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Abstract 

Background: The hyperdense artery sign (HAS) in patients with large vessel occlusion 

(LVO) is associated with outcomes after ischemic stroke. Considering the labor-intensive 

nature of manual segmentation of HAS, we developed and validated an automated HAS 

segmentation algorithm on non-contrast brain CT (NCCT) images using a multicenter 

dataset with independent annotations by two experts. 

Methods: For the training dataset, we included patients with ischemic stroke 

undergoing concurrent NCCT and CT angiography between May 2011 and December 

2022 from six stroke centers. The model was externally validated using a dataset from 

one stroke center. For the clinical validation dataset, a consecutive series of patients 

admitted within 24 hours of symptom onset were included between December 2020 and 

April 2023 from six stroke centers. The model was trained using a 2D U-Net algorithm 

with manual segmentation by two experts. We constructed models trained on datasets 

annotated individually by each expert, and an ensemble model using shuffled annotations 

from both experts. The performance of the models was compared using area under the 

receiver operating characteristics curve (AUROC), sensitivity, and specificity. 

Results: A total of 673, 365, and 774 patients were included in the training, external 

validation, and clinical validation datasets, respectively, with mean (SD) ages of 68.8 

(13.2), 67.6 (13.4), and 68.8 (13.6) years and male frequencies of 55.0%, 59.5%, and 57.6%. 

The ensemble model achieved higher AUROC and sensitivity compared to the models 

trained on annotations from a single expert in the external validation dataset. In the 

clinical validation dataset, the ensemble model exhibited an AUROC of 0.846 (95% CI, 

0.819–0.871), sensitivity of 76.8% (65.1–86.1%), and specificity of 88.5% (85.9–90.8%). 

The predicted volume of the clot was significantly correlated with infarct volume on 

follow-up diffusion-weighted imaging (r=0.42; p<0.001). 

Conclusion: Our algorithm promptly and accurately identifies clot signs, facilitating the 

screening of potential patients who may require intervention.  
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Non-standard Abbreviations and Acronyms 

HAS hyperdense artery sign 

NCCT noncontrast computed tomography 

LVO large vessel occlusion 

AI artificial intelligence 

CTA computed tomography angiography 

DWI diffusion-weighted image 

NIHSS National Institutes of Health Stroke Scale 

mTICI modified thrombolysis in cerebral infarction 

EVT endovascular treatment 

mRS modified Rankin Scale 

HU Hounsfield unit 

DSC Dice similarity coefficient  

AUROC area under the receiver operating characteristic curve 

PPV positive predictive value 

NPV negative predictive value 
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Introduction 

The hyperdense middle cerebral artery sign (HAS) on non-contrast computed 

tomography (NCCT), also known as the clot sign, indicates thromboembolic occlusions in 

a vessel and is one of the earliest indicators of large vessel occlusion (LVO).1 This sign 

manifests as a high attenuation area on NCCT images, attributable to accumulated red 

blood cells and reduced blood flow.2 The volume and length of HAS have been associated 

with infarct swelling,3 successful recanalization rates,4 and clinical outcomes in patients 

with LVO.5 However, accurately and rapidly measuring clot volumes through manual 

segmentation in clinical practice remains challenging. 

Manual clot segmentation, although the standard procedure in clinical research for 

image-based clot analysis,1 is increasingly impractical due to its labor-intensive nature 

and the difficulty in consistently and accurately delineating thrombus regions. To address 

these challenges and facilitate volumetric clot measurement in large-scale studies, several 

automated clot segmentation methods employing artificial intelligence (AI) have been 

developed.6-8 Despite their promising results, these methods face limitations, including a 

lack of robust external validation6,7 and restricted application to thin-section NCCT.8 

Furthermore, moderate inter-expert agreement on the presence of HAS7,9 suggests that 

training an AI model on a diverse dataset with annotations from multiple experts could 

enhance its accuracy, an area yet to be fully explored. 

