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Abstract 
This study presents the development of an early prediction model for high-grade serous ovarian 

cancer (HGSOC) using real-world data from the Andalusian Health Population Database (BPS), 

containing electronic health records (EHR) of over 15 million patients. Leveraging the extensive 

data availability, the model aims to identify individuals at high risk of HGSOC without the need 

for specific tumor markers or prior stratification into risk groups. Utilizing an Explainable 

Boosting Machine (EBM) algorithm, the model incorporates diverse clinical variables including 

demographics, chronic diseases, symptoms, blood test results, and healthcare utilization 

patterns. The model was trained and validated using a total of 3,088 HGSOC patients diagnosed 

between 2018 and 2022 along with 114,942 controls of similar characteristics, to emulate the 

prevalence of the disease, achieving a sensitivity of 0.65 and a specificity of 0.85. This study 

underscores the importance of using patient data from the general population, demonstrating 

that effective early detection models can be developed from routinely collected healthcare data. 

The approach addresses limitations of traditional screening methods by providing a cost-

effective and broadly applicable tool for early cancer detection, potentially improving patient 

outcomes through timely interventions. The interpretability of the early prediction model also 

offers insights into the most significant predictors of cancer risk, further enhancing its utility in 

clinical settings. 

Introduction 
Ovarian cancer (OC) is considered one of the most serious tumors in women and is the leading 

cause of death among all gynecological tumors [1], with an incidence of approximately 1 in 78 

[2]. Paradoxically, despite its high mortality rate (over 75%), its cure rate when diagnosed early 
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(when the tumor is still confined to the ovaries, FIGO stage I) is very high (90%) [3]. However, 

delays in diagnosis are very common in this disease, and are usually due to unawareness of the 

initial symptoms of ovarian cancer by patients, lack of information in primary care, or delays in 

requesting accurate diagnostic tests. As a consequence of these delays, at the time of diagnosis, 

many OC patients present an advanced stage of the disease (the tumor has spread out of the 

ovaries and has taken other nearby structures) and the recommended interventions to treat 

ovarian cancer, such as surgery or chemotherapy, become no longer an option leaving palliative 

care as the only alternative [4]. Epithelial cancers are the most common OCs, accounting for 90% 

of all cases, and among these, 58% are serous [5], being the vast majority of them HGSOC [6].  

Because its prevalence is low in the general population (about 600 cases are detected each year 

in Andalusia), any screening strategy should not only be very sensitive in the initial stages, but 

also highly specific [7]. Some attempts to develop effective ovarian cancer screening strategies 

have used traditional clinical interventions such as transvaginal ultrasound, or serum tumor 

markers, such as CA125 [8]. However, none of these methods, when used occasionally and 

individually, present an adequate predictive value and, on the contrary, their systematic use is 

expensive [4]. Although new markers with the potential to be used in diagnosis are being 

detected with the developments of genomics and proteomics methodologies, they still require 

prospective validation work regarding their specificity and sensitivity, and the truth is that, to 

date, despite the clear benefit of early diagnosis for patients, there is no strategy for screening 

and early detection of HGSOC risk.  

Another strategy to help in potential screenings is the use of end-point predictors based on 

clinical real-world data (RWD). Actually, Real World Evidence (RWE) studies on retrospective 

cohorts have resulted in quite accurate predictions of the evolution of the disease in distinct 

patient types. For example, Deep Patient allows predicting the development of various diseases 

with 90% accuracy [9], Doctor AI, makes preventive future diagnoses and recommends 

treatments [10] or Deepcare, which predicts disease progression, recommends interventions 

and estimates future risks [11] are examples of successful application of Machine Learning 

techniques to large clinical data repositories. Such strategies do not require a previous patient 

stratification into a risk group and can be used in the general population as a pre-screening 

strategy. A recent publication illustrates this concept in OC, although the number of samples in 

the database used, the Surveillance, Epidemiology, and End Results (SEER) dataset, is reduced, 

which casts doubts on the reproducibility of the results when applied to a broader population 

[12]. Similar problems due to a low training dataset occur in other works  [13,14].  
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Andalusia, the third largest region in Europe, with 8.5 million inhabitants [15], a population 

similar to medium-sized European countries like Austria or Switzerland, has a universal 

electronic health record (EHR) managed by an efficient digital system called Diraya. Patient’s 

information in Diraya is systematically uploaded to the Population Health Base (BPS) on a 

monthly basis. This makes BPS one of the largest repositories of highly detailed clinical data in 

the world (with over 15 million patients) [16]. To facilitate the secondary use of biomedical data 

for clinical research purposes, a trusted research environment (TRE) [17], the Infrastructure for 

Secure generation of Evidence from Real World Data from the Population Health Database of 

Andalusia (iRWD) [18], was recently implemented to allow secure analysis of clinical data.  

Notable recent initiatives utilizing extensive real-world data from BPS include investigations into 

the protective role vitamin D in COVID-19 patients [19], research subsequently expanded on 

other drugs [20], the impact of oral anticoagulants on atrial fibrillation-related stroke [21], or an 

analysis of how different SARS-CoV-2 variants impact COVID-19 patient survival [22], just to cite 

a few ones. 

Hence, BPS offers a unique environment for a thorough retrospective examination of ovarian 

cancer patient profiles, yielding real-world evidence on healthcare system utilization patterns. 

The objective of this study is to create a machine learning predictor for early detection of high-

grade serous ovarian cancer (HGSOC) using uniquely data from the electronic health records 

available in the BPS database. 

