
Disentangling shared genetic etiologies for kidney function and cardiovascular 1 

diseases 2 

Jun Qiao1#, Kaixin Yao2,3#, Yujuan Yuan4,5#, Xichen Yang2,3, Le Zhou2,3, Yinqi Long2,3, 3 

Miaoran Chen2,3, Wenjia Xie2,3, Yixuan Yang2,3, Yangpo Cao1, Siim Pauklin6*, Jinguo 4 

Xu7*, Yining Yang4,5*, Yuliang Feng1* 
5 

1 Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong 6 

Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern 7 

University of Science and Technology, Shenzhen, China. 8 

2 Department of Nephrology, Shanxi Kidney Disease Institute, Second Hospital of 9 

Shanxi Medical University, Taiyuan, China. 10 

3 Kidney Research Center of Shanxi Medical University, Taiyuan, China. 11 

4 Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, 12 

Urumqi, China. 13 

5 Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 14 

Urumqi, China 15 

6 Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and 16 

Musculoskeletal Sciences, University of Oxford, Headington, Oxford, UK. 17 

7 Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical 18 

University, Hefei, China. 19 

#These authors contributed equally to this work. 20 

 21 

*Correspondence to: 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310191doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.07.26.24310191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Siim Pauklin PhD 23 

Group leader and CRUK Career Development Fellow 24 

Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and 25 

Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK. 26 

Tel: +44 (0)-1865226492 27 

Email: siim.pauklin@ndorms.ox.ac.uk 28 

 29 

Jinguo Xu, MD, PhD 30 

Associate Professor 31 

Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical 32 

University, Hefei, Anhui, 230022, China 33 

Tel: +86 (551)-65908735 34 

Email: xujinguo@ahmu.edu.cn 35 

 36 

Yining Yang MD, PhD 37 

Professor 38 

Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, 39 

Urumqi, Xinjiang Uygur Autonomous Region, 830000, China. 40 

Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 41 

Urumqi, Xinjiang Uygur Autonomous Region, 830000, China. 42 

Tel:+86 (0991)-960200 43 

Email: yangyn5126@xjrmyy.com 44 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310191doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24310191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Yuliang Feng MD, PhD 46 

Associate Professor 47 

Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong 48 

Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern 49 

University of Science and Technology, Shenzhen, Guangdong, 518055, China. 50 

Tel:+86 (755)-88012564 51 

Email: fengyl@sustech.edu.cn 52 

  53 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310191doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24310191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 54 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, with 55 

chronic kidney disease (CKD) identified as a significant risk factor. CKD is primarily 56 

monitored through the estimated glomerular filtration rate (eGFR), calculated using the 57 

CKD-EPI equation. Although epidemiological and clinical studies have consistently 58 

demonstrated strong associations between eGFR and CVDs, the genetic underpinnings 59 

of this relationship remain elusive. Recent genome-wide association studies (GWAS) 60 

have highlighted the polygenic nature of these conditions and identified several risk 61 

loci correlating with their cross-phenotypes. Nonetheless, the extent and pattern of their 62 

pleiotropic effects have yet to be fully elucidated. We analyzed the most 63 

comprehensive GWAS summary statistics, involving around 7.5 million individuals, to 64 

investigate the shared genetic architectures and the underlying mechanisms between 65 

eGFR and CVDs, focusing on single nucleotide polymorphisms (SNPs), genes, 66 

biological pathways, and proteins exhibiting pleiotropic effects. Our study identified 67 

508 distinct genomic locations associated with pleiotropic effects across multiple traits, 68 

involving 379 unique genes, notably L3MBTL3 (6q23.1), MMP24 (20q11.22), and 69 

ABO (9q34.2). Additionally, pathways such as stem cell population maintenance and 70 

the glutathione metabolism pathway were pivotal in mediating the relationships 71 

between these traits. From the perspective of vertical pleiotropy, our findings suggest a 72 

causal relationship between eGFR and conditions such as atrial fibrillation and venous 73 

thromboembolism. These insights significantly enhance our understanding of the 74 
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genetic links between eGFR and CVDs, potentially guiding the development of novel 75 

therapeutic strategies and improving the clinical management of these conditions. 76 

 77 
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Introduction 82 

Cardiovascular diseases (CVDs) are the leading cause of mortality and disability 83 

globally, accounting for one-third of all deaths.1 The American Heart Association 84 

anticipates that by 2035, the economic impact of CVDs will escalate to approximately 85 

$1.1 trillion. Among the diverse risk factors, chronic kidney disease (CKD) is 86 

particularly significant, as it exacerbates heart disease.2 CKD leads to an increased 87 

production of reactive oxygen species (ROS) through oxidative stress, resulting in 88 

endothelial dysfunction—a critical precursor to atherosclerosis and an elevated risk of 89 

cardiovascular events.3 Affecting about 9.1% of the global population, as the World 90 

Health Organization reported in 2023, CKD is diagnosed and monitored by measuring 91 

the estimated glomerular filtration rate (eGFR), utilizing the CKD-EPI equation. An 92 

eGFR below 60 mL/min/1.73 m² signifies notable kidney impairment.4,5 Research by 93 

Go et al. has demonstrated a clear, graded association between declining eGFR and 94 

increased cardiovascular events.6,7 Additionally, studies focusing on older adults reveal 95 

that the risk of CVDs increases from 15% for those with an eGFR of 90 mL/min/1.73 96 

m² to 40% for individuals at 30 mL/min/1.73 m² over three years.8 The Framingham 97 

Heart Study supports these findings, showing that individuals with mildly reduced 98 

eGFR levels (60 to 79 mL/min per 1.73 m²) face a higher risk of CVDs than those with 99 

higher eGFR.9 These studies underscore the significance of eGFR as a robust 100 

biomarker for assessing cardiovascular risk, highlighting its crucial role in clinical 101 

practice. 102 

Genome-wide association studies (GWAS) have identified hundreds of variants 103 

contributing to the risk of eGFR and CVDs, some of which are shared risk loci. For 104 

example, Graham and colleagues pinpointed 147 loci associated with eGFR, seven 105 

demonstrating significant co-localization with cardiovascular traits, highlighting a 106 

genetic link between eGFR and various CVD phenotypes.10 Genetic pleiotropy, where 107 

a single genetic variant influences multiple traits, is prevalent in complex human 108 

diseases, particularly in loci associated with CVDs. This pleiotropy can be vertical, 109 
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where a variant’s effect on one trait impacts another, or horizontal, where a variant 110 

independently affects several traits. Mendelian randomization (MR) analyses utilizing 111 

vertical pleiotropy have estimated causal relationships between eGFR and CVDs. For 112 

example, Kelly et al. established a causal link between declining eGFR and increased 113 

stroke risk,11 while Geurts et al. identified a bidirectional causal relationship between 114 

eGFR and atrial fibrillation (AF).12,13 However, recent studies suggest that eGFR does 115 

not significantly affect other CVDs, such as AF, coronary artery disease (CAD), stroke, 116 

and heart failure (HF). These inconsistencies in MR results, possibly due to residual 117 

biases and unmeasured confounders, necessitate further investigation. Furthermore, the 118 

study by Gong et al. highlights the role of horizontal pleiotropy in explaining the 119 

common genetic architecture of human phenotypes, within the context of recent 120 

advances in genomic statistical tools.14 Despite these advances, the extent of horizontal 121 

pleiotropy between eGFR and CVDs still needs to be explored, and the common 122 

genetic mechanisms must be fully elucidated. Therefore, there is a critical need for 123 

systematic research to investigate the shared genetic architectures between eGFR and 124 

CVDs, to identify shared polygenic risk variants, and to explore the involvement of 125 

specific molecular biological pathways. 126 

In this study, we conducted an extensive analysis leveraged the latest GWAS summary 127 

statistics for European ancestry to explore the genetic associations between eGFR and 128 

six major CVDs, including AF, CAD, Venous Thromboembolism (VTE), HF, 129 

Peripheral Artery Disease (PAD), and Stroke. Firstly, the shared genetic basis is 130 

determined by quantifying the overall and local genetic correlations and exploring the 131 

overall genetic overlap. On this common genetic basis, in-depth research was 132 

conducted on the potential genetic mechanisms underlying these traits. Regarding 133 

horizontal pleiotropy, first, pleiotropy variation at the single nucleotide polymorphism 134 

