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 2 

Abstract 14 

Background: Previous studies suggest that smoking and higher alcohol consumption are 15 

both associated with greater risk of type 2 diabetes (T2D). However, studies examining 16 

whether these associations reflect causal relationships are limited and do not consider 17 

continuous glycaemic traits. The aim of the study was to determine whether there are 18 

causal effects of smoking and alcohol consumption on T2D risk and related glycaemic traits. 19 

Methods and Findings: We conducted both two-sample and one-sample MR to examine the 20 

effects of lifetime smoking index (LSI) and alcoholic drinks per week on T2D and continuous 21 

traits (fasting glucose, fasting insulin and glycated haemoglobin, HbA1c). For two-sample 22 

MR we used results from genome-wide association studies (GWAS) of LSI (N=462,690), 23 

alcohol consumption (N=941,280), T2D (N= 148,726 cases and 965,732 controls) and 24 

continuous traits (N=149,289 to 209,605). We used inverse variance weighting (IVW) for our 25 

main analyses and conducted several sensitivity analyses to explore violation of MR 26 

assumptions. We compared two-sample MR to one-sample MR results for alcohol effects on 27 

T2D and HbA1c in UK Biobank (N=336,984). Only these analyses were conducted to avoid 28 

sample overlap and due to data availability. The main IVW two-sample MR results suggested 29 

possible causal effects of higher LSI on T2D risk (OR per 1SD higher LSI=1.42, 95% CI=1.22 to 30 

1.64); however, sensitivity analyses did not consistently support this finding, and there was 31 

evidence of potential horizontal pleiotropy. There was no robust evidence that higher drinks 32 

per week influenced risk of T2D from our main IVW two-sample MR analyses (OR per 1 SD 33 

higher log-transformed drinks per week=1.04, 95% CI=0.40 to 2.65), despite evidence of 34 

causal effects on higher fasting glucose (difference in mean fasting glucose in mmol/l per 35 

1SD higher log-transformed drinks per week=0.34, 95% CI=0.09 to 0.59). One-sample MR 36 
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results suggested a possible causal effect of higher drinks per week on T2D risk (OR per 1 SD 37 

higher log-transformed drinks per week=1.71, 95% CI: 1.24 to 2.36), but in contrast, lower 38 

HbA1c levels (difference in mean SD of log transformed HbA1c (mol/mol) per 1 SD higher 39 

log-transformed drinks per week=-0.07, 95% CI: -0.11 to -0.02). Key limitations include 40 

limited generalisability of results due to analyses being conducted in European populations, 41 

and potential selection bias in UK Biobank influencing results. 42 

Conclusion: Our results suggest effective public health interventions to prevent and/or 43 

reduce smoking and alcohol consumption are unlikely to reduce the prevalence of T2D.  44 

Keywords: type 2 diabetes, alcohol, smoking, Mendelian randomisation, UK Biobank, 45 

glycaemic traits.  46 

  47 
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Introduction 48 

Type 2 diabetes (T2D) is a common chronic condition that is known to increase risk of 49 

macro- and micro- vascular atherosclerotic diseases (1–4). Over the last 30 years, 50 

prevalence and incidence of T2D has increased markedly (5), and the age at which it is first 51 

diagnosed has decreased (6). These changes are largely thought to be driven by the global 52 

obesity epidemic (7), including increased testing for T2D in people who are obese. Whilst 53 

higher body mass index (BMI) is an established causal risk factor for T2D (8), other risk 54 

factors have been proposed.  55 

Both smoking and alcohol have been suggested as potential risk factors that may causally 56 

affect T2D. Observationally, smoking is associated with higher risk, with heavier smokers 57 

having the greatest risk (9–12). Additionally, former smokers seem to have a higher risk for 58 

T2D compared to never smokers, with risk lowering over time since they quit (10,13). For 59 

alcohol consumption, there is a long history of observational studies suggesting a J-shaped 60 

association with cardiovascular diseases (14–16), with some studies finding evidence of a 61 

similar pattern with T2D (17,18). This slightly higher risk among those who report no alcohol 62 

consumption may be an artefact, for example due to misreporting, or because some people 63 

stop drinking (or never start) for health reasons (11,19). Despite this apparently higher risk 64 

at lower levels, across most of the distribution, higher alcohol consumption is associated 65 

with higher risk for T2D. The associations of smoking and alcohol with T2D might be causal 66 

or they might be influenced by confounding due to limited adjustment for socioeconomic 67 

position and related factors or only partially accounting for these in previous studies. In this 68 

study we aim to determine whether the relationships between smoking and alcohol and 69 