This study leveraged NCCT and concurrent CT angiography (CTA) scans from 

seven comprehensive stroke centers (n=1,038) to accurately delineate the presence of 

HAS, which are challenging to identify on thick-section (≥3mm) NCCT alone. Using this 

data, we developed a robust HAS segmentation algorithm and examined the inherent 

variability in HAS identification through independent annotations from experienced 

experts. Additionally, we explored the clinical implications of our algorithm by analyzing 

correlations between the predicted length and volume of HAS and patient outcomes, 

specifically focusing on infarct volume on diffusion-weighted imaging (DWI) and 

functional outcomes, using a clinical dataset (n=774) from six comprehensive stroke 

centers. 
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Materials and Methods 

Study population  

For training and internal validation datasets, we retrospectively collected data of patients 

with ischemic stroke (admitted between May-2011 and December-2022) across six 

comprehensive stroke centers, using the following criteria: (1) age≥18 years; (2) 

admission within 7 days of symptom onset; and (3) concurrent NCCT and CTA acquisition 

within 10 min interval between exams.  

 For the external validation dataset, patients with ischemic stroke (admitted 

between July-2010 and November-2022) were retrospectively collected from one 

comprehensive stroke center, adhering to the aforementioned criteria.  

 To clinically validate our algorithm, we retrospectively collected a consecutive 

series of 941 patients with ischemic stroke or transient ischemic attack who were not 

overlapped with training and internal validation, and external validation datasets 

between December-2020 and April-2023 from six comprehensive stroke centers using 

the following criteria: (1) age≥18 years; (2) admission within 24 hours of symptom onset; 

and (3) concurrent NCCT and CTA acquisition within 10 min interval between exams.  

In all cases, patients underwent both NCCT and CTA concurrently to evaluate LVO 

at the discretion of attending physicians. Patients were excluded based on the following 

criteria: (1) presence of brain tumors, intracranial hemorrhages, or surgical implants such 

as ventriculoperitoneal shunts or extraventricular drainage catheters, (2) NCCT scan 

exhibiting residual contrast agents, (3) NCCT scan with poor image quality, and (4) 

bilateral LVO (Figure 1). The institutional review boards of Seoul National University 

Bundang hospital approved the study and waived informed consent due to the 

anonymous and retrospective study design. The data that support the findings of this 

study are available from the corresponding author upon request. The study design 

adheres to the STARD guidelines (Standards for Reporting of Diagnostic Accuracy 

Studies).10  

 

 

Clinical data collection 
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Using standardized protocol, demographic data, medication histories and details on 

vascular risk factors were collected.11,12 Stroke subtypes were determined by consensus 

among neurologists at each participating center using a validated magnetic resonance 

imaging (MRI)-based algorithm. Admission National Institutes of Health Stroke Scale 

(NIHSS) scores, pre-stroke modified Rankin Scale (mRS) scores, and 3-month mRS 

scores were evaluated by certified (http://www.stroke-edu.or.kr/) physicians in each 

hospital.  

 

Hyperdense artery sign annotations 

Identification of HAS on thick-section NCCT scan alone is prone to misdiagnosis due to 

calcification, partial volume averaging, high hematocrit value, or cases with spontaneous 

recanalization.13 Thus, only patients who are confirmed to have LVO based on concurrent 

CTA were subjected to HAS annotation. Scans were adjusted to a window width of 80 HU 

and a center level of 35-40 HU. The presence of HAS was determined visually, meaning 

the decision was based solely on visual assessment without using any Hounsfield unit (HU) 

threshold as previously described.4 Manual segmentation of clots on NCCT was 

performed independently by two experts (with 8 and 20 years of experience, respectively) 

without referencing CTA. This approach ensured diversity in the training data by 

incorporating the perspectives of different experts.  

 

Identification of LVO 

In this study, we defined LVO as a complete contrast filling defect in intracranial carotid 

artery or middle cerebral artery M1/M2 segment. The presence, side, and location of LVO 

was determined referring to CTA which was concurrently performed with NCCT by an 

experienced neurologist. Subsequently, these diagnoses were compared with the stroke 

registry data, which have been independently verified by vascular neurologists at each 

comprehensive stroke center. A consensus was made if discordance in diagnosis was 

found. All data were analyzed in a central image laboratory.  