(SNP) level is detected, and then co-localization analysis is performed to locate 135 

candidate causal variations accurately. Subsequently, position mapping and expression 136 

quantitative trait loci (eQTL) mapping were used at the gene level to identify candidate 137 

multi-effect genes. In addition, we conducted enrichment analysis on biological 138 
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pathways and elucidated the biological functions of genes associated with multiple 139 

effector sites. We also investigated the potential association between plasma protein 140 

levels and disease susceptibility and evaluated its potential as a therapeutic target. 141 

Finally, MR analysis was conducted at the level of vertical pleiotropy, using whole 142 

genome SNP data to estimate bidirectional causal effects while considering 143 

confounding factors and sample overlap.In conclusion, our comprehensive analysis of 144 

pleiotropy revealed the intricate genetic interactions between eGFR and CVDs. This 145 

work provides a promising path for a deeper understanding of their genetic associations, 146 

laying a solid foundation for future studies and driving new insights and targets in 147 

prevention, early diagnosis, and personalized treatment. 148 

 149 

Methods 150 

Study Design 151 

Figure 1 presents the workflow for this study. 152 

 153 

Data selection and quality control 154 

GWAS summary statistics for eGFR were sourced from the most extensive publicly 155 

accessible meta-analysis to date, encompassing two primary datasets (n = 1,004,040): (i) 156 

from the CKDGen consortium and (ii) from the UK Biobank.15 Similarly, we selected 157 

six major CVDs from large meta-analyses for greater statistical power and clinical 158 

relevance. We extracted GWAS summary statistics for AF from a genome-wide 159 

meta-analysis that included 60,620 cases and 970,216 controls of European ancestry 160 

across six studies: The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan 161 

Genomics Initiative (MGI), DiscovEHR, UK Biobank, and the AFGen Consortium.16 162 

GWAS summary statistics for CAD were from a meta-analysis encompassed 181,522 163 

cases and 984,168 controls of European ancestry, amalgamating data from nine studies 164 

not previously included along with data from the UK Biobank and 165 

CARDIoGRAMplusC4D consortium.17 GWAS summary statistics for VTE were 166 
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obtained from a meta-analysis of seven cohorts, including the Copenhagen Hospital 167 

Biobank Cardiovascular Disease Cohort (CHB-CVDC), Danish Blood Donor Study 168 

(DBDS), Intermountain Healthcare, deCODE, UK Biobank, Million Veteran Program 169 

(MVP), and FinnGen, totaling 81,190 cases and 1,419,671 controls.18 GWAS summary 170 

statistics for HF included data from 47,309 cases and 930,014 controls across 26 studies 171 

from the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) 172 

Consortium.19 GWAS summary statistics for PAD involved 12,086 cases and 499,548 173 

controls from a genome-wide meta-analysis comprising 11 independent studies.20 174 

GWAS summary statistics for Stroke were sourced from a meta-analysis by the 175 

GIGASTROKE consortium, which included 73,652 patients and 1,234,808 control 176 

individuals.21 All summary statistics are based on individuals of European ancestry due 177 

to the limited availability of well-powered GWAS for other ancestries. Further details 178 

about the traits are available in eTable 1 in Supplement 1. 179 

 180 

Before further analysis, we implemented rigorous quality control measures on these 181 

GWAS summary statistics by aligning them with the 1000 Genomes Project Phase 3 182 

European population based on the hg19 genome build, removing SNPs lacking rsIDs or 183 

with duplicate rsIDs, restricting the analysis to autosomal chromosomes, and retaining 184 

only SNPs with a minor allele frequency (MAF) greater than 0.01. A total of 6,907,393 185 

SNPs were included in the final analysis. 186 

 187 

Genetic correlation between eGFR and CVDs 188 

In order to investigate the possible shared genetic basis of eGFR and CVDs, we 189 

estimated SNP-based heritability (h2
SNP) and evaluated genome-wide genetic 190 

correlation (rg) by means of cross-trait linkage disequilibrium (LD) score regression 191 

(LDSC) method.22 LDSC estimates the genetic contribution to complex diseases and 192 

traits by quantifying the LD between each SNP and its neighbors. Initially, we 193 

performed univariate LDSC to estimate h2
SNP, which reflects the proportion of 194 

phenotypic variation in a trait explained by shared genetic variants. LD scores were 195 

calculated for each SNP using genotypes of common SNPs within a 10 Mb window 196 
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sourced from the 1000 Genomes Project Phase 3 European population. SNPs in the 197 

major histocompatibility complex (MHC) region (chromosome 6: 25-35 Mb) were 198 

excluded due to their intricate LD structure. We then conducted bivariate LDSC to 199 

assess the rg between eGFR and CVDs, using regression of LD scores against the 200 

product of z statistics from the respective diseases and traits. The rg ranges from -1, 201 

representing a complete negative correlation, to +1, representing a complete positive 202 

correlation, with values closer to these extremes indicating stronger correlations. The 203 

intercept from LDSC may indicate a possible sample overlap among the GWAS data 204 

sets; however, it is possible to estimate the rg in an unbiased manner, even with 205 

overlapping samples. After evaluating all pairwise rg, we applied a Bonferroni 206 

correction for multiple comparisons, setting the significance threshold at P < 8.33×10-3 207 

(0.05 / 6). 208 

 209 

In order to evaluate the biological basis of the shared genetic predisposition to eGFR 210 

and CVDs, we performed stratified LDSC applied to specifically expressed genes 211 

(LDSC-SEG) to identify possible enrichment of related tissue and cell types. This 212 

method integrates multi-tissue gene expression data from sources like the 213 

Genotype-Tissue Expression (GTEx) and Franke Lab, as well as multi-tissue chromatin 214 

information from the Roadmap Epigenomics and ENCODE datasets. The GTEx 215 

project provided statistics representing key tissue types and their specific expression 216 

across 49 tissues using baseline models and complete genomes. Additionally, we 217 

incorporated tissue-specific histone marker annotations from the Roadmap 218 

Epigenomics project. This included narrow peaks for DNase Hypersensitivity, 219 

H3K27ac, H3K4me1, H3K4me3, H3K9ac, and H3K36me3 chromatid. For identified 220 

relevant tissues or cell types, we used the false discovery rate (FDR) method to correct 221 

for each dataset, with a significance threshold of FDR < 0.05. 222 

 223 

Genetic overlap between eGFR and CVDs 224 

LDSC primarily measures the average genetic correlation of effect sizes for all SNPs 225 

across the genome. This approach can potentially obscure the shared genetic 226 
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architectures involving a mixture of concordant and discordant effect directions and 227 

may fail to capture specific overlapping loci and relevant genes. To address this 228 

limitation and quantify the polygenic overlap between eGFR and CVDs, we employed 229 

the causal mixture modeling approach (MiXeR).23 Firstly, univariate MiXeR analyses 230 

were performed to estimate polygenicity (i.e., the count of variants explaining 90% of 231 

h2
SNP) and discoverability (the proportion of phenotypic variance attributable to causal 232 

variant effect sizes).23 We used data from the 1000 Genomes Project Phase 3 European 233 

population for our analyses and excluded SNPs within the structurally complex MHC 234 

region (CHR 6: 26-35 Mb). Subsequently, bivariate MiXeR analyses were conducted to 235 

ascertain the total count of trait-specific and shared causal SNPs visually represented in 236 

Venn diagrams. This delineation covers four components: unique causal variants for 237 

trait 1, unique for trait 2, shared causal variants, and shared non-causal variants. MiXeR 238 

calculates Dice coefficient scores (ranging from 0 to 1) to gauge polygenic overlap and 239 

estimates the proportion of SNPs with concordant effects within the shared genetic 240 

component. Additionally, MiXeR computes the rg and the correlation of effect sizes 241 

within the shared genetic component (rgs). To evaluate model fit, indicative of MiXeR's 242 

predictive accuracy against actual GWAS data, we constructed conditional 243 

quantile-quantile (Q-Q) plots, used the Akaike Information Criterion (AIC), and 244 

generated log-likelihood plots. A model-based Q-Q plot that closely aligns with the 245 

actual Q-Q plot indicates strong predictive capability. A positive AIC value suggests 246 

the model adequately distinguishes itself from comparative models, indicating a 247 

reliable fit. Conversely, a negative AIC implies that the MiXeR model does not 248 

significantly differentiate from scenarios of maximum or minimum genetic overlap, 249 

rendering the genetic overlap estimate potentially unreliable. 250 

 251 

Local genetic correlation between eGFR and CVDs 252 

To estimate local genetic correlations (local-rgs) between eGFR and CVDs within 253 

specific genomic regions and identify loci with mixed effect directions, we utilized the 254 