T2D are causal. 70 
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Mendelian randomisation (MR) is a causal inference method, which commonly uses genetic 71 

variants, typically single nucleotide polymorphisms (SNPs), as instrumental variables (IVs) 72 

for the exposure of interest. MR is less prone to confounding by socioeconomic, 73 

environmental and behavioural characteristics, or reverse causation than conventional 74 

observational studies (20). It can be biased by violation of the core assumptions underlying 75 

MR (Box 1).  76 
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 77 

Two previous two-sample MR studies have found evidence for a potential causal effect of 78 

smoking initiation (21) and lifetime smoking (22) on risk of T2D. The former study used data 79 

from a genome wide association study (GWAS) of diabetes with 74,124 cases and 824,006 80 

Box 1. Core assumptions of Mendelian Randomisation 

1) The genetic IV is robustly associated with the exposure of interest in the relevant population (relevance). 

May cause biased results if there are weak instruments (i.e., a statistically weak association of the genetic 

instrument with the exposure, which would bias results towards the null in two-sample MR and towards the 

confounded association in one-sample MR. In this study, comparing results from two- and one-sample MR 

for some effects is useful as, if both give consistent results this gives us greater confidence that neither have 

weak instrument bias. Population relevance is particularly important in two-sample MR, where it is 

important to ensure that the underlying population is the same in both samples and consistent with the 

population that we want to make inference to. Therefore, in this study we restricted analyses to include 

results from the genetic instrument-exposure and genetic instrument-outcome associations in white 

European adult populations only.  

2) There is no confounding between the genetic IV and the outcome (independence). 

May be violated if there is population stratification, assortative mating, or confounding by dynastic factors. 

In this study we tried to minimise population stratification by only including results / data from participants 

of European ancestry and adjusting for principal components in our one-sample MR analyses. 

 

3) The genetic IV is only associated with the outcome via the exposure, and there are no direct effects of the 

genetic IV on the outcome (exclusion restriction). 

May be violated if there is horizontal pleiotropy (i.e. the genetic variants influence risk factors for the 

outcome, independently of the exposure of interest. In this study we explored the likelihood of unbalanced 

horizontal pleiotropy influencing our main two-sample MR IVW results through comparing those results to 

results from several pleiotropy robust sensitivity analyses. 
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controls and focused on smoking initiation, which does not capture other important 81 

smoking related behaviours, like smoking duration and intensity. The latter study used data 82 

from the same diabetes GWAS and was an atlas study that examined many outcomes, and 83 

therefore did not focus on this relationship, nor did it consider continuous traits related to 84 

diabetes. 85 

We identified two previous MR studies examining alcohol and T2D. The first reported no 86 

effect. It used one SNP from the alcohol dehydrogenase 1B gene which encodes an enzyme 87 

involved in alcohol metabolism (i.e., it directly influences the amount of alcohol consumed 88 

in those who have ever drunk alcohol), in a one-sample MR approach within 261,991 adults 89 

of European ancestry (with 14,549 cases) (23). This is a useful approach as there is unlikely 90 

to be bias due to horizontal pleiotropy. Therefore, further exploration, using two-sample 91 

MR and exploring underlying continuous traits may strengthen the conclusion of no effect, if 92 

results were consistent. The second study also used a one-sample MR approach and a 93 

genetic risk score for alcohol within UK Biobank (UKBB) (N=408,540 with 33,656 cases) and 94 

found a potential causal effect of higher alcohol intake on T2D risk, with the strongest 95 

effects found in heavier drinkers in analyses stratified by alcohol intake (24). Our study 96 

extends this work by including continuous traits related to diabetes and examining this 97 

within a two-sample MR approach as well. 98 

The aim of this study was to use MR to explore the effects of lifetime smoking and alcohol 99 

consumption (drinks per week) on T2D risk and underlying glycaemic traits. This adds to 100 

previous studies by exploring both T2D and related continuous traits, exploring effects of 101 

both smoking and alcohol behaviours in the same study, undertaking more sensitivity 102 

analyses to test genetic instrument validity, and the influence of unbalanced horizontal 103 
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pleiotropy on our results, and comparing results from our main two-sample MR with those 104 

from one-sample MR, where this was possible, and data was available. In this study we used 105 

lifetime smoking as one exposure as this can be applied to non-smokers (unlike smoking 106 

heaviness) too and allows for a richer phenotype incorporating a range of smoking 107 

behaviours. We used alcohol consumption as our other exposure (i.e., average number of 108 

drinks participants reported consuming each week across all types of alcohol) to capture 109 

drinking over the whole distribution.   110 

111 
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Methods 112 

Exposure GWAS and selection of genetic instruments 113 

We used the largest GWAS of lifetime smoking index (LSI) (25) and alcohol consumption 114 

(drinks per week) (26), avoiding sample overlap with the outcome GWAS, which can bias 115 

results. Both GWAS only included participants of European ancestry and with complete 116 

genotype and phenotypic data (for relevant smoking and alcohol phenotypes), resulting in 117 