Material and Methods 

Data source 
The Ethics Committee for the Coordination of Biomedical Research in Andalusia granted 

approval for the study titled “Retrospective observational study for the development of early 

predictor of ovarian cancer“ (29th March, 2022, Acta 03/22) and waived informed consent for 

the secondary use of clinical data for research purposes. Real world longitudinal data sets were 

extracted from the BPS [16]. These datasets are derived from patient EHRs from the Andalusian 

public health system (i.e. all data from users of the Andalusian public health system). In addition 

to clinical data, these datasets also contain patient demographic data such as age, district of 

residence or socioeconomic data and represent virtually the entire population in the Andalusian 

region. Since BPS contains data from the whole Andalusian Health System since 2017, the study 

period was 2018 to 2022, allowing thus the availability of, at least, one previous year of 

information for all the individuals studied. 
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A total of 3,088 patients diagnosed with ovarian cancer (OC) in Andalusia from 2018 to 2022, 

aged 50 or older at diagnosis time, were extracted from BPS. The distribution of cases across the 

years is as follows: 572 diagnosed in 2018, 586 in 2019, 607 in 2020, 631 in 2021, and 692 in 

2022.  In order to approximately mimic the prevalence of the disease, a total of 114,942 controls, 

matching the age and district of residence of the cases, were also extracted from the database.  

Variables used 
In this study, different variables with known or suspected impact in risk of developing OC are 

collected that include: i) Sociodemographic data (sex, birth date, death date, district); ii) Chronic 

diseases, preprocessed by BPS curators from ICD10 codes and free text [16]. BPS pathologies 

have diagnosis date and have been grouped into disease categories (see Table 1); iii) Symptoms 

and diagnoses of non-chronic illnesses categorized by their ICD10 code, selected by BPS curators 

and the OC literature [23-25] (Supplementary table S1). The occurrence of these during the 

observation window was treated as a binary variable; iv) Analytic tests consisting of ordinary 

clinical petitions (biochemistry parameters in blood and urine analyses). Scientific action 

protocols were revised [26] to check the inclusion of other parameters (Supplementary Table 

S2); vi) Number of visits to relevant medical specialties (gynecology and gastroenterology) 

during the observation window (Supplementary Table S3).  

Highly sparse variables, like hormonal biochemistry, genito-urinary system-related pathogenic 

culture results, STD blood tests, or variables directly related to OC suspicion, as tumor marker 

determinations, were removed from the study.  

 

Table 1: Overall and case-control stratified counts and proportions of comorbidities associated to the 

study cohort with p-values corresponding to case-control X2/ANOVA tests. For cases, these are 

comorbidities diagnosed before their ovarian cancer diagnosis and for controls, they are those diagnosed 

before a randomly attributed index point matching the diagnosis date of ovarian cancer patients. 

Comorbidity Overall Case Control P-Value 

Age-Related Macular Degeneration, n (%) 2299 (1.9) 47 (1.5) 2252 (2.0) 0.095 

Arthritis And Arthrosis, n (%) 57635 (48.8) 1392 (45.1) 56243 (48.9) <0.001 

Bladder Cancer, n (%) 403 (0.3) 24 (0.8) 379 (0.3) <0.001 

Blood Cancer, n (%) 898 (0.8) 29 (0.9) 869 (0.8) 0.293 

Bone and Soft Tissue Cancer, n (%) 167 (0.1) 30 (1.0) 137 (0.1) <0.001 

Breast Cancer, n (%) 4719 (4.0) 185 (6.0) 4534 (3.9) <0.001 

Bronchus and Lung Cancer, n (%) 364 (0.3) 29 (0.9) 335 (0.3) <0.001 
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Cardiovascular Disease, n (%) 65177 (55.2) 1679 (54.4) 63498 (55.2) 0.346 

Digestive System Cancer, n (%) 2246 (1.9) 131 (4.2) 2115 (1.8) <0.001 

Digestive System Disease, n (%) 2867 (2.4) 76 (2.5) 2791 (2.4) 0.954 

Endocrine Disease, n (%) 71946 (61.0) 1898 (61.5) 70048 (60.9) 0.57 

Eye Disease, n (%) 11390 (9.7) 265 (8.6) 11125 (9.7) 0.045 

Gastrointestinal Disease, n (%) 7684 (6.5) 238 (7.7) 7446 (6.5) 0.007 

Genitourinary Cancer, n (%) 309 (0.3) 19 (0.6) 290 (0.3) <0.001 

Genitourinary Disease, n (%) 15404 (13.1) 500 (16.2) 14904 (13.0) <0.001 

Gynecological Cancers, n (%) 1355 (1.1) 186 (6.0) 1169 (1.0) <0.001 

Head and Neck Cancer, n (%) 296 (0.3) 2 (0.1) 294 (0.3) 0.056 

Infectious Disease, n (%) 152 (0.1) 4 (0.1) 148 (0.1) 1 

Kaposi's Sarcoma, n (%) 8 (0.0) 0 8 (0.0) 1 

Liver Disease, n (%) 7835 (6.6) 280 (9.1) 7555 (6.6) <0.001 

Melanoma, n (%) 471 (0.4) 12 (0.4) 459 (0.4) 1 

Mental Illness, n (%) 50342 (42.7) 1399 (45.3) 48943 (42.6) 0.003 

Musculoskeletal Condition, n (%) 24584 (20.8) 581 (18.8) 24003 (20.9) 0.006 

Nervous System Disease, n (%) 8844 (7.5) 201 (6.5) 8643 (7.5) 0.038 

Respiratory Disease, n (%) 15499 (13.1) 408 (13.2) 15091 (13.1) 0.914 

Skin Disease, n (%) 3462 (2.9) 97 (3.1) 3365 (2.9) 0.522 

Thyroid Cancer, n (%) 413 (0.3) 24 (0.8) 389 (0.3) <0.001 

Total N 118030 3088 114942  

Age, median [Q1, Q3] 68.0 [59.0, 78.0] 64.0 [57.0, 74.0] 68.0 [59.0, 78.0] <0.001 

 

Modeling 

Training, validation, and test sets 

The OC patients were stratified based on their diagnosis dates for different phases of the model 

development: training (2018-2020, N=1,765), validation (2021, N=631), and testing (2022, 

N=692).  