Local Analysis of [co]Variant Annotation (LAVA).24 LAVA captures detailed patterns 255 

of shared genetic loci across individuals, revealing mixed effect directions obscured by 256 
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genome-wide rg estimates due to opposing effects across genomic regions. Unlike the 257 

genome-wide correlation analysis using LDSC, which considers the entire genome, 258 

LAVA divides the genome into 2,495 local LD blocks and estimates rg within each 259 

block. Differing from MiXeR's method of estimating the proportion of shared ‘causal’ 260 

variants with concordant effects, LAVA identifies mixed effect directions by capturing 261 

significantly correlated genetic loci. Our study began with a univariate LAVA analysis 262 

to estimate local heritability for each phenotype, considering loci with p-values < 263 

1×10-4 as significant genetic signals. This approach identified 425 loci for subsequent 264 

bivariate tests to estimate pairwise bivariate local-rgs across the genome. We adjusted 265 

the p-values for local-rgs based on the number of bivariate tests, setting a 266 

Bonferroni-corrected significance threshold at P < 1.18×10-4 (0.05/425). 267 

 268 

Additionally, we employed Hypothesis Prioritisation for multi-trait Colocalization 269 

(HyPrColoc) on genomic regions with shared risk loci across multiple phenotypes to 270 

elucidate potential biological mechanisms linking traits. HyPrColoc, a Bayesian 271 

approach, identifies clusters of co-localization and candidate cause variants in the same 272 

genomic locus. It estimates the posterior probability (PP) of colocalization of multiple 273 

traits within a single causal variant, considering PP > 0.7 as significant evidence of 274 

colocalization. This method enhances our understanding of how genetic variants 275 

contribute to multiple traits, offering insights into complex trait interactions. 276 

 277 

Mendelian randomization analysis between eGFR and CVDs 278 

The genetic correlation and overlap analysis explored the shared genetic foundation 279 

between eGFR and CVDs; however, whether their relationship is mediated by vertical 280 

or horizontal pleiotropy remains unclear. Latent Heritable Confounder Mendelian 281 

Randomization (LHC-MR)25 provides valuable insights into the causal relationship 282 

between eGFR and CVDs by utilizing vertical pleiotropy. This approach makes full use 283 

of all genome-wide variations, improves statistical capacity, and corrects for sample 284 

overlap, rather than just significant loci throughout the genome. Critically, LHC-MR is 285 

able to distinguish between SNPs according to their co-association with a set of traits, 286 
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and to differentiate heritable confounding that results in rg. This capability allows 287 

LHC-MR to provide concurrent unbiased estimates of bidirectional causal and 288 

confounder effects. The LHC-MR framework accommodates multiple pathways 289 

through which SNPs can affect the traits, including allowing for null effects, thereby 290 

enabling precise causal effect estimations. Causal estimates from LHC-MR are 291 

presented as odds ratios (ORs) with corresponding 95% confidence intervals (CIs). 292 

Causality is considered unidirectional if P is lower than the Bonferroni-corrected 293 

threshold (0.05 / 6 / 2 = 4.17×10-3) and the P-value of the effect in the opposite 294 

direction is greater than 0.05. Bidirectional causality is considered if P < 4.17×10-3 in 295 

both directions. Additionally, we employed several methods as sensitivity analyses to 296 

validate the results, including the inverse variance weighted (IVW) method, the 297 

weighted median, MR-Egger, simple mode, and weighted mode. These analyses help 298 

confirm the robustness of the causal inferences drawn from our study. 299 

 300 

SNP-level analysis  301 

Identification of pleiotropic loci between eGFR and CVDs 302 

In order to explore the effect of horizontal pleiotropy between eGFR and CVDs, we 303 

used Pleiotropic Analysis under the Composite Null Hypothesis (PLACO) to clarify the 304 

shared genetic mechanisms underlying these conditions.26 PLACO identifies 305 

pleiotropic loci between two traits by testing the compound null hypothesis that a locus 306 

is related to either none or only one of them. This hypothesis is further subdivided into 307 

specific sub-scenarios: (1) M00, indicating no association with any trait; (2) M10 and 308 

M01, each indicating an association with only one of the traits; and (3) M11, 309 

representing a pleiotropic association with both traits. This method calculates the 310 

PLACO statistics by multiplying the Z-scores of the two traits (Ztrait1 × Ztrait2) while 311 

excluding SNPs with squared Z-values above 100 to mitigate spurious signals of 312 

pleiotropy. SNPs are considered to exhibit significant genome-wide pleiotropy if their 313 

PPLACO is less than 5×10-8. 314 

 315 

Genomic loci definition and functional analysis 316 
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To identify pleiotropic SNPs associated with eGFR and CVDs, we utilized the 317 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 318 

platform. FUMA integrates data from a variety of biological databases to improve 319 

functional annotation, gene prioritization, and interactive visualization of GWAS 320 

outcomes.27 We calculated LD scores using the 1000 Genomes Phase III European 321 

population as a reference. Firstly, independently significant SNPs achieving 322 

genome-wide significance (P < 5.0 × 10−8 and r2 < 0.6) were identified. Lead SNPs 323 

were then determined based on their independence (r2 < 0.1). Genomic risk sites were 324 

delineated by merging lead SNPs within 500 kb of each other, allowing these sites to 325 

contain multiple lead SNPs. The top lead SNP at each site, defined by the lowest P 326 

value, was selected. Additionally, the directional impact of these sites was assessed by 327 

comparing Z-scores between eGFR and CVD, providing insights into their potential 328 

roles in these conditions. A GWAS site was considered novel if none of its lead, 329 

independent, or candidate SNPs overlapped with SNPs previously reported in GWAS 330 

meta-analyses. Using LocusZoom, we created a regional association plot with gene 331 

tracks, allowing us to examine the details of the relationship between each locus. To 332 

predict the functional outcomes of Top SNPs, we matched SNPs to databases 333 

containing established functional annotations, including the Annotate Variation 334 

(ANNOVAR) category, Combined Annotation-Dependent Depletion (CADD) score, 335 

RegulomeDB (RDB) score, and chromatin state.28-30 The CADD score is used to 336 

predict the deleteriousness of SNP effects, incorporating 63 functional annotations. A 337 

threshold of 12.37 is generally recognized as indicative of deleterious variants, and thus, 338 

we filtered SNPs with a CADD score greater than 12.37 for location mapping. In order 339 

to prioritize eQTL genes and explore their potential regulatory role, we used 340 

RegulomeDB, which provides functional interpretation of SNPs based on curated 341 

references. The RegulomeDB scoring system, ranging from 1a (most regulatory 342 

potential) to 7 (least), helps evaluate the regulatory likelihood of SNPs. Additionally, 343 

chromatin states were used to delineate the regulatory landscape of genomic regions, 344 

with 15 classes of states predicted using 5 chromatin markers across 127 epigenomes 345 

via the ChromHMM tool.31 Two methods were employed to map SNPs to genes: (i) 346 
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positional mapping, which assigns SNPs to genes based on their physical proximity 347 

(within a 10kb window) to known protein-coding genes in the human reference 348 

assembly, and (ii) eQTL mapping, which links SNPs to genes based on significant 349 

eQTL associations, where allelic variations in an SNP correlate with variations in gene 350 

expression levels, as identified using the GTEx database. This approach improves our 351 

understanding of the genetic structure by linking SNPs to potential functional 352 

outcomes. 353 

 354 

Colocalization analysis 355 

For FUMA-annotated pleiotropic loci, we performed a Bayesian colocalization 356 

analysis to identify potential common causal variations between trait pairs. COLOC 357 

employs a Bayesian framework to calculate the PP of five distinct hypotheses 358 

concerning shared causal variation within a genomic region.32 These hypotheses assess 359 

whether one or both traits share causal variations at a specific locus. Specifically, the 360 

hypotheses are as follows: i) PPH0: Neither trait has causal variation at the locus; ii) 361 

PPH1: Only the first trait has causal variation at the locus; iii) PPH2: Only the second 362 

trait has causal variation at the locus; iv) PPH3: Each trait has a different causal 363 

variation within the locus; v) PPH4: Both traits share a causal variation within the 364 

locus.33 The SNP exhibiting the highest PPH4 within the locus is identified as the 365 

candidate causal variant. Loci are considered colocalized if the PPH4 exceeds 0.7, 366 

indicating a strong likelihood that the locus harbors shared causal variations for the 367 

traits under study. 368 

 369 

 370 

Gene-level analysis using MAGMA, eMAGMA and TWAS 371 

To identify candidate pleiotropic genes further, we conducted Multi-marker Analysis of 372 