462,690 participants from UKBB in the LSI GWAS and 941,280 participants from GSCAN 118 

(GWAS and Sequencing Consortium of Alcohol and Nicotine) in the drinks per week GWAS. 119 

GWAS adjusted for principal components to further control for population substructure. 120 

SNPs (and associations with the relevant exposures) were selected if they reached genome-121 

wide statistical significance (p ≤ 5x10-08) and were independent (i.e., we excluded SNPs in 122 

linkage disequilibrium; r2
 of 0.001; window of 10,000 kb; European 1000 genomes reference 123 

panel). For any palindromic SNPs we tried to infer the positive strand based on allele 124 

frequencies, but if this was not possible, these SNPs were excluded. Where a SNP was 125 

available for the exposure and not the outcome, we attempted to identify proxy SNPs using 126 

LDlink (27) and an LD r2 threshold of >0.8. After exclusions and identifying any proxies, we 127 

searched for the remaining LSI SNPs in the outcome GWAS (118 SNPs for all outcomes) and 128 

the remaining alcohol consumption SNPs in the outcome GWAS (70 SNPs for all outcomes). 129 

Details of the exposure GWAS, including derivation of the LSI and drinks per week of alcohol 130 

are provided in Supplementary Materials Section 1. To summarise, the LSI reflects a 131 

combination of smoking related behaviours including smoking status, duration and 132 

heaviness, where never smokers have a score of 0. Drinks per week reflects the average 133 

number of drinks/glasses consumed per week by participants.  134 
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LSI is in standard deviation (SD) units, therefore, in our MR analyses we explore effects per 1 135 

SD higher LSI. To give context, 1 SD higher LSI value is equivalent to an individual smoking 20 136 

cigarettes per day for 15 years and stopping 17 years ago or smoking 60 cigarettes a day for 137 

13 years and stopping 22 years ago. Natural log-transformed drinks per week were used in 138 

the GWAS, therefore, in our MR analyses we explore effects per 1 SD higher log-139 

transformed drinks per week. To give context, in UKBB (the sample used in our one-sample 140 

MR) 1 SD was equal to 2.14 of the log transformed drinks per week. 141 

Outcome GWAS and harmonisation of exposure SNPs 142 

We obtained associations of the exposure SNPs with outcomes from the largest GWAS of 143 

T2D (28), fasting glucose (29), fasting insulin (29) and glycated haemoglobin (HbA1c) (29). 144 

We only used GWAS data including participants of European ancestry, resulting in 148,726 145 

cases and 965,732 controls from the Million Veteran Program, DIAMANTE and Biobank 146 

Japan for T2D. The continuous traits all used data from the Meta-Analyses of Glucose and 147 

Insulin-related traits Consortium (MAGIC), with 209,605 participants with data for fasting 148 

glucose, 158,550 with data for fasting insulin and 149,289 with data for HbA1c. GWAS 149 

summary statistics for the exposure and outcome were harmonised so that the SNP allele-150 

exposure and SNP allele-outcome associations were in the same direction. Details of these 151 

GWAS can be found in Supplementary Materials Section 2. To summarise, the T2D GWAS 152 

included cases with a diagnosis of T2D and controls without, fasting glucose was measured 153 

in mmol/l, fasting insulin in pmol/l in serum and HbA1c as a percentage. Therefore, in our 154 

MR analyses results are reported as the odds of T2D and the difference in mean fasting 155 

glucose (mmol/l), fasting insulin (pmol/l) and HbA1c (NGSP percent or equivalent) per 1 SD 156 

higher LSI or log-transformed drinks per week. 157 
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UK Biobank data for one-sample Mendelian randomisation 158 

We used data from the UKBB, a large population-based prospective health research 159 

resource of 503,317 participants (5.5% response of those invited), recruited between 2006 160 

and 2010, aged between 38 and 73 years and from the UK (30). Further details are included 161 

in the Supplementary Materials (Section 3 and on the study website 162 

(www.ukbiobank.ac.uk)). We were only able to assess the effect of drinks per week on T2D 163 

and HbA1c because the LSI genetic instruments were obtained from UKBB and the glucose 164 

and insulin measures in UKBB were from non-fasting samples. 165 

Drinks per week 166 

The drinks per week phenotype was constructed from responses to questions on the 167 

average weekly intake of a range of different alcoholic beverages (defined as number of 168 

glasses they had). Where this information was not available, weekly consumption was 169 

estimated from measures of average monthly intake (see Supplementary Materials, Section 170 

4 for further details). Data were natural log-transformed due to being right skewed and 171 

standardised (1 SD was equal to 2.14 of the log transformed drinks per week). 172 