The control non-OC patients were divided into three random disjoint sets: 40% for training, 30% 

for validation, and the remaining 30% for testing. The test group was never used to train or to 

perform model selection. 

Modeling methods 

The model aims to discriminate between cases, defined as women with an ovarian cancer (OC) 

diagnosis, and controls, which consisted of women who exhibited similar demographic and 

health profiles but lacked an OC diagnosis. The objective was to discriminate at the earliest 
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possible stage using longitudinal patient data. To achieve this, a time dimension was 

incorporated into the model during training. For each individual, an "index point" was 

established, corresponding to the diagnosis date for cases and a randomly selected date from 

within the timeframe of the training dataset for controls. Subsequently, raw patient data was 

transformed to facilitate analysis. These transformations involved the grouping of BPS chronic 

comorbidities (Table 1), conversion of symptoms and acute illnesses into binary variables, and 

the aggregation of data pertaining to medical specialty visits and blood test results over a 

predetermined observation window. The sole demographic variable incorporated was the age 

of the patient at the time of evaluation. 

For training purposes, data within a predefined leave-out window immediately preceding the 

index point, also known as the horizon, was excluded. The model was then trained on the 

remaining data captured within a specified feature window, termed the history, which preceded 

the leave-out window. An Explainable Boosting Machine (EBM) algorithm [27] was used for its 

capacity to provide transparent explanations of its predictive decisions. The model employed to 

fit the data was designated as the base estimator. This model represents a specialized form of 

the generalized additive model (GAM) [28], wherein tree-based boosting methods are employed 

to learn the shape functions [29]. The fitting pipeline is specifically designed to enhance the 

interpretability of both the individual shape functions and the model as a whole. 

The EBM algorithm constructs each shape function through an ensemble of gradient-boosted 

trees (GBTs). This process involves the sequential, iterative handling of all features. For each 

feature, a shallow tree, characterized by limited depth, is constructed using only that feature 

alongside a subset of the data. Concurrently, residuals are updated following a boosting 

methodology. As a result, each tree is restricted to the feature it was trained on, thereby 

enabling precise learning of each feature's contribution while simultaneously maintaining a 

global approximation via the residuals. This iterative process is repeated thousands of times, 

cycling through the data with a minimal learning rate, rendering the sequence of feature 

processing inconsequential. Upon completing all iterations, the model constructs a shape 

function by aggregating all the trees trained for any given feature. These shape functions are 

then collectively combined to establish the final decision rule of the model. 

EBMs are considered a valuable tool for tasks where understanding the rationale behind 

predictions is as important as the predictions themselves, particularly in high-stakes scenarios 

such as healthcare or biomedicine, while also providing state-of-the-art performance [30]. The 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310994doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24310994
http://creativecommons.org/licenses/by/4.0/


standard array of hyper-parameters is used to fit all EBMs, with the exception of bootstrap 

sampling rounds, which are increased as recommended [31]. 

To mirror continuous evaluation in real-world settings, a sequential prediction strategy was 

implemented during the validation and testing phases. Using this approach, the model 

generated monthly predictions for ovarian cancer (OC) diagnosis probability, utilizing only the 

clinical history data available up to each respective month. Specifically, for the validation set, 

which included patients diagnosed with OC in 2021, this method was applied monthly from 2018 

through 2021. This approach produced a time series of sequential probability predictions for 

each patient, termed the probability trajectory. Furthermore, a decision threshold was 

determined based on the validation set to achieve a sensitivity of 58%. This sensitivity level was 

chosen to align with that reported in a prior ovarian cancer screening study that also accounted 

for non-compliant patients [32]. 

For patients who were eventually diagnosed with OC, the earliness of the model's predictions 

can be quantified if, in any given month, their predicted probability of developing OC exceeds 

the learned threshold. However, it should be noted that these predictions are only meaningful 

if they occur before the actual date of confirmed diagnosis. Post-diagnosis evaluations for OC 

patients are discontinued, meaning that any instance where an OC patient's probability 

trajectory does not exceed the threshold prior to diagnosis is considered a missed prediction by 

the model. Similarly, predictions indicating that non-OC patients are at risk of developing OC at 

any point are also classified as missed predictions. This control group is monitored throughout 

the entire duration of the study period. 