GenoMic Annotation (MAGMA) based on results from PLACO and individual GWAS. 373 

MAGMA uses the SNP average model within the multi-regression framework to derive 374 

P values, and to estimate the association of the gene, and to adjust for factors such as 375 

the size of the gene, the number of SNP for each gene, and the LD between markers.34 376 
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Our analysis referenced the 1000 Genomes Project Phase 3 European population and 377 

used the Genome Reference Consortium Human Build 37 (hg19) for SNP locations and 378 

gene annotations. We analyzed 17,636 protein-coding genes on the MAGMA software 379 

website, focusing on genes containing at least ten SNPs to ensure computational 380 

stability. Gene based testing involves extending 10kb upstream and downstream of the 381 

gene transcription start and end sites. Because of their complicated LD patterns, we 382 

ruled out MHC regions (chr6: 25 - 35 Mb). Strict Bonferroni correction was used for 383 

adjustment for multiple trials, and in the MAGMA analysis based on the PLACO 384 

results, a significant threshold of P < 4.23×10-7 (0.05 / 17636 / 6) was established. 385 

 386 

The inherent limitations of MAGMA, which assigns SNPs based solely on proximity to 387 

genes without accounting for functional associations such as gene regulation, can 388 

hinder its effectiveness in elucidating the underlying mechanisms of genetic variants. 389 

To overcome this and delve deeper into the functional implications of genetic variants 390 

associated with eGFR and CVDs, we employed the EQTL-informed MAGMA 391 

(E-MAGMA).35 Operating within the same statistical framework as MAGMA, 392 

E-MAGMA uses a multi-principal component linear regression model to leverage 393 

tissue-specific eQTL data from multiple sources, aiming to identify potential causal 394 

genes for phenotypic traits. Our study utilized eQTL data from 47 tissues, enriched for 395 

differentially expressed genes in tissues as provided by the Genotype-Tissue 396 

Expression Project version 8 (GTEx v8), and referenced the 1000 Genomes Project 397 

Phase 3 European population. To mitigate potential confounding effects from the broad 398 

range of tissues, we focused on 11 specific tissues that were identified by LDSC-SEG 399 

analysis, including arterial, adipose, cardiac, whole blood, liver, EBV-transformed 400 

lymphocytes, and kidney tissues. We excluded kidney tissue from our analysis due to 401 

the absence of reference in E-MAGMA. We applied Bonferroni-adjusted p-value 402 

thresholds to accommodate multiple testing, calculated based on the number of genes 403 

analyzed in E-MAGMA and the number of statistically significant trait pairs tested. For 404 

example, the threshold for subcutaneous fat was defined as P < 8.67 × 10-7 (0.05 / 9,603 405 

/ 6). 406 
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 407 

We conducted the Transcriptome-wide Association Study (TWAS) using single-trait 408 

GWAS results to explore the tissue specific gene expression correlation between eGFR 409 

and CVDs. TWAS combines eQTL and summary association statistics from large scale 410 

GWAS to identify genes that are associated with complex traits.36 For gene expression 411 

prediction, we utilized the FUSION tool with default settings, employing various 412 

methods, including best linear unbiased prediction (BLUP), Bayesian sparse linear 413 

mixed model (BSLMM), least absolute shrinkage and selection operator (LASSO), 414 

elastic net (ENET), and Top SNP, which were used to estimate the cis-genetic 415 

component of tissue-specific gene expression. We selected the most effective predictive 416 

model to determine gene expression weights and used GWAS summary statistics to 417 

conduct the TWAS. In addition, we used the Bonferroni correction to adjust for 418 

multiple comparisons between the different tissue types analyzed. 419 

 420 

Pathway-level analysis using MAGMA and Metascape 421 

We conducted a MAGMA gene set analysis to elucidate the biological functions of 422 

genes exhibiting pleiotropic effects on eGFR and CVDs. This analysis employs a 423 

competitive gene set framework to assess whether specific gene sets are more strongly 424 

associated with a particular phenotype than the broader genomic background. Our 425 

approach integrates gene definitions and their respective signals using MAGMA's 426 

gene-based multi-marker method. The analyzed gene set is derived from Gene 427 

Ontology (GO) and Reactome pathways, as listed in the Molecular Feature Database 428 

(MSigDB v7.5). The significance threshold was set to P < 0.05 / (7744 + 1654) / 6, 429 

adjusted for the number of GO and Reactome pathways, as well as the number of trait 430 

pairs analysed. To elucidate the biological processes and signaling pathways associated 431 

with eGFR and CVDs, we conducted Metascape analysis on the overlapping genes 432 

identified by MAGMA and EMAGMA. Metascape provides comprehensive annotation 433 

of gene and protein, enrichment analysis, and protein-protein interaction networks, 434 

which can help to better understand the functions of genes.37 We used Metascape to 435 

perform GO annotation and Reactome enrichment analysis, which utilizes the 436 
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hypergeometric test to identify significant ontology terms. The GO resource offers a 437 

framework and concepts to describe gene product functions across all organisms, while 438 

the Reactome knowledgebase details cellular processes, such as signaling, transport, 439 

DNA replication, and metabolism, as ordered networks of molecular transformations. 440 

Pathways with a p-value＜0.01 were considered significant. 441 

 442 

Proteome-wide Mendelian Randomization analysis using SMR 443 

To investigate potential associations between plasma protein levels and disease 444 

susceptibility, we employed Summary data-based Mendelian Randomization (SMR). 445 

This analysis integrated plasma protein quantitative trait locus (pQTL) summary 446 

statistics from the UK Biobank Pharmaceutical Proteomics Project (UKB-PPP) with 447 

GWAS summary statistics for various diseases. The UKB-PPP data, derived from the 448 

Olink proteomics platform, includes genetic associations for 2,940 plasma proteins 449 

across a cohort of 34,557 Europeans. In this context, cis-pQTLs are defined as SNPs 450 

located in the 1Mb window surrounding the transcription start site (TSS) of each 451 

protein. For SMR analysis, we only took into account the cis-pQTLs related to plasma 452 

protein levels at the genome-wide significance threshold (P < 5 × 10-8). SMR, a method 453 

that utilizes summary-level data, assesses potential causal relationships between 454 

exposures (e.g., plasma protein levels) and outcomes (e.g., traits or diseases). In order 455 

to distinguish between pleiotropy and linkage in the cis-pQTL region, we tested 456 

multiple SNPs using the heterogeneity of instrument-dependent (HEIDI) method. 457 

Results indicating pleiotropy (HEIDI test P < 0.01) were excluded from further analysis. 458 

In recognition of the limitations of single-SNP analyses, we also performed a 459 

sensitivity analysis using a multi-SNP-SMR test, with a P value of < 0.05 being 460 

significant. A Bonferroni correction was applied to the number of unique proteins to be 461 

analyzed, and a significance threshold was set at P < 3.65×10-6 (0.05 / 1958 / 7). 462 

Additionally, we performed COLOC analysis to determine if the same causal variation 463 

is responsible for the association of protein levels with disease phenotype. The PP.H4 > 464 

0.7 for shared causal variants indicates significant colocalization of GWAS and pQTL. 465 

 466 
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Result 467 

Genome-wide genetic correlation between eGFR and CVDs 468 

After implementing stringent quality control, we utilized LDSC to assess h2
SNP and 469 

genome-wide rg between eGFR and CVDs. We used univariate LDSC to estimate h2
SNP 470 

for eGFR and each CVD. The SNP heritability estimate was highest for eGFR (h2
SNP = 471 

0.0708, SE = 0.0036). Among these CVDs, heritability estimates ranged from 0.0060 472 

for Stroke, the lowest (SE = 0.0005), to 0.0324 for CAD, the highest (SE = 0.0019) 473 

(Supplementary Fig. 1a and Supplementary Table 2a).We then conducted bivariate 474 

LDSC analysis to explore the rg between eGFR and CVDs. This revealed significant 475 

negative rg for two trait pairs: eGFR and Stroke (rg = -0.0985, SE = 0.0309) and eGFR 476 

and VTE (rg = -0.0783, SE = 0.0238), both surpassing the Bonferroni-corrected 477 

significance threshold (P < 8.33×10-3) (Supplementary Fig. 1b and Supplementary 478 

Table 2b). However, no significant rg was found between eGFR and AF, CAD, HF, or 479 