Type 2 diabetes 173 

We derived possible or probable T2D using the Eastwood algorithm (31) (see Supplementary 174 

Materials Section 5). In one-sample MR analyses we excluded individuals who had possible 175 

or probable type 1 diabetes as per the Eastwood algorithm.  176 

HbA1c 177 
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Serum HbA1c (mol/mol) was assayed using five Bio-Rad Variant II Turbo analysers, values 178 

outside of the reportable range of 15 to 184 mmol/mol, or invalidated for any other reason, 179 

were excluded (further information can be found at 180 

https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/serum_hb1ac.pdf). These analysers used 181 

high performance liquid chromatography (HPLC) to determine the relative concentration of 182 

HbA1c in packed red blood cells, from blood samples (approximately 9ml) collected at 183 

recruitment. Many studies examining continuous traits related to T2D exclude participants 184 

with a diabetes diagnosis or above thresholds indicative of diabetes. This means that results 185 

are not necessarily applicable to the whole population from which the study sample is 186 

drawn and can result in selection bias (32). On the other hand, people with a diagnosis of 187 

diabetes will have made changes to their lifestyles and/or be on medications that impact 188 

these continuous traits and associations with them. Therefore, we conducted analyses with 189 

and without excluding those with possible or probable type 1 or type 2 diabetes using the 190 

Eastwood algorithm and those who had a HbA1c measure of ≥6.5% (or 48 mmol/mol) at 191 

baseline. Data were natural log-transformed due to being right skewed and standardised (1 192 

SD was equal to 0.15 log mmol/mol). As UKBB did not collect fasting samples we have not 193 

conducted one-sample MR on fasting glucose and insulin. 194 

Genetic data 195 

A total of 488,377 participants had genotyped samples. Pre-imputation quality control, 196 

phasing and imputation are described elsewhere (33) and summarised in the 197 

Supplementary Materials (Section 6).  198 

Statistical analysis 199 
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We pre-registered the analysis plan for this study on the Open Science Framework in March 200 

2021 (https://osf.io/ygucn). All analyses were conducted in R (34) (version 3.6.2). 201 

Two-sample Mendelian randomisation analyses 202 

We conducted two-sample MR analyses using the TwoSampleMR package in R (35).  203 

We used the inverse-variance weighted (IVW) method as our main analysis (36). This fits a 204 

linear regression model of the mean SNP-outcome value on mean SNP-exposure value 205 

across all SNPs and constrains the intercept of the regression slope to be zero, with the 206 

slope providing an unbiased effect estimate under the assumption that there is no 207 

horizontal pleiotropy (37). Sensitivity analyses used to explore this assumption were done 208 

using MR-Egger (38), weighted median (39), MR Pleiotropy RESidual Sum and Outlier (MR-209 

PRESSO) (40) and Generalised Summary-data-based MR (GSMR) (41) methods.  210 

MR Egger is identical to IVW with the exception that the intercept reflects the best fitted 211 

regression model and is not constrained to zero (38). The slope provides a causal estimate 212 

controlling for potential unbalanced horizontal pleiotropy. As with IVW, this approach is also 213 

subject to the Instrument Strength Independent of Direct Effect (InSIDE) assumption, which 214 

may be violated if any pleiotropic effects are all via a single factor that is correlated with the 215 

association of the genetic instrument with the exposure (i.e., instrument strength).  A non-216 

null intercept from MR Egger is indicative of unbalanced horizontal pleiotropy and we used 217 

the p-value for the intercept to assess this.  218 

The weighted median provides an unbiased causal estimate if no more than 50% of the 219 

weight of the SNPs used in the genetic instrument are influenced by horizontal pleiotropy 220 
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(i.e. results may be biased if one single SNP or several SNPs cumulatively contribute 50% of 221 

the weight and are horizontally pleiotropic) (39). 222 

MR-PRESSO is used to detect and correct for potential horizontal pleiotropic outliers in the 223 

instrument (40). It comprises of three stages to test this. An initial global test assesses 224 

whether the total residual sum of squares (RSS) is similar to that expected by chance. Then 225 

any outliers are identified by examining the RSS of each SNP. Finally, the extent to which 226 

these outliers effect the causal estimate is evaluated by using the distortion test. From this 227 

analysis we get an uncorrected and an outlier-corrected causal estimate and we use results 228 

from the global and distortion tests to detect horizontal pleiotropy and test for distortion 229 

between the estimate before and after correction, respectively. For MR-PRESSO the 230 

precision of the p-values is determined by the number of elements to simulate, specified in 231 

the model. We used a value of 2,000 for all analyses, except for lifetime smoking on fasting 232 

glucose in both main and additional analyses and fasting insulin in the main analyses, where 233 

we used 3,000 due to the model being unable to estimate the p-value with the lower value.  234 