Variable codification 

Chronic diseases, symptoms and diagnoses are modeled as binary variables within a specified 

time window. If a diagnosis for a condition is received by a patient before the end of the 

historical window, the corresponding feature value is set to 1; otherwise, it is set to 0. Specialist 

visits to relevant medical specialties, such as gynecology and gastroenterology, are modeled as 

continuous variables, representing the total number of visits by each patient across the historical 

window. Regarding analytics, valid values are log-transformed while invalid values for each 

analytic are set to missing. Descriptive statistics, including mean, standard deviation, maximum, 

and minimum, are computed for each feature over the historical window. If a statistic is missing 

for a patient, the missing value is imputed using the population median calculated during the 

training phase. Finally, the age of the patient is recorded as of the end of the historical window. 
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Evaluation 

To evaluate the patients throughout time the following metrics are used: 

• Recall (sensitivity): True Positives/(True Positives + False Negatives) 

• Specificity: True Negatives /(False Positives + True Negatives) 

• Precision: True Positives/(True Positives + False Positives) 

• False positive rate: False Positive /(True Positive + False Positive) 

• F1-score: 2*(Precision * Recall)/(Precision + Recall) 

• Normalized earliness: (Days to diagnosis)/365 

To facilitate the interpretation of the metrics, results are presented based on the split criterion. 

Initially, the metrics for the completely independent test partition are reported. Subsequently, 

the metrics for the full cohort (excluding the ovarian cancer cases used for training and 

validation) are reported to simulate the continuous evaluation of patients over time. 

To evaluate the model's performance before setting a threshold, the Area under the Receiver 

Operating Characteristic Curve (AUROC) and the Area under the Precision and Recall Curve 

(AUPRC) are reported, along with graphics depicting the corresponding curves. Additionally, the 

Area under the Precision-Recall-Gain Curve (AUPRGC) is measured [33]. Similar to the PRC, the 

PRG curve plots precision on the y-axis and recall on the x-axis, but it uses gain instead of raw 

precision values. Gain represents the difference between the current precision and a baseline 

value, reflecting a prevalence-informed random classification. This method is particularly useful 

for model selection when compared to a weak baseline, such as in cases with low prevalence. A 

higher PRG curve or AUPRG indicates better model performance. 

Finally, the hyperbolic-weighted tau (hwt) statistic [34] is used to measure the correlation among 

rankings. This metric provides a balanced approach by reducing the impact of less informative 

ranking segments (the tail) while penalizing variations in the more informative segments (the 

head of the ranking). This method is a modified version of Kendall’s tau [35], where the 

correlation between two rankings is adjusted with an additive hyperbolic function that imposes 

greater penalties on discrepancies at the higher end of the rank. This is particularly suitable for 

examining disparities among the learned characteristics of models, as it penalizes 

inconsistencies where the models are more focused. 
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Model selection 

The optimal lengths for the history and horizon windows are determined by evaluating a model 

over the validation set through a grid search over a one-year period in both past and future 

directions, with window sizes evaluated in 30-day increments. 

Results 

Model selection 

Panel A of Figure 1 displays the model's AUPRC on the validation set for various combinations 

of prediction time windows (horizon) and historical data lengths used for training (history). The 

30-day horizon window band shows consistent performance across all history window lengths 

and outperforms other horizon windows.  

To select a model from those trained with a 30-day horizon, the experiment was repeated using 

100 train/validation splits, following the previously mentioned proportion rules and fixing the 

horizon window at 30 days. Panel B of Figure 1 presents the Pareto set for the scatter plot of 

means, considering earliness versus AUPRC. From the two models on the Pareto frontier, the 

model trained with a 180-day history window was selected. This choice potentially requires less 

imputation (due to its shorter window span) compared to models trained with 300-day history 

windows. 

Therefore, a 30-day prediction horizon and a 180-day history window will be used for training. 

The full set of combinations tested, along with visualizations of each metrics distribution, are 

presented in the Supplementary Figures S1 and S2, respectively, for comprehensive reference. 

Additionally, the performance of the EBM model was compared to an elastic-net-regularized 

logistic regression, and a gradient-boosting classifier (GBM). Although the performance 

difference between the EBM and the GBM was negligible, the EBM was selected for its 

intrinsically interpretable nature. Graphical depictions of the results can be found in the 

Supplementary Figure S3.  

The model was trained using the training set (2018-2020), and the validation set (2021) was used 

to infer the threshold over the probability trajectories. This threshold allows us to classify 

patients as "at risk" for developing ovarian cancer at any given time point, considering the 

model's monthly prediction. The evaluation is multifaceted, focusing on three key axes 

evaluated over the test set: (i) machine learning performance metrics, (ii) interpretability of the 

model's predictions, and (iii) prediction and learning stability. 
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Figure 1: Performance summary across the validation set. A: Area Under the Precision-Recall Curve 

(AUPRC) on the validation set for various prediction horizons (x-axis) and training history lengths (y-axis). 

The 30-day horizon band shows consistent performance across history lengths and outperforms other 

horizons. B: Pareto set for the scatter plot of means, considering earliness (timeliness of prediction) vs. 

AUPRC. The selected model with a 180-day history window is highlighted, offering a balance between 

performance and potentially less data imputation. 

 

Machine learning model performance 

The prediction performance of the model was measured using a two-evaluation axis. First the 

ROC and Precision-recall curves and the Recall Vs the median days of anticipation of the model 

were plotted (see Figure 2). Then the performance of the model was reported after establishing 

the threshold to be considered at risk of developing an OC as per the Methods section (see Table 

2). 

A key aspect of the evaluation involves examining the model's generalizability and robustness. 

This was achieved by comparing the performance of the model across the validation and test 

sets. In particular, Figures 1 and 2 display similar ROC, Precision-Recall, and Recall-Earliness 

curves for both sets. This consistent performance across datasets suggests good generalizability. 

In simpler terms, the model effectively transfers its knowledge from the training data to unseen 

data in the test set, mitigating concerns about overfitting. 