PAD. 480 

 481 

Polygenic overlap and local genetic correlation between eGFR and CVDs 482 

Nevertheless, previously described rg may underestimate the genetic overlap between 483 

eGFR and CVDs. The fact that there is no significant rg does not necessarily mean that 484 

there is no common genetic component among these traits. Indeed, the rg measure does 485 

not distinguish between mixtures of concordant and discordant genetic effects and a 486 

true absence of genetic overlap. To address this limitation and more comprehensively 487 

elucidate the shared genetic underpinnings of complex polygenic features, we 488 

employed advanced analytical tools, MiXeR and LAVA, specifically designed to 489 

provide more detailed insights into genetic architectures that traditional analyses might 490 

obscure. 491 

 492 

We conducted MiXeR analyses to quantify the polygenic genetic overlap between 493 

eGFR and CVDs, accounting for mixed effect directions. Initially, univariate MiXeR 494 

analyses estimated that approximately 2,044 variants (SD = 111) influence eGFR. 495 

Among the CVDs, HF had the highest polygenicity, with 2,286 'causal' variants 496 
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accounting for 90% of HF h2
SNP (SD = 215), followed by CAD with 1,431 variants (SD 497 

= 311), and stroke with 1,039 variants (SD = 120) (Supplementary Table 3a). 498 

Subsequently, bivariate analyses revealed significant polygenic overlap between eGFR 499 

and these CVDs, with Dice coefficients ranging from 0.024 to 0.457 (Fig. 2a, 500 

Supplementary Fig. 2, Supplementary Table 3b). Notably, eGFR displayed a moderate 501 

genetic overlap with diseases like CAD (Dice = 0.457), HF (Dice = 0.39), and stroke 502 

(Dice = 0.35). Among these, the eGFR-HF pair possessed the highest number of shared 503 

'causal' variants (841, SD=151), accounting for substantial proportions of variants 504 

affecting each condition (41.1% for eGFR and 36.8% for HF), suggesting highly 505 

similar genetic architectures between these two traits. However, the genetic correlation 506 

(4.78×10-4, SD=9.83E-3) and the correlation coefficients of genetic risk (9.62×10-4, 507 

SD=0.024) between eGFR and HF were notably weak. This extensive genetic overlap, 508 

coupled with weak rg, highlights the existence of mixed effects, as demonstrated by the 509 

proportion of shared 'causal' variants with consistent effects (0.50, SD = 0.007). A 510 

similar relationship was observed between eGFR-CAD and eGFR-Stroke, with the rg 511 

and rgs (rg = -0.098; rgs = -0.269) of eGFR-Stroke consistent with their 512 

LDSC-estimated significant negative genetic correlations. Compared to diseases with 513 

lower polygenicity, such as AF, VTE, and PAD, eGFR is characterized as a highly 514 

polygenic trait, leading to significant disparities in the number of shared and unique 515 

'causal' variants. For instance, the eGFR-VTE pair demonstrated mild genetic overlap 516 

(Dice = 0.177) with 211 shared variants (SD = 83), accounting for 10.3% of eGFR's and 517 

66.2% of VTE's heritability, and exhibited the highest genetic risk correlation (rg = 518 

-0.115, SD = 0.007). Conversely, the eGFR-PAD pair had the fewest shared variants (28, 519 

SD = 15), but the shared genetic components showed the strongest correlation (rgs = 520 

0.567, SD =0.351), indicating that while many eGFR-associated variants do not 521 

influence PAD, those that do have highly similar effects (Supplementary Fig. 2). 522 

 523 

LAVA, which calculates local-rgs, was employed to explore further the relationships 524 

between eGFR and CVDs, revealing mixed effect directions. First, univariate analyses 525 

were conducted to identify heritable regions, filtering out loci devoid of univariate 526 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.26.24310191doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.26.24310191
http://creativecommons.org/licenses/by-nc-nd/4.0/


heritability (Supplementary Table 4), leading to 425 bivariate tests. While no 527 

significant genome-wide rg emerged between eGFR and diseases such as AF, CAD, HF, 528 

or PAD, LAVA identified specific regions with significant local-rgs (P < 0.05, Fig.2b 529 

and Supplementary Table 5). This was particularly notable between eGFR and CAD, 530 

where 27 positively and 28 negatively correlated regions were found, suggesting that 531 

the overall non-significant genome-wide correlation could result from 532 

counterbalancing local effects. Similarly, mixed effects were observed with other 533 

diseases: eGFR and AF exhibited 17 positive and 18 negative regions, HF showed 5 534 

positive and 4 negative regions, and PAD had an equal number of positive and negative 535 

regions (4 each). Contrary to these, eGFR and VTE displayed more negatively 536 

correlated regions (12 positive / 23 negative), aligning with the negative genome-wide 537 

correlations estimated by LDSC. However, the findings for eGFR and Stroke, which 538 

presented more positively than negatively correlated regions, did not consistently align 539 

with the negative rg estimated by LDSC, though 5 negatively correlated regions were 540 

still identified. After applying the Bonferroni correction, 36 genetic regions showed 541 

significant local-rgs. Notably, three genetic regions were linked to multiple trait pairs: 542 

LD block 96 on chromosome 1 was associated with both eGFR-CAD and eGFR-VTE; 543 

LD blocks 673 on chromosome 4 and 1057 on chromosome 6 exhibited correlations 544 

between eGFR-AF and eGFR-CAD. Further analysis using HyPrColoc identified 545 

shared causal variants, with SNP rs12740374 in LD block 96 showing strong 546 

co-localization evidence of influencing eGFR-VTE and CAD with a PP greater than 547 

0.7. 548 

 549 

In summary, we systematically quantified the genetic overlap between eGFR and six 550 

major CVDs using MiexR and LAVA, going beyond simple genome-wide rg. These 551 

analyses highlighted significant shared genetic bases between eGFR and the CVDs, 552 

which were not apparent from traditional genome-wide studies alone. Building on these 553 

findings, we performed further pleiotropy analysis to delve deeper into the molecular 554 

mechanisms underlying these trait pairs. 555 

 556 
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Causal effects identified between eGFR and CVDs 557 

Based on the above-mentioned common genetic basis between eGFR and CVDs, we 558 

implemented multiple pleiotropy methods to reveal the potential mechanisms of 559 

vertical or horizontal pleiotropy. Among them, in terms of vertical pleiotropy, we used 560 

LHC-MR technology to study causal relationships while controlling bias and 561 

confounding factors. Our analysis found that AF had a significant reverse causal effect 562 

on eGFR (OR: 0.806; 95% CI = 0.720 to 0.903), which suggests that the presence of AF 563 

may reduce eGFR. In addition, we observed another pair of significant negative causal 564 

relationships, indicating that an increase in eGFR would reduce the risk of VTE (OR = 565 

0.931; 95% CI = 0.899 to 0.964) (Fig. 3, Supplementary Table 6a). These findings were 566 

confirmed by the results of the IVW method. In summary, our MR study provides 567 

strong evidence for the causal relationship between AF and eGFR and between eGFR 568 

and VTE (Supplementary Fig. 5, Supplementary Table 6b). However, it must be 569 

recognized that vertical pleiotropy alone cannot fully explain the common genetic basis 570 

between eGFR and CVDs. 571 

 572 

Pleiotropic genomic loci identified between eGFR and CVDs 573 

Given the extensive genome-wide genetic overlap, we further tested pleiotropic SNPs 574 

between eGFR and CVDs by PLACO, and a total of 20,073 SNPs (P < 5×10-8) were 575 

identified as significant pleiotropic variants. FUMA aggregated these SNPs into 508 576 

loci, involving 226 unique chromosomal regions, of which 32 loci appeared in over 50% 577 

of trait pairs (Fig. 4, Supplementary Fig 6, Supplementary Table 7). Notably, loci such 578 

as 6q25.3 (SLC22A1), 8p23.1 (BLK), 9q34.2 (ABO), and 6p21.1 (CRIP3) showed 579 

overlap across all six trait pairs, while 12q24.12 (ALDH2) appeared in five. These 580 

broad pleiotropic effects are exemplified by the common variants at 6p21.1, which are 581 

associated with both polycystic kidney disease and stroke, and by 12q24.12, a locus 582 

significant for CAD and stroke. Interestingly, 24 pleiotropic loci had not been reported 583 

in previous eGFR and CVD studies, which reported 81 and 364 loci, respectively. 584 

Targeted analysis within the 508 pleiotropic loci revealed that 139 top SNPs (27.4%) 585 

indicated an increased risk for these traits, while 118 (23.2%) indicated a reduced risk. 586 
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The remaining 251 top SNPs (49.4%) showed discordant associations, highlighting 587 

potential contrasting biological mechanisms. Functional annotation using FUMA 588 

identified that 330 SNPs (65.0%) were intronic variants, 127 (25.0%) were intergenic, 589 

and 21 (4.1%) were exonic, including 14 mRNA and 7 non-coding RNA exon variants. 590 