The GSMR approach allows estimation of a causal effect including SNPs in the instrument 235 

that are correlated, by estimating the LD between SNPs from a reference sample (41). The 236 

GSMR model also removes outliers which may be associated with confounding factors by 237 

assessing heterogeneity across SNPs, using the heterogeneity in dependent instrument 238 

(HEIDI) test, and models the SNP-exposure estimate error which other MR methods do not 239 

include.  240 

In addition, we explored between SNP heterogeneity, which might be an indicator of 241 

horizontal pleiotropy or violation of other assumptions, using Cochran’s Q, where a p-value 242 

<0.05 may indicate the presence of between SNP heterogeneity. We also assessed 243 
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heterogeneity between SNPs, whilst adjusting for any horizontal pleiotropy for the MR-244 

Egger method, using the Rucker’s Q-test, again with a p-value threshold of <0.05.   245 

The IVW and MR-Egger methods assume that there is no measurement error in the SNP-246 

exposure estimates (39), known as the ‘NO Measurement Error’ (NOME) assumption. The 247 

extent of the NOME assumption violation can be quantified using regression dilution I-248 

squared statistics, where a lower value indicates greater violation. An I-squared of less than 249 

0.9, indicates that MR-Egger estimates should be interpreted with caution due to regression 250 

dilution and where this is the case, we have conducted simulation extrapolation (SIMEX) 251 

corrections as a sensitivity analysis. The SIMEX approach is a bias adjustment method which 252 

provides an estimate for the case where NOME had been satisfied. We also estimated the 253 

mean F-statistic for each analysis, which indicates instrument strength, where a value under 254 

10 may indicate a weak instrument (39).  255 

Overall, by using these different methods, which make different assumptions, we were able 256 

to assess the robustness of evidence for causal effects against violations of the MR 257 

assumptions. We were interested in whether there was evidence of causal effects. 258 

However, we have previously shown that causal effect estimates when using exposures 259 

related to cigarette smoking may be unreliable (42). Therefore, we considered consistency 260 

of evidence (e.g., direction of effect estimate, p-value as a measure of strength of evidence 261 

against the null) across analyses to guide our inference regarding whether or not a causal 262 

effect may be operating, but did not attempt to directly estimate the magnitude of any such 263 

effect (43).  264 

Finally, the GWAS used for the outcomes of fasting glucose and fasting insulin adjust for 265 

body mass index (BMI), which can bias our results. Multivariable MR (MVMR) analyses 266 
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including BMI can help overcome this issue and provide unbiased estimates of the exposure 267 

of interest (LSI and drinks per week) on the outcome (44) (see Supplementary Materials 268 

Section 7 for further details). 269 

One-sample Mendelian randomisation analyses 270 

One-sample MR analyses were conducted using the OneSampleMR and Applied 271 

Econometrics with R (AER) packages, respectively, in R (45,46). We generated weighted 272 

allele genetic risk scores in UKBB for alcohol consumption using the per-allele regression 273 

coefficients from each independent genome-wide significant SNP for each exposure as 274 

weights and then summing those weighted values (see Supplementary Materials Section 8). 275 

We used two-stage least squares regression with adjustment for age, sex, the first 10 276 

principal components (PCs) (derived from PC analysis of UKBB genotype data, imputed to a 277 

reference set combining UK10K haplotype and Haplotype Reference Consortium [HRC] 278 

reference panels), assessment centre and genotyping chip. Two genotyping chips were, the 279 

UKBB axiom array (which 90% of participants were genotyped with) and the UK BiLEVE 280 

array. The latter was used for those in the UK BiLEVE study (47), which was oversampled for 281 

smokers, and therefore adjusting for genotyping chip may introduce collider bias. Therefore, 282 

we performed analyses with and without adjustment for chip. 283 

Ethics 284 

All studies that contributed to the exposure and outcome GWAS used in MR analyses had 285 

ethics approval and participant consent for their data to be used in genetic analyses. UKBB 286 

(data used in one-sample MR analyses) received ethics approval from the UK National 287 

Health Service Research Ethics Committee (11/NW/0382). 288 
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Data availability 289 

Access details for the GWAS data used in this study are outlined in Supplementary Table S1. 290 

UK Biobank data are available through a procedure described at 291 

http://www.ukbiobank.ac.uk/using-the-resource/. 292 

Analysis code is available from the University of Bristol’s Research Data Repository 293 

(http://data.bris.ac.uk/data/), at: To be added on publication. 294 

  295 
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Results 296 

Two-sample Mendelian randomisation with lifetime smoking as the exposure 297 

Mean F-statistics for LSI were all 44.27 (Supplementary Table S2). Figure 1, Figure 2 and 298 