Furthermore, the model is resilient to potential data variations that might occur over time due 

to real-world factors such as the COVID-19 pandemic or changes in how data is collected. This 

robustness stresses the ability of the model to perform effectively in real-world scenarios. 
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In conclusion, the consistent performance observed across different years significantly 

reinforces confidence in the predictions generated by the model and the valuable insights that 

can be extracted from its results. Moreover, the ability of early detection to generalize and 

remain robust despite variations in data increases the reliability of the model. 

 

 

Figure 2: Performance curves on the evaluation set. A: ROC-curve, the red dashed line acts as a baseline 

representing a classifier that makes random guesses; B: Precision-Recall curve, the red dashed line is the 

proportion of the positive class in the set (0.02). This is the precision when classifying all subjects as 

positive; C: recall vs. median number of days between positive prediction and ovarian cancer diagnosis 

date.  

After determining the risk threshold using the probability trajectories computed for the 

validation set (see Methods section), the performance of the model in decision-making 

scenarios can be assessed. Table 2 shows the evaluation of the model across two 

complementary sets, using the metrics described in the Methods section.  On the one hand, the 

scores on the independent test set (2022 data) to assess its generalizability were reported. On 

the other hand, to simulate continuous monitoring of the whole population under study, metrics 

obtained by evaluating the monthly probability predictions across the entire study period for 

ovarian cancer cases diagnosed in 2022 and all control individuals were reported. 

As expected, decision-based metrics remain similar in both sets, except for AUPRC and PPV that 

are extremely influenced by the differences in the prevalence of the positive class. Nevertheless, 

the AUPRGC (Area Under the Precision-Recall Gain Curve) remains consistent across both sets. 

This metric specifically addresses the issue of class imbalance by incorporating a weighting 

scheme, offering a more reliable measure of performance for comparison purposes in such 

scenarios. 
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Table 2: EBM metrics at a classification threshold of 0.15. Prediction metrics are presented for both the 

test set (cases diagnosed in 2022 and controls split to the test set) as well as for the test set and all controls 

(cases diagnosed in 2022 and all controls in our dataset). This is done in order to simulate the continuous 

evaluation of all women with contact with the public health system. Being, True Positive Ratio TPR= 

TP/(TP+FN), PPV = TP/(TP+FP), F1-Macro = 2*(Precision * Sensitivity)/(Precision + Sensitivity) 

Metric Test Test and all controls 

Sensitivity (TPR) 0.65 0.65 

Specificity (1-FPR)  0.84 0.85 

Precision (PPV) 0.07 0.02 

F1-Macro 0.52 0.48 

AUROC 0.79 0.79 

AUPRC 0.16 0.06 

AUPRGC 0.96 0.98 

Positive class prevalence 0.02 0.006 

Median days / 365 0.28 0.28 

 

 

 

Figure 3: Distribution of the number of days between a case in the test set’s ovarian cancer diagnosis date 

and a positive classification by our model. Patients with over 360 days between their ovarian cancer 

diagnosis and their positive classification were grouped.  
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Figure 3 depicts the distribution of prediction lead times for patients in the test set. Although 

the median lead time is approximately three months (see Table 2), the distribution reveals a 

relevant aspect: a significant number of patients are predicted to be at risk more than six months 

in advance of their diagnosis. Notably, some patients are identified as high-risk even a year 

before their diagnosis. 

This early detection rate highlights the potential of the model to flag individuals who might 

benefit from closer monitoring or earlier intervention strategies. 

Interpretability 

Although a comprehensive evaluation of the explainability perspective is beyond the scope of 

the present work, Figure 4.A shows the most important features influencing the performance of 

the interpretable machine learning model proposed for predicting ovarian cancer (OC). Longer 

bars correspond to features that the model considers to be more influential in predicting OC 

risk. 

 

 

Figure 4: Model interpretation. A: Top 10 weighted mean absolute scores on prediction on the training 

set. Bar lengths correspond to the relative significance of the feature in the decision-making process of 

the model. B: Evolution of prediction probability and mean lymphocyte percentage score throughout 
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patient evaluations up until their diagnosis date. The dashed red line is the learned classification 

threshold. 

 

The most important factors that the model used for assessing the risk include established risk 

elements such as age, along with other significant features like the existence of abdominal pain, 

musculoskeletal or heart conditions, and endocrine disorders. Furthermore, the model gives 

significant importance to certain blood test results, adding information on lymphocyte 

percentages and platelet counts to its predictions. 

Figure 4.B presents key findings regarding the model's ability to identify patients at risk of 

developing ovarian cancer (OC). This analysis focuses on two aspects of the model's 

performance: early detection potential and interpretable insights. The figure depicts the model's 

predicted probabilities of OC for patients over time, visualized as lines representing probability 

trajectories (orange-like). The x-axis represents the time to OC diagnosis in days, while the y-axis 

indicates the probability score, ranging from 0 (no predicted risk) to 1 (high predicted risk). These 

probability trajectories simulate the continuous monitoring of the individuals under study. In 

this particular case, the probability trajectory of a specific OC patient for four years until her OC 

diagnosis is shown. The model anticipates the OC diagnosis.  