Moreover, 40 SNPs in these risk loci, including rs34312154 with the highest CADD 591 

score of 31, may be potentially harmful, affecting genes like HOXB1 to HOXB8. 592 

Additionally, 58 SNPs identified by RegulomeDB as potentially affecting transcription 593 

factor binding underscore the regulatory significance of these findings, with rs4918003 594 

showing the most potent evidence of regulatory potential (RDB: 1b). 595 

 596 

Further analysis of co-localization at 508 identified loci revealed that 74 loci (14.6%) 597 

exhibit high PP (PPH4 > 0.7), indicating strong evidence of shared genetic signals (Fig. 598 

4, Supplementary Fig. 7, Supplementary Table 7). Of these, 71 top SNPs were 599 

identified as candidate common pathogenic variants. Notably, the 1p13.3 locus showed 600 

significant pleiotropy, influencing the trait pairs of eGFR-CAD, eGFR-VTE, and 601 

eGFR-HF, with PP.H4 values ranging from 0.956 to 0.998. Subsequent HyPrColoc 602 

analysis identified rs660240 in the CELSR2 gene at this locus as exhibiting strong 603 

co-localization for both eGFR and HF and eGFR and VTE, with PP exceeding 0.7.  604 

 605 

Identification of pleiotropic genes between eGFR and CVDs 606 

We used MAGMA analysis to convert the SNP level signals of identified eGFR-CVDs 607 

into gene level signals, focusing on potential pleiotropy within or overlapping 508 608 

pleiotropic loci. This analysis identified 802 significant pleiotropic genes, with 579 609 

being unique. Notably, 379 genes were implicated in more than one trait pair, providing 610 

robust statistical evidence for shared genetic inheritance across diverse traits (Fig. 5, 611 

Supplementary Table 11). Specific genes such as ATXN2 (located at 12q24.12) 612 

significantly impacted five trait pairs. Additionally, genes including ABO (9q34.2), 613 

BRAP (12q24.12), SH2B3 (12q24.12), L3MBTL3 (6q23.1), MMP24 (19q13.32), 614 

MRPS21 (1q21.2), and PRPF3 (1q21.2) were significant across four trait pairs, 615 
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underscoring their pivotal roles in these genetic networks. Remarkably, the 12q24.12 616 

locus, home to ATXN2, BRAP, and SH2B3, is critical in assessing genetic risks for 617 

hypertension38 and CKD, with ATXN2 linked to myocardial infarction, renal function, 618 

and hypertension.39 Among the genes identified, 118 were not previously explored in 619 

eGFR studies, and 410 were new to CVD research, highlighting significant novel 620 

findings. Positional mapping in FUMA confirmed 97.88% of these risk genes identified 621 

by MAGMA, further solidifying the evidence for a shared genetic framework across 622 

these trait pairs (Supplementary Table 9). 623 

 624 

We employed the LDSC-SEG method to perform tissue-specific genetic analysis, 625 

identifying distinct tissue associations for each trait. The analysis revealed significant 626 

gene expression enrichment for eGFR in the renal cortex and liver tissues. Similarly, 627 

AF showed considerable enrichment in the atrial appendage and cardiac left ventricular 628 

tissues, while CAD was significantly enriched in the aorta, coronary artery, and tibial 629 

artery tissues, with all exceeding an FDR threshold of 0.05. Subsequent LDSC-SEG 630 

chromatin analysis corroborated these findings, enhancing the resolution by detecting 631 

significant tissue chromatin signals associated with eGFR, AF, and CAD traits 632 

(Supplementary Fig. 3, Supplementary Table 14). 633 

 634 

We conducted E-MAGMA analysis on ten related tissues using tissue-specific eQTL 635 

information, which identified 1,276 pleiotropic genes that remained significant after 636 

Bonferroni correction, showing strong enrichment in at least one of the analyzed tissues 637 

(Supplementary Table 15). Particularly noteworthy, 26 genes were prevalent in over 50% 638 

of trait pairs, with KAT5 and PROCR appearing in five trait pairs each and BLK and 639 

SLC22A1 in four. KAT5, or lysine acetyltransferase 5, serves a dual role; it regulates the 640 

level of acetylation of target proteins, affecting the expression of inflammation related 641 

genes and the intensity of inflammatory responses. This regulatory function is crucial, 642 

as abnormal expression or dysfunction of KAT5 can elevate cardiovascular disease risks 643 

by affecting the inflammatory pathway.40 Additionally, KAT5 acts as a DNA repair 644 

factor, vital for preventing ischemic acute kidney injury (AKI), primarily by regulating 645 
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glomerular filtration.41 Therefore, the normal function and activity of KAT5 are critical 646 

in preventing or alleviating AKI and indirectly maintaining or enhancing eGFR levels. 647 

We also performed the TWAS to assess the tissue specificity of pleiotropic genes for 648 

each trait, leading to the discovery of 354 new genes associated with eGFR and 142 649 

new genes related to various CVDs (Supplementary Table 16). Furthering our 650 

investigation, we utilized FUMA for eQTL mapping, identifing 2,049 genes, of which 651 

71.40% were confirmed by our analysis to be associated with the traits under study 652 

(Supplementary Table 9). 653 

 654 

MAGMA and E-MAGMA analyses have jointly identified 424 pleiotropic genes, 655 

including 314 unique ones, shedding light on the common mechanisms underlying 656 

various trait pairs (Supplementary Table 11). Notably, 76 of these genes recur across 657 

multiple trait pairs, with genes such as MMP24, L3MBTL3, and ABO being prominent 658 

in half or more of the analyzed traits. Specific genes like ABO (9q34.13), PROCR 659 

(20q11.22), BLK (8p23.1), ALDH2 (12q21.31), and SLC22A1 (6q25.3) each featured in 660 

three different trait pairs, highlighting their significant roles in multiple pathologies. 661 

For instance, L3MBTL3 has been implicated in renal dysfunction and cardiovascular 662 

pathogenesis, illustrating the interconnectedness of renal and cardiovascular systems. 663 

MMP24's dysregulated expression, associated with renal tubular atrophy and diabetic 664 

nephropathy (DN), may contribute to structural and functional kidney impairments that 665 

exacerbate cardiovascular risk. In addition, the ABO gene, which is associated with 666 

changes in von Willebrand factor (VWF) plasma levels, plays a key role in regulating 667 

platelet function and atherosclerosis, thus affecting the severity of CAD. While the 668 

precise mechanisms connecting ABO genes to eGFR remain elusive, their association 669 

with conditions like type 2 diabetes (T2D) and hypertension, which are main risk 670 

factors for CKD, likely impacts eGFR.42 671 

 672 

Shared biological mechanisms between eGFR and CVDs 673 

We employed the MAGMA algorithm to assess pathway enrichment among the 674 
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identified genes, setting a stringent Bonferroni-corrected threshold (P < 8.87×10-7). 675 

This analysis revealed 78 significantly enriched pathways, comprising 73 Gene 676 

Ontology Biological Process (GO BP) terms and 5 Reactome gene set pathways, 677 

indicative of key biological processes (Supplementary Table 17a). Notably, pathways 678 

such as the positive regulation of macromolecule biosynthetic processes, transcription 679 

by RNA polymerase II, and RNA metabolic processes were enriched in half or more of 680 

the trait pairs, highlighting their crucial roles in the regulation of core biological 681 

processes that contribute to the development of the studied traits. 682 

 683 

Further analysis of pathway enrichment for overlapping genes, identified in multiple 684 

trait pairs from MAGMA and E-MAGMA analyses, was conducted using the 685 

Metascape website (Supplementary Table 17b). This analysis pinpointed 16 686 

significantly enriched pathways predominantly involved in regulating biosynthetic and 687 

metabolic processes, lipid metabolism, and receptor signal transduction. The pathways 688 

related to glutathione breakdown and stem cell maintenance were critical and had 689 

profound implications for eGFR and CVDs. The antioxidant and anti-inflammatory 690 

properties of glutathione are essential for cardiovascular protection. However, its 691 

degradation may elevate the risk of CVDs through mechanisms linked to renal 692 

insufficiency. Moreover, the protective roles of endothelial progenitor cells (EPC) and 693 

stem cell factor (SCF) within the kidney are critical for maintaining eGFR and CVDs 694 

health, implying that diminished activity in these pathways could adversely affect renal 695 

and cardiovascular systems. 696 

 697 

Proteome-wide Mendelian Randomization analysis for eGFR and CVDs 698 

We conducted a SMR analysis utilizing GWAS summary data for eGFR, six major 699 

CVDs, and plasma protein pQTLs. This analysis identified 78 risk proteins, 32 linked 700 

to eGFR and 46 to CVDs, validated through HEIDI evaluation (P > 0.01), multiple 701 