Supplementary Table S3 provide the results from the main IVW and all sensitivity analyses 299 

of the effects of LSI on outcomes. For T2D, the main IVW result suggested a causal effect of 300 

higher LSI on T2D risk (OR per 1SD higher LSI=1.42, 95% CI=1.22 to 1.64). Results from 301 

weighted median, PRESSO (with and without outlier correction) and the GSMR sensitivity 302 

analyses were consistent with this. By contrast MR-Egger and SIMEX adjusted MR-Egger 303 

results were in the opposite direction, though with wide confidence intervals (OR per 1SD 304 

higher LSI=0.80, 95% CI=0.46 to 1.41 for MR Egger and OR=0.75, 95% CI=0.43 to 1.31 for 305 

SIMEX adjusted MR-Egger). There was also evidence of between SNP heterogeneity 306 

(Cochran’s Q p-value = 5.42x10-66; Rucker’s Q p-value = 1.10x10-62) and potential bias due to 307 

unbalanced horizontal pleiotropy based on the MR-Egger and SIMEX adjusted MR Egger 308 

intercepts (p=0.04 and p=0.02, respectively) and the MR-PRESSO global test (p<0.0003).  309 

Figure 1. Two-sample Mendelian randomisation results of the potential causal effect of 310 

lifetime smoking on type 2 diabetes 311 
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 312 

Results are the odds ratios (OR) of type 2 diabetes per 1 SD higher lifetime smoking index score, with 95% 313 

confidence intervals (CI), noting that 1 SD higher LSI value is equivalent to an individual smoking 20 314 

cigarettes per day for 15 years and stopping 17 years ago or smoking 60 cigarettes a day for 13 years and 315 

stopping 22 years ago. SNP=single nucleotide polymorphism, IVW=inverse-variance weighted, 316 

SIMEX=simulation extrapolation, PRESSO= Pleiotropy RESidual Sum and Outlier, GSMR=Generalised 317 

Summary-data-based Mendelian Randomisation 318 

Our main IVW analyses also suggested that LSI was not causally related to fasting glucose 319 

(difference in mean fasting glucose in mmol/l per 1SD higher LSI=0.003, 95% CI=-0.03 to 320 

0.04), fasting insulin (difference in mean fasting insulin in pmol/l per 1SD higher LSI=-0.03, 321 

95% CI=-0.07 to 0.02) or HbA1c (difference in mean HbA1c in NGSP percent or equivalent 322 

per 1SD higher LSI=0.009, 95% CI=-0.01 to 0.03). Sensitivity analyses were mostly consistent 323 

with these results, with the exception of MR-Egger and SIMEX adjusted MR-Egger, where 324 

imprecise estimates suggested that higher LSI might reduce fasting insulin (Figure 2). 325 

Additional MVMR analyses accounting for BMI for fasting glucose and fasting insulin were in 326 

line with the main IVW results (Supplementary Table S4). 327 

  328 
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Figure 2. Two-sample Mendelian randomisation results of the potential causal effect of 329 

lifetime smoking on glycaemic traits 330 

 331 
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Results are the difference in mean fasting glucose (mmol/l), fasting insulin (pmol/l) and HbA1c (NGSP 332 

percent or equivalent) per 1 SD higher lifetime smoking index value, with 95% confidence intervals (CI), 333 

noting that 1 SD higher LSI value is equivalent to an individual smoking 20 cigarettes per day for 15 years 334 

and stopping 17 years ago or smoking 60 cigarettes a day for 13 years and stopping 22 years ago. 335 

SNP=single nucleotide polymorphism, IVW=inverse-variance weighted, SIMEX=simulation extrapolation, 336 

PRESSO= Pleiotropy RESidual Sum and Outlier, GSMR=Generalised Summary-data-based Mendelian 337 

Randomisation 338 

Two-sample Mendelian randomisation with drinks per week as the exposure 339 

Mean F-statistics for alcohol consumption were all 31.55 (Supplementary Table S2). Figure 340 

3, Figure 4 and Supplementary Table S3 provide the results from the main IVW and all 341 

sensitivity analyses of the effects of alcohol consumption on outcomes. For T2D, the main 342 

IVW results suggested that alcohol consumption was not causally related to T2D (OR per 1 343 

SD higher log-transformed drinks per week=1.04, 95% CI=0.40 to 2.65). Some of the 344 

sensitivity analyses were consistent with these results, however, MR-Egger, weighted 345 

median and GSMR estimates suggested a potential causal effect of higher drinks per week 346 

on T2D risk, but confidence intervals were wide (Figure 3). There was also evidence of 347 

between SNP heterogeneity (Cochran’s Q p-value = 2.86x10-89; Rucker’s Q p-value = 2.00x10-348 

