.1101/2021.09.03.21262975
http://paperpile.com/b/jxOA1g/f1mR
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/RU7w
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ETL8
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/ktYv
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/lJzF
http://paperpile.com/b/jxOA1g/KldI
http://paperpile.com/b/jxOA1g/KldI
http://paperpile.com/b/jxOA1g/KldI
http://paperpile.com/b/jxOA1g/KldI
http://paperpile.com/b/jxOA1g/KldI
http://paperpile.com/b/jxOA1g/h8xC
http://paperpile.com/b/jxOA1g/h8xC
http://paperpile.com/b/jxOA1g/h8xC
http://paperpile.com/b/jxOA1g/h8xC
http://paperpile.com/b/jxOA1g/h8xC
http://paperpile.com/b/jxOA1g/h8xC
https://doi.org/10.1101/2024.07.26.24311057
http://creativecommons.org/licenses/by/4.0/