Additionally, the development of the assessment generated by the model can be individually 

tracked for each patient over time by examining the local explanations of the model, which goes 

beyond just risk prediction. These interpretability trajectories aim to provide insight into the 

factors influencing the risk assigned by the model. By analyzing these trajectories with the 

probability curves, valuable information about how the model classifies patients can be 

obtained. For example, if a specific risk factor for ovarian cancer (e.g. the history of a particular 

illness) becomes increasingly prominent in the interpretability trajectory as the probability of 

ovarian cancer rises, because the model is assigning more weight, it suggests that such risk factor 

might be more relevant for this particular patient. This interpretability aspect provides detailed 

information to understand the decision-making process followed by the model and potentially 

identify key factors that are linked to a heightened risk of ovarian cancer. The example in Figure 

4.B shows the interpretability trajectories for Mean Lymphocyte Percentage, Epigastric Pain, and 

Minimum Cholesterol, in a specific patient. Although the Mean Lymphocyte score increases at -

600 days, it is not enough to classify the patient as at risk. Half a year before the ovarian cancer 

diagnosis, the model assigns high values to all the mentioned features, which pushes the 
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patient's ovarian cancer probability beyond the threshold, indicating that the model accurately 

predicted the onset of ovarian cancer. 

Finally, an ablation study was conducted to assess the relevance of each feature group. Feature 

groups were systematically removed from the dataset, and model fitting and performance were 

evaluated using the proposed splitting strategy. Supplementary Figure S4 in the supplementary 

material reveals that the analytics and diagnostics groups are most impactful, as performance 

significantly decreases when either group is removed. 

These results are particularly encouraging as they suggest the model not only predicts OC risk 

but also offers insights into the factors driving those predictions. This combination of early 

detection and interpretability has the potential to improve risk assessment and intervention 

strategies, potentially leading to better patient outcomes. 

Model stability 

Figure 5 shows different aspects of the stability in model performance across 100 different 

random seeds. Figures 5A and B show the distribution of predicted probabilities between a 

benchmark seed (seed 1) and all other seeds. In an ideal scenario, these sections should be 

closely distributed around zero, indicating minimal discrepancies in predicted probabilities 

between the reference seed and other training runs. Figure 5 A and B show that the predictions 

made by the model for both the control and case groups, respectively, do not exhibit excessive 

sensitivity to the particular random seed employed. Figure 5C provides an analytical 

examination of the consistency with which the model attributes significance to different 

features over several training iterations (one for each seed). The hyperbolic-weighted tau (hwt) 

statistic was computed for each pair of rankings, subsequently plotting the ensuing distribution. 

A distribution centered near 1 indicates that the model consistently prioritizes the same features 

as relevant for ovarian cancer prediction, irrespective of the randomness of the seed employed, 

which is the case for the model. Finally, Figure 5D provides a comprehensive overview of model 

performance metrics across all random seeds. These metrics include measures like True Positive 

Rate (TPR), False Positive Rate (FPR), Positive Predictive Value (PPV), Area Under the ROC Curve 

(AUROC), Area Under the PR Curve (AUPRC), and the median normalized earliness of ovarian 

cancer prediction. Consistent values across seeds for these metrics would further solidify the 

model's stability and generalizability, suggesting its ability to perform reliably even with slight 

variations in the training process. In summary, the results suggest that the model exhibits good 

stability and generalizability, with reliable predictions not significantly influenced by random 

variations. 
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Figure 5: Model stability across 100 different random seeds in model training. A: Count of the difference 

between the predicted ovarian cancer probability in seed 1 and the predicted ovarian cancer probability 

in seeds 2-100 in ovarian cancer patients. B: Count of the difference between the predicted ovarian cancer 

probability in seed 1 and the predicted ovarian cancer probability in seeds 2-100 in non-ovarian cancer 

patients. C: The stability of the relevance values learned by inspecting the differences across the rankings 

using the hyperbolic-weighted tau (hwt) statistic. D: True positive rate (TPR), false positive rate (FPR), 

positive predictive value (PPV), the area under the receiving operating curve (AUROC), the area under the 

precision-recall curve (AUPRC) and earliness of ovarian cancer prediction as a fraction of a year across 

random seeds. 

 

Discussion 
This retrospective study of a population of 3,088 patients with an OC diagnosis between 2018 

and 2022, as well as 114,942 controls of similar characteristics, used features from 37 regular 
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laboratory tests, 126 symptoms and non-chronic diagnoses, 21 chronic diagnoses, visits to 

specialists (gynecology and gastroenterology) and age to train a model for accurate 

identification of patients with ovarian cancer. Despite the model uses only clinical data 

contained in the patient’s EHR, and does not utilize tumor markers of specific OC tests, it 

demonstrated consistent and good performance, achieving a sensitivity of 0.65 and a specificity 

of 0.85.  

 

Table 3. Machine learning approaches for OC risk prediction, with their respective sample sizes, accuracy, 

use of specific OC biomarkers and population used. 

Model Study 
size 

Total 
OC 

Sensitivity Specificity OC 
markers 

Prediction Population 

Our model 118,030 3,088 0.65 0.85 No OC 1 year general 

RF, GBM, 

LGBM [36] 
349  349 0.88 0.97 Yes OC/benign OC OC patients 

RNN  [37] 37,293 88 0.47 0.90 Yes OC 1 year OC risk 

SVN, KNN [38] 349 349 0.97 0.97 Yes OC/benign OC OC patients 

MCDM [39] 10,992 860 0.65 0,86 Yes OC/non OC OC risk 

 

Some machine learning based approaches for early OC risk have recently been proposed to 

predict different endpoints related to OC, such as OC type, prognosis or OC risk. A model that 

used several clinical variables from patients, including blood routine tests, general chemistry 

data, and also tumor markers was proposed [36], that explores different algorithms such as 

Random Forest (RF), Gradient Boosting Machine (GBM), and Light Gradient Boosting Machine 