70) and potential bias due to unbalanced horizontal pleiotropy based on the MR Egger 349 

intercept (p=0.0005) and the MR-PRESSO global test (p<5x10-04).  350 

Figure 3. Two-sample Mendelian randomisation results of the potential causal effect of 351 

drinks per week on type 2 diabetes 352 
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 353 

Results are the odds ratios (OR) of type 2 diabetes per 1 SD higher log-transformed drinks per week, with 354 

95% confidence intervals (CI). SNP=single nucleotide polymorphism, IVW=inverse-variance weighted, 355 

SIMEX=simulation extrapolation, PRESSO= Pleiotropy RESidual Sum and Outlier, GSMR=Generalised 356 

Summary-data-based Mendelian Randomisation 357 

Our main IVW analyses suggested a potential casual effect of higher drinks per week on 358 

higher fasting glucose (difference in mean fasting glucose in mmol/l per 1SD higher log-359 

transformed drinks per week=0.34, 95% CI=0.09 to 0.59). This was consistent across all 360 

sensitivity analyses. However, there was also evidence of between SNP heterogeneity 361 

(Cochran’s Q p-value = 5.18x10-40; Rucker’s Q p-value = 7.13x10-40) and potential bias due to 362 

unbalanced horizontal pleiotropy based on the MR-PRESSO global test (p<5x10-04), but not 363 

the MR-Egger intercept (p=0.46). Our main IVW analyses suggested that drinks per week 364 

was not causally related to fasting insulin (difference in mean fasting insulin in pmol/l per 365 

1SD higher LSI=0.08, 95% CI=-0.16 to 0.32) or HbA1c (difference in mean HbA1c in NGSP 366 

percent or equivalent per 1SD higher LSI=-0.05, 95% CI=-0.17 to 0.07). Sensitivity analyses 367 

were mostly consistent with these results, with the exception of the GSMR estimate 368 

suggesting that higher drinks per week might reduce fasting insulin (Figure 4). The effect 369 

from the additional MVMR analyses accounting for BMI for fasting glucose was attenuated 370 
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and did not provide evidence of a potentially causal effect. For fasting insulin, the MVMR 371 

analysis results were in line with the main IVW results (Supplementary Table S4).  372 
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Figure 4. Two-sample Mendelian randomisation results of the potential causal effect of 373 

drinks per week on glycaemic traits 374 

 375 

Results are the difference in mean fasting glucose (mmol/l), fasting insulin (pmol/l) and HbA1c (NGSP 376 

percent or equivalent) per 1 SD higher log-transformed drinks per week, with 95% confidence intervals 377 
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(CI). SNP=single nucleotide polymorphism, IVW=inverse-variance weighted, SIMEX=simulation 378 

extrapolation, PRESSO= Pleiotropy RESidual Sum and Outlier, GSMR=Generalised Summary-data-based 379 

Mendelian Randomisation 380 

One-sample Mendelian randomisation for drinks per week on type 2 diabetes and HbA1c 381 

Sample characteristics for those UKBB participants included in the one-sample MR analyses 382 

are shown in Supplementary Table S5. 383 

Table 1 provides the results from the one-sample MR analyses. Results suggested a causal 384 

effect of higher drinks per week on T2D risk (OR per 1 SD higher log-transformed drinks per 385 

week=1.71, 95% CI: 1.24 to 2.36) and on lower HbA1c levels (but only when we excluded 386 

participants with a possible or probable diabetes diagnosis or HbA1c≥6.5%) (difference in 387 

mean SD of log transformed HbA1c (mol/mol) per 1 SD higher log-transformed drinks per 388 

week=-0.07, 95% CI: -0.11 to -0.02). Adjusting for chip did not impact our results. 389 

Table 1. One-sample Mendelian randomisation results 390 

   Main analysis Adjusting for chip1 
 N OR or effect 

(95% CI) 
p-value OR or effect 

(95% CI) 
p-value 

T2D Excluding 
participants 
with type 1 
diabetes2 

266,005 1.71 (1.24 to 
2.36) 

1.30x10
-09 

1.70 (1.23 to 
2.35) 

1.30x10-09 

HbA1c Including 
participants 
with 
diabetes2 

253,995 -0.02 (-0.08 
to 0.03) 

0.43 -0.02 (-0.08 to 
0.03) 

0.40 

HbA1c Excluding 
participants 
with 
diabetes2 

242,412 -0.07 (-0.11 
to -0.02) 

0.002 -0.07 (-0.11 to 
-0.02) 

0.002 

Results are the odds ratio (OR) for type 2 diabetes per 1 SD higher log-transformed drinks per week or the 391 

difference in mean SD of log transformed HbA1c (mol/mol) per 1 SD higher log-transformed drinks per 392 
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week. 1We ran additional sensitivity analyses adjusting for genotyping chip which is confounded with 393 

being in the UK Biobank Lung Exome Variant Evaluation (BiLEVE) 2Exclusion criteria for diabetes was 394 

based on having possible or probable type 1 or type 2 diabetes as determined by the Eastwood algorithm 395 

or those with HbA1c ≥6.5%.  396 
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Discussion 397 