SNP-SMR sensitivity analysis (P < 0.05), and Bonferroni corrections (PSMR < 0.05 / 702 

(1958×7)). Subsequently, we investigated potential pleiotropic effects within specific 703 

eGFR-CVD pairs, identifying three signature pairs that contain pleiotropic proteins 704 
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(Supplementary Table 18). Notably, CELSR2 was common between eGFR-CAD and 705 

eGFR-VTE, while FGF5 linked eGFR-AF and eGFR-CAD. Additionally, a 706 

colocalization analysis of these 78 proteins sought to identify common pathogenic 707 

variants associated with specific eGFR or CVDs signatures. This analysis showed 708 

strong evidence of colocalization for 49 proteins (41 unique), with 17 proteins 709 

associated with eGFR and 32 with CVDs. Proteins such as CELSR2 and FGF5, 710 

emphasized in the SMR analysis, displayed strong evidence of colocalization across 711 

three identified signature pairs, underscoring a shared pathogenic pathway across these 712 

conditions. 713 

 714 

Discussion 715 

In this study, a comprehensive genome-wide pleiotropy analysis was carried out to 716 

investigate the genetic correlation and overlap between eGFR and CVDs, uncovering a 717 

complex shared genetic foundation. Our detailed investigations identified key 718 

pleiotropic loci and genes, including L3MBTL3, MMP24, and ABO, and illuminated 719 

crucial biological pathways such as stem cell population maintenance and glutathione 720 

metabolism. Additionally, using MR analysis, we indicated a causal relationship 721 

between eGFR and VTE, as well as between AF and eGFR. Collectively, the results 722 

provide a better understanding of the shared genetic etiology and biological 723 

mechanisms that underlie the relationship between eGFR and CVDs, opening new 724 

avenues for targeted therapeutic strategies and further research. 725 

 726 

Our analysis probed the shared genetic architectures of eGFR and six major CVDs 727 

using complementary genetic tools—LDSC, MiXeR, and LAVA—to reveal extensive 728 

shared genetic bases across all trait pairs. LDSC highlighted significant negative global 729 

rg between eGFR and VTE and Stroke, contrasting with previous studies that reported 730 

no significant associations. This underscores the advantage of our approach and the 731 

benefits of a larger sample size. Despite the absence of significant global correlations 732 

for certain traits, MiXeR identified substantial overlap for CAD, HF, and AF with 733 

eGFR, indicating mixed effect directions even when global correlations are not evident. 734 
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LAVA provided further insights into local-rgs, revealing mixed effect directions not 735 

apparent from genome-wide estimates, such as those observed between eGFR and 736 

CAD, which exhibited both positively and negatively correlated loci. This suggests a 737 

more nuanced genetic relationship than previously recognized. Moreover, employing 738 

bivariate MiXeR revealed extensive genetic overlap between eGFR and CAD, 739 

supported by LAVA's local-rgs, highlighting concordant and discordant effect 740 

directions. Our comprehensive analysis confirms the shared genetic foundations 741 

between eGFR and various CVDs, indicating multiple common genetic variants 742 

influencing critical biological pathways. 743 

 744 

Our findings elucidate the shared genetic bases between eGFR and CVDs, attributable 745 

to both horizontal pleiotropy and direct causal mechanisms (vertical pleiotropy). Our 746 

MR analysis effectively separated potential causal effects from other genetic influences. 747 

Notably, the LHC-MR results identified a reverse causal relationship of eGFR on VTE, 748 

a finding supported by Yuan et al.43 This causal relationship is likely driven by impaired 749 

kidney function, which increases coagulation factors and decreases endogenous 750 

anticoagulants, collectively promoting thrombus formation. Additionally, our analysis 751 

indicates a potential causal influence of AF on eGFR, aligning with previous studies 752 

that suggest AF can lead to renal impairments via mechanisms such as 753 

thromboembolism and reduced renal microvascular blood flow.12,44 However, our 754 

analysis did not establish causal relationships for other trait pairs, suggesting that while 755 

genetic overlaps between eGFR and CVDs are partially driven by causality, the 756 

complexity of these relationships varies across different conditions. 757 

 758 

Our cross-trait meta-analysis has identified many genome-wide significant pleiotropic 759 

loci associated with eGFR and CVDs. Notably, loci such as 8p23.1 (BLK) and 6q25.3 760 

(SLC22A1) demonstrated significance across six trait pairs, while others like 12q24.12 761 

(ALDH2) and 20q11.22 (PROCR) were significant in over 50% of the trait pairs. 762 

Specifically, the BLK gene at 8p23.1 enhances insulin synthesis and secretion, linking 763 

it to CKD symptoms and complications in nephropathy and diabetes by increasing the 764 
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production of pro-inflammatory cytokines. BLK is also identified as a susceptibility 765 

gene for Kawasaki disease,45 a systemic vasculitis that can impact coronary arteries and 766 

increase CVDs risks.46 Furthermore, the locus SLC22A1 at 6q25.3 is associated with 767 

DN, a severe complication of diabetes characterized by persistent albuminuria, 768 

declining eGFR, and elevated arterial blood pressure, which elevates the risk for CVDs 769 

and cerebrovascular diseases.47 The role of this locus in hypertension underscores its 770 

potential as a mediator of underlying disease risks. The consistency of effect alleles in 771 

nearly half of the significant SNPs for both eGFR and CVD supports a positive 772 

association between these conditions and provides insights into their complex rg. 773 

 774 

Our analysis has identified several key pleiotropic genes in over 50% of the trait pairs, 775 

including L3MBTL3 (6q23.1), MMP24 (20q11.22), and ABO (9q34.2). For example, 776 

L3MBTL3 significantly influences the risk of coronary heart disease (CHD) by 777 

modulating adipogenesis, the process of fat cell differentiation. Dysfunctional adipose 778 

tissue can lead to ectopic fat accumulation, which promotes insulin resistance and other 779 

metabolic disorders, escalating the risk for obesity-related CHD. These metabolic 780 

disturbances further amplify the risk of ischemic stroke by intensifying common risk 781 

factors (such as hypertension and diabetes). Although L3MBTL3's expression in the 782 

kidney is documented, the specific mechanisms by which it affects renal function and 783 

structure remain to be fully explored. Matrix metalloproteinase-24 (MMP24) plays a 784 

key role in extracellular matrix degradation, and is linked with renal tubular atrophy 785 

and the severity of alcohol-induced renal injury and fibrosis. Dysregulated MMP24 786 

expression detrimentally impacts both renal and cardiovascular health. In DN, MMP24 787 

is implicated in abnormal extracellular matrix accumulation, leading to significant 788 

damage to the glomeruli and renal tubules and indirectly impacting eGFR.48 Given the 789 

close association of DN with T2D, a prominent risk factor for CVDs, MMP24's role in 790 

DN could indirectly heighten the risk of CVDs.49 The ABO gene, vital for determining 791 

blood group phenotypes, also affects crucial hemostatic factors such as VWF and factor 792 

VIII (FVIII), which are essential for platelet adhesion at injury sites. Individuals with 793 

non-O blood types generally exhibit higher VWF levels and are more susceptible to 794 
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VTE.50 In addition, researchers have discovered a new connection between ABO and 795 

primary glomerulonephritis, especially IgA nephropathy, where certain blood groups 796 

are linked to an increased risk of renal function decline.51 These findings highlight the 797 

complex interaction of genetics with the pathophysiology of renal and CVDs, which 798 

provides a strong basis for further study of the mechanisms and risks associated with 799 

genetic diseases. 800 

 801 

Our study also examines the role of shared genetic determinants in two critical 802 

biological pathways, including stem cell population maintenance and glutathione 803 

catabolism, and their implications for kidney function and cardiovascular health. In the 804 

stem cell maintenance pathway, MMP2452, PSRC153, and CHMP1A54 play pivotal roles 805 

by regulating the stem cell cycle, ensuring cellular quiescence, and preventing 806 

premature differentiation, respectively. These molecular actions are crucial for 807 

promoting tubular cell growth and enhancing renal function, mainly through the 808 

secretion of regenerative factors such as bone morphogenetic protein-7 and hepatocyte 809 

growth factor.55 The effectiveness of stem cell therapy in heart repair, particularly in 810 

those with elevated levels of inflammation, further underscores the importance of 811 

robust stem cells for optimal cardiovascular and renal outcomes. In the glutathione 812 

pathway, DPEP156, ORMDL3, MRPS21, and CPS157,58 are crucial for maintaining 813 

cellular redox balance and defending against oxidative stress, and they are vital for 814 

stroke prevention and kidney function maintenance.59,60 Variations in kidney function, 815 

reflected by changes in eGFR, can significantly affect glutathione turnover and its 816 

protective roles, directly linking renal and cardiovascular health.61 Our findings suggest 817 

that targeted modulation of these key genes could significantly enhance kidney and 818 

heart repair and regeneration, thus improving eGFR and decreasing the risk of CVDs. 819 