(LGBM) methods, achieving an accuracy of 88.00%, a sensitivity of 97.00%, and an AUROC of 

87.00%. In another study, different combinations of biomarkers associated with OC, where 

serum samples were obtained from the UKOCST [40] screening trial, were evaluated [37]. The 

best performance, with an AUC of 0.971 and 0.987 for Bayesian change-point detection 

algorithm (BCP) and a recurrent neural network (RNN), respectively, was achieved using a 

combination of Cancer Antigen 125 (CA125) and Human Epididymis protein 4 (HE4). This 

performance falls to 0.782 AUC with a 47% sensitivity at 90% specificity and 0.8 AUC, and 47.3% 

sensitivity at 90% specificity when trying to identify ovarian cancer before one year of clinical 

diagnosis for BCP and RNN respectively. At two years before clinical diagnosis, their best 

performance was obtained using only CA125 with a sensitivity of 52.7%. When aggregating all 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310994doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24310994
http://creativecommons.org/licenses/by/4.0/


the results they reported a median lead time ranging from 1.4 to 1.8 years. A different approach 

used Support Vector Machine (SVM) and k-nearest neighbors (KNN) algorithms on a dataset 

containing diverse features from malignant and benign ovarian cancer samples including 

demographics, blood tests, and ovarian cancer biomarkers [38]. The study reported a mean 

accuracy over a 10-fold cross-validation of 0.9648 and 0.9724, a specificity of 0.9648 and 0.9724, 

a precision of 0.9669 and 0.9653 and an F1-Score of 0.9669 and 0.9668 for the SVM and KNN 

respectively. 

Recently, an intricate classifier fusion strategy, based on multi-criteria decision-making (MCDM) 

for predicting ovarian cancer, was proposed [39]. Initially, 176 base classifiers were created using 

the top 20 most significant features selected through a feature selection process. Subsequently, 

a consensus classifier from the 20 highest-performing base models was formed by calculating 

the weight of each model using MCDM principles. This strategy was applied to a multicenter 

retrospective-cohort of 10,992 subjects, leading to the creation of two external validation sets: 

one of them comprising 467 OC and 5,174 control patients, and the other one including 393 OC 

and 1,951 control patients. The method achieved an AUC of 0.882 with all features, including 

tumor markers, but this decreased to 0.839 when tumor markers were excluded, with a 

sensitivity of around 0.65 at a specificity of 0.86. These are similar metrics to those obtained in 

the approach presented here. However, it must be noted that the authors utilize laboratory tests 

that, while understandably correlated to ovarian cancer, are not widely tested in the general 

population without the suspicion of a pathology.   

Considering that the model presented here only uses clinical record data found in the general 

population the performance obtained in predicting early OC risk is quite good, even in 

comparison to the studies listed in Table 3, which use OC biomarkers. Moreover, many existing 

studies rely on datasets with significantly smaller sample sizes, which can lead to overfitting and 

can restrict the generalizability and reliability of their models, potentially leading to inaccurate 

images of real-world OC prevalence. Furthermore, some studies incorporate specific tumor 

markers that can increase the precision for early-stage cancer detection but are expensive and 

unsuitable for large-scale population screening. Finally, factors such as the collection of data in 

a single center or the failure to consider the temporality of the evaluation process restrict the 

real-world applicability of several of the studies presented in Table 3. 

The approach presented here specifically addresses these limitations by using a large and 

comprehensive dataset encompassing regionwide data from all public health centers across 

Andalusia, which enhances the generalizability and reliability of the model. Furthermore, the 
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model relies on readily available and cost-effective features, such as routine blood tests, 

diagnoses, use of healthcare resources, etc., which are more suitable for population-wide 

screening strategies. Additionally, techniques to mitigate overfitting risks were implemented, 

along with the use of a continuous evaluation schema that takes into account the temporality 

of patient data. By addressing these shared challenges, the model presented here offers a cost-

effective, broadly applicable, and generalizable solution for early-stage OC detection. 

While the proposed model can be used as an early warning system, it can also be useful as a pre-

screening tool within a broader screening strategy. Four key ovarian cancer screening trials have 

been documented: SCSOCS [41], UKOCST [40], PLCO [32], and UKCTOCS [42]. Unlike these trials, 

the proposed model does not require extensive screening methodologies or repeated testing, 

minimizing the need for active patient participation. Direct comparison is complicated by varying 

reported false positive rates. UKOCST and UKCTOCS only report confirmed cancer cases through 

surgery, differing from the focus of the proposed model on earlier detection (see Table 4 for a 

comparison). 

Table 4: General results of the four main ovarian cancer screening trials conducted thus far. The presented 

specificity is that obtained in the first line of screening and not at the time of ovarian cancer diagnostic 

surgery. This specificity was not available for the UKOCST, and UKCTOCS studies, as only false positives at 

diagnostic surgery were published. Two separate screening methods were employed in the UKCTOCS trial, 

multimodal screening (MMS) and ultrasound screening (USS). 