 

Data preparation 
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In the training and validation dataset, patients from six stroke centers were randomly 

split in a 9:1 ratio into training and internal validation datasets. HAS segmentation masks 

were independently obtained by two experts. To simulate the inherent variability in HAS 

identification on NCCT scans, a new set of labels was created by randomly mixing the 

annotations from the two experts (Figure 1). To be specific, given a dataset of NCCT scans 

with corresponding annotations from both expert 1 and expert 2, a new set of clot sign 

segmentation masks was generated by randomly selecting annotations from either expert 

1 or 2 for each case. To comprehensively capture the variability and potential 

disagreement between the experts, five additional sets of HAS annotations were 

constructed using this random selection process. This resulted in a total of seven sets of 

annotations, including the two original annotations from both experts.  

 

Deep Learning Segmentation Model Training and Evaluation 

We trained a deep learning-based semantic segmentation model using a combination of 

Dice loss and binary cross-entropy loss functions. The model architecture was based on a 

2D U-Net14 with modifications to the number of down-sampling stages, feature 

dimensions, and normalization methods. As input, three consecutive slices of NCCT scan 

were windowed (width:50, level:60), resized to 256x256 pixels, normalized, and stacked 

into a three-channel image. The model outputs pixel-wise probabilities of HAS.  

 To prevent overfitting and maximize data variability, we applied various data 

augmentation techniques, including rotation, horizontal flipping, translation, brightness 

adjustment, zooming, noise addition, and random erasing. Detailed information on the 

model structure and training procedures is provided in the Supplemental Material 

(Figure S1). 

 We developed three different deep learning models in this study. Model 1 and 

Model 2 were trained solely using the data annotated by Expert 1 and Expert 2, 

respectively. To develop an ensemble model trained on data annotated by different 

experts, we trained the model on each set of NCCT scans and their corresponding 

annotations, resulting in seven distinct models. Model selection was performed using the 

internal validation dataset based on the Dice similarity coefficient (DSC). An ensemble 

method was then employed by averaging all pixel-wise predictions from the seven models. 
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The performance of the ensemble model was compared to the models trained on single 

datasets annotated by each expert, referred to as Model 1 and Model 2, respectively. The 

metrics used to evaluate the models are as follows (detailed definitions are provided in 

the Table S1): 

● Volume-based metrics: Spearman’s correlation for volume and absolute volume 

difference (AVD) [mm3]  

● Overlap metrics: DSC 

● Diagnostic metrics: sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and predicted pixel-based area under the receiver 

operating characteristic curve (AUROC)  

  

 Additionally, to evaluate the robustness of the model’s performance and the 

inherent variability between experts, we assessed the consistency of model predictions on 

the internal and external validation datasets with manual segmentations by the two 

experts. For this analysis, only patients confirmed to have LVO were included, as no 

annotations were performed on patients without LVO. In cases where the prediction of 

HAS was correct but the location was incorrect (DSC=0), the case was designated as a 

false negative. 

 To validate the feasibility of our algorithm for use in a clinical setting, we 

conducted an analysis of its processing time. We randomly selected 100 NCCT scans, each 

with a slice thickness of 5mm, from the clinical validation dataset. The total processing 

time measured encompasses stages of reading DICOM files, pre-processing, and post-

processing. The test was conducted on limited hardware resources (VRAM of 2GB and 8 

CPU cores). 

 

Clinical validation dataset assessment  

In the clinical validation dataset, the presence of LVO was determined by an expert. NCCT 

scans were independently reviewed by two experts, and the presence of HAS was defined 

when both experts agreed. The length of the clot predicted by the algorithm was defined 

as the maximal diameter of the clot in the 2D plane. Infarct volume on DWI was 

automatically calculated using validated software (JLK-DWI, JLK Inc., Seoul, Korea)15,16 
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and the segmented infarcts were meticulously reviewed by an expert to ensure correct 

segmentation. Information on the endovascular procedure including modified 

Thrombolysis in cerebral infarction (mTICI) scale after endovascular treatment (EVT), 

and 3-month modified Rankin scale (mRS) were retrieved from a prospective stroke 

registry.  

 

 

 

Statistical Analysis 

To compare baseline characteristics between the training, internal, and external 

validation datasets, we