We found evidence of a possible causal effect of higher LSI values on risk of T2D in our main 398 

IVW analysis, but this was not consistent across sensitivity analyses and may be biased due 399 

to unbalanced horizontal pleiotropy. Furthermore, the lack of evidence of an effect on the 400 

underlying glycaemic traits suggests that we cannot confidently interpret this as a causal 401 

effect on T2D risk. We found little evidence of a possible causal effect of higher drinks per 402 

week on T2D risk, with no effect found for our main IVW analyses in the two-sample MR 403 

and inconsistent evidence in our sensitivity analyses. However, the lack of a consistent 404 

finding means that we would not interpret this as being evidence of a causal effect. We did 405 

observe a possible causal effect of drinks per week on fasting glucose, which was consistent 406 

across sensitivity analyses, but this was not supported by analyses with the other underlying 407 

glycaemic traits and when accounting for BMI this effect was no longer observed. 408 

Additionally, results from our one-sample MR analyses (only examining drinks per week on 409 

T2D and HbA1c) suggest that there may be a causal effect of more drinks per week on T2D 410 

risk and lower HbA1c levels. These mixed results do not provide strong evidence of causal 411 

effects but do suggest that LSI and drinks per week may have some effect on some of these 412 

outcomes; however, the explanations for these effects may be complicated, for example, 413 

acting through pleiotropic pathways. 414 

Previous studies have largely shown associations using multivariable regression, and 415 

potential causal effects using MR, between smoking and T2D risk (10,12,21,22,48) and 416 

between higher alcohol consumption and T2D risk (17,18,23,24). However, we note that a 417 

previous MR study using a functional variant for alcohol metabolism did not find an effect 418 

on T2D (23), in line with our results, suggesting it is unlikely there is an effect of alcohol on 419 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24311054doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24311054
http://creativecommons.org/licenses/by/4.0/


 28 

T2D. In addition, our finding with decreased HbA1c in the one-sample MR analyses is in the 420 

opposite direction to what we might expect given that higher levels of HbA1c are observed 421 

in those with T2D. However, this may be due to the exclusion of individuals with a diagnosis 422 

of diabetes, and we do not find an effect in our two-sample MR, so results should be 423 

interpreted with caution. Our results suggest that future studies examining risk factors for 424 

T2D should triangulate results across different analyses and consider underlying glycaemic 425 

traits as outcomes in order to arrive at the correct conclusions. 426 

Limitations 427 

The key strengths of this study and how this study adds to previous literature is described in 428 

the introduction and above. In terms of limitations, we were unable to explore a non-linear 429 

effect as recent evidence suggests that current methods for doing so in MR are potentially 430 

biased (49). Some observational studies have suggested a J-shaped association between 431 

alcohol and coronary heart disease, which T2D is a risk factor for (14–16,19). However, that 432 

J-shaped association, even if causal, suggests a linear association across most of the 433 

distribution. Our one-sample MR analyses in UKBB may be subject to selection bias (50,51). 434 

Future studies replicating these analyses in other samples would be useful to examine 435 

whether selection bias in UKBB may be an issue here, however our two-sample MR analyses 436 

in part overcome this for alcohol but not lifetime smoking where the GWAS was conducted 437 

in UK Biobank as well. Our analyses were conducted in samples of European ancestry, due 438 

to the data available, so results are not generalisable beyond this group. Finally, it is possible 439 

that measurement error in the exposure or outcome could bias our results. This is more 440 

likely to be the case for the exposures, which could be subjectively influenced, for example 441 

misreporting of cigarettes smoked per day, time since cessation or duration of smoking and 442 
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number of drinks consumed per week. In particular, in UKBB drinks per week is measured 443 

based on number of glasses of alcohol consumed and this is similar to the definitions used in 444 

the GWAS. This doesn’t account for units and glass/drink size can vary, so there is likely 445 

variation in how this was reported.  446 

Conclusion 447 

In summary, we found limited evidence of a possible causal effect of higher lifetime smoking 448 

index score and drinks per week score on T2D risk. We found further evidence of a possible 449 

causal effect of higher drinks per week on higher fasting glucose. However, overall results 450 

were not consistent across analyses and some results may be biased by horizontal 451 

pleiotropy. Therefore, we do not find strong evidence of smoking and alcohol influencing 452 

risk of T2D. Future research should include triangulation approaches and glycaemic traits to 453 

allow for a more in depth understanding of the causal influence of risk factors on T2D. 454 

  455 
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