Trial Study size Total 
cancers 

Sensitivity First line 
specificity 

Years of 
follow-up 

Our model 118,030 3,088 0.65 0.85 0 

SCSOCS 41,688 35 0.77 0.91 <2 

UKOCST 37,293 88 0.86 Not provided <1 

PLCO 34,253 126 0.58 0.9 <1 

UKCTOCS - MMS 50.084 237 0.84 Not provided <1 

UKCTOCS - USS 50.623 221 0.73 Not provided <1 

 

SCSOC and PLCO trials provide data on false positive rates during screening. In the SCSOC trial, 

9% of 41,688 patients without ovarian cancer were recommended for medical evaluation or 

early screening recall. Of these, 77% of ovarian cancers were detected within two years for 

compliant women. Similarly, in the PLCO trial, 9.7% of 34,253 patients without ovarian cancer 

were recommended for medical examination, with 66% of cancers detected within one year for 
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compliant women, and 58% when including non-compliant women as false negatives. For 

UKOCST and UKCTOCS, cancer detection rates at less than one-year follow-up for compliant 

patients were analyzed. The UKOCST study involved annual transvaginal ultrasound screening, 

detecting 86% of cancers in compliant patients. The UKCTOCS study evaluated a multimodal 

screening approach (MMS) and vaginal ultrasound. MMS detected 84% of cancers, while vaginal 

ultrasound detected 73% in compliant patients within one year. Non-compliance in ovarian 

cancer screening is a significant limitation, with compliance rates decreasing over time. In the 

PLCO study, compliance for CA-125 measurement and transvaginal ultrasound decreased from 

85% and 84% at first screening to 75% and 73% at later screenings. Similar declines were 

observed in the UKCTOCS and SCSOC trials, suggesting the need for improved patient 

compliance to enhance screening sensitivity. 

The proposed model shows promise with moderate sensitivity (65%) and fair discrimination 

(AUROC of 0.79), and its low precision (7%) is mitigated by several advantages. Firstly, the model 

accurately reflects the low prevalence of ovarian cancer, offering realistic performance 

expectations. By increasing the sample size, the performance of the model is expected to align 

closely with real-world scenarios. Secondly, when used as a first-line screening tool, the model 

provides significant cost benefits due to its minimal upfront costs. Early detection becomes a 

priority, and even with a false positive rate of 0.15, the model effectively identifies potential 

cases for further evaluation. This allows specialists to prioritize and see more patients overall, 

improving the efficiency of the screening process. The simplicity of the model and low patient 

burden further enhances its practicality and potential for widespread implementation in OC 

screening strategies. 

Finally, another interesting aspect is the interpretability of the model. The use of explainable 

methods for the derivation of the predictor provides useful information on the most relevant 

variables used to make decisions. Supplementary Table S4 lists the laboratory test variables used 

for modeling in the year prior to their index date, ordered by mean absolute relevance score. 

Although an exhaustive discussion of all the variables is beyond the scope of this manuscript, it 

is worth commenting on some of the most relevant ones to demonstrate how the model assigns 

more importance in the classification to OC-related features. The three most relevant analytics 

variables for the model are lymphocyte, platelet and neutrophil percentages, respectively. 

Actually, the value of the neutrophil-to-lymphocyte ratio has already been proposed as a 

potential variable to differentiate between ovarian cancer and benign ovarian disease [43], late-

stage and early-stage ovarian cancer [44], and as an indicator of treatment prognosis [45-48]. 

Interestingly, the neutrophil-to- lymphocyte ratio has shown to even be a valuable indicator of 
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ovarian cancer in cases where the concentration of ovarian cancer antigen 125 (CA125), the 

main ovarian cancer tumor marker, remains low [49]. Furthermore, an increase in neutrophils 

[50] and a decrease in lymphocyte count and percentage [46,51], which is observed in 

Supplementary Table S4, have been directly associated with OC. Also, an increase in the platelet-

to-lymphocyte ratio, already observed, has also been proposed as a diagnostic [52,53] and 

prognostic biomarker [47,54] in ovarian cancer. Furthermore, an increase in platelet counts has 

been directly associated with OC [55-58]. The eosinophils percentage, which is the eighth most 

relevant variable, has also been associated with ovarian cancer [43]. 

In the case of red blood cells, various parameters have been shown to be associated with an 

ovarian cancer diagnosis at different stages. Hemoglobin concentration, red cell distribution 

width, and hematocrit have been shown to decrease in ovarian cancer patients as compared to 

the control cohort [59], with a continued decrease in later ovarian cancer stages as compared to 

early-stage ovarian cancer [59]. In addition, several blood parameters have also been associated 

with a poor OC prognosis, such as low red cell distribution width [60], and low hemoglobin 

concentration [61,62].  

On the other hand, dysregulated cholesterol metabolism, as reported in Supplementary Table 

S4 has been described as a metabolic hallmark in several cancers, including OC [63]. In the case 

of glucose analytics, differences are expected in the cases with respect to controls due to the 

Warburg effect in the cancer, reflected as a higher glucose consumption [64]. A similar case, 

although in the opposite direction, are potassium levels, since EAG K+ channels are proven to 

be overexpressed in ovarian cancer patients [45].  

Conclusions 

A predictor of risk of developing ovarian cancer has been developed, based uniquely on variables 

contained in the patient’s electronic health records. Different time horizons and historical spans 

have been considered. As expected, the further the predictive horizon is, the worse the 

performance of the model is. The predictor achieves a sensitivity of 0.65 and a specificity of 0.85, 

with an area under the receiving-operating curve (AUROC) of 0.79. To our knowledge, this is the 

first proposal for an early predictor of ovarian cancer risk based solely on the data registered in 

the health system from the general population. Although the precision cannot be compared to 

predictors using molecular data or OC biomarkers, the advantage is that it does not requires 

prior suspicion of diagnosis and can be automatically used for pre-screening or preventive 

purposes over hospital data. Therefore, its use to support OC screening is straightforward and 

inexpensive and can constitute a model exportable to other cancer types.  
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