 820 

Our study has some limitations. Firstly, the variation in sample sizes across disorders, 821 

from 511,634 cases for PAD to 1,500,861 for VTE, restricted our ability to detect 822 

pleiotropic effects in less-represented diseases. Future studies with larger, more 823 

balanced samples will likely improve our capacity to discern these effects more 824 
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precisely. Additionally, including subjects with concurrent eGFR abnormalities and 825 

CVDs may have introduced bias in our assessment of genetic overlap between these 826 

conditions. Our analysis focused on shared genetic variants, excluding rare mutations 827 

that could further elucidate the complex genetic relationships involved. Moreover, the 828 

concentration on individuals of European ancestry limits the generalizability of our 829 

findings to other populations. It is crucial to conduct cross-ancestry follow-up studies to 830 

determine whether these results hold across diverse ethnic groups. Overcoming these 831 

limitations will require enhancing the diversity of GWAS populations and conducting 832 

more extensive experimental validations and cohort analyses. 833 

 834 

Conclusion 835 

Together, this study has significantly improved our understanding of the genetic basis 836 

for the role of eGFR in susceptibility to major CVDs. By identifying crucial genetic 837 

components, including key pleiotropic loci and genes such as L3MBTL3, MMP24, and 838 

ABO, we elucidate potential shared mechanisms that may influence critical biological 839 

pathways associated with CVDs, notably stem cell population maintenance and 840 

glutathione metabolism. These results provide a better understanding of the genetic 841 

basis of CVDs and provide a basis for the development of more targeted therapeutic 842 

and preventive strategies that could potentially transform cardiovascular care. 843 
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1077 

Figure 1: Schematic diagram of the analysis of genetic associations between glomerular 1078 

filtration rate and six major cardiovascular diseases in this study. 1079 

We analyzed the most comprehensive GWAS summary statistics to investigate the shared genetic 1080 

architecture and potential mechanisms between eGFR and CVDs. First, the shared genetic basis was 1081 

determined by quantifying global and local genetic correlations and exploring the global genetic 1082 

overlap. Then, their two genetic pleiotropy were analyzed to investigate the shared genetic 1083 
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architecture, which can be vertical pleiotropy, that is, the effect of the variant on one trait affects 1084 

another trait or horizontal pleiotropy, that is, the variant affects multiple traits independently. We 1085 

first used Mendelian randomization on vertical pleiotropy to illustrate their causal relationship. 1086 

Then, various statistical genetic methods were used on horizontal pleiotropy to sequentially apply 1087 

pleiotropy analysis at the SNP, gene level, biological pathway, and protein target level to investigate 1088 

the common genetic mechanism. Through this comprehensive genetic pleiotropy analysis, our 1089 

understanding of the genetic link between eGFR and CVDs has been dramatically enhanced, which 1090 

may guide the development of new treatment strategies and improve the clinical management of 1091 

these diseases.  1092 
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1093 

Figure 2: Genetic overlap between estimated glomerular filtration rate and six major 1094 

cardiovascular diseases exceeds genome-wide genetic correlation. 1095 

Genetic overlap and local genetic correlation between eGFR and six major CVDs investigated by 1096 

MiXeR and LAVA. a: MiXeR Venn diagrams showing common and unique effect trait variants 1097 
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showing polygenic overlap (grey) between eGFR (blue) and CVDs (orange). Numbers in the Venn 1098 

diagrams indicate the estimated number of common and unique effect trait variants (in thousands) 1099 

that explain 90% of the SNP heritability and standard error in each phenotype. Circle size indicates 1100 

the degree of polygenicity for each trait, with larger circles indicating stronger polygenicity. We also 1101 

provide genome-wide genetic correlation (rg) and genetic correlation of shared variants (rgs). b: 1102 

LAVA volcano plots showing local genetic correlation coefficients (local-rgs, y-axis) for eGFR and 1103 

CVDs with -log10 p-values for each trait pair of analyses for each locus. Loci above the horizontal 1104 

line are significant at P < 0.05 (negative correlation for blue dots, positive correlation for red dots). 1105 

Larger points with black circles indicate loci significantly associated after Bonferroni correction (P 1106 

< 0.05 / 425). LAVA-estimated local-rgs is shown on the blue-red scale. eGFR, estimated glomerular 1107 

filtration rate; AF, atrial fibrillation; CAD, coronary artery disease; VTE, venous thromboembolism; 1108 

HF, heart failure; PAD, peripheral arterial disease. 1109 
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 1111 

Figure 3: Inference of causal relationship between estimated glomerular filtration rate and six 1112 

major cardiovascular diseases. 1113 

Forest plots of the causal relationship between eGFR and six major CVDs using the LHC-MR 1114 

method. a: indicates the estimated causal relationship of eGFR on CVDs. b: indicates the estimated 1115 

causal relationship of CVDs on eGFR. Circles indicate odds ratio (OR) estimates, and error bars 1116 

indicate 95% confidence intervals. OR > 1 indicates a positive association, and OR < 1 indicates a 1117 

negative association. eGFR, estimated glomerular filtration rate; AF, atrial fibrillation; CAD, 1118 

coronary artery disease; VTE, venous thromboembolism; HF, heart failure; PAD, peripheral arterial 1119 

disease. 1120 
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 1121 

Figure 4: Manhattan plot of PLACO results for estimated glomerular filtration rate and six 1122 

major cardiovascular diseases. 1123 

Manhattan plots reflect chromosomal position (x-axis) and negative log10-transformed P-values 1124 

(y-axis) for each SNP. Horizontal lines indicate genome-wide significant P-values -log10 (5×10-8). 1125 

The r2 threshold for defining independent significant SNPs was set to 0.2, and the maximum 1126 

distance between LD blocks merged into one locus was set to 500 kb. P-values were derived using 1127 

GWAS multi-trait analysis in discovery studies, and independent genome-wide significant 1128 

associations with the smallest P-values (top SNPs) are circled in colored circles. Only SNPs that 1129 

were common in all summary statistics were included. Labels are chromosomal regions where 1130 

genomic risk loci with strong colocalization evidence (PP.H4 > 0.7) are located. eGFR, estimated 1131 

glomerular filtration rate; AF, atrial fibrillation; CAD, coronary artery disease; VTE, venous 1132 

thromboembolism; HF, heart failure; PAD, peripheral arterial disease. 1133 
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 1134 

Figure 5: The overall situation of the pleiotropy association between estimated glomerular 1135 

filtration rate and six major cardiovascular diseases 1136 

Based on the polygenic nature of the Mixer results, we separated the pleiotropic association between 1137 

eGFR and CVDs into two network diagrams, showing the pleiotropic loci and genes identified in 1138 

the six trait pairs. a: The circular dendrogram is centered on eGFR (inner circle) and branches out 1139 

for the three CVDs (second circle, AF, VTE, and PAD). These three trait pairs show 91 pleiotropic 1140 

loci (third circle) corresponding to 159 pleiotropic genes (outer circle). b: The circular dendrogram 1141 

is centered on eGFR (the inner circle) and branches out for the three CVDs (second circle, CAD, HF, 1142 

and stroke). Another three trait pairs show 80 pleiotropic loci (third circle) corresponding to 153 1143 

pleiotropic genes (outer circle). For trait pairs with three or more pleiotropic genes, we only show 1144 

the top three pleiotropic genes according to priority, and these genes show statistical priority decay 1145 

in a clockwise direction. For example, eGFR-AF-12q24.31-CCDC92 and 1146 

eGFR-AF-12q24.31-ZNF664 indicate that 12q24.31 is a shared locus for this pair of specific 1147 

diseases involving CCDC92 and ZNF664. eGFR, estimated glomerular filtration rate; AF, atrial 1148 

fibrillation; CAD, coronary artery disease; VTE, venous thromboembolism; HF, heart failure; PAD, 1149 

peripheral arterial disease. 1150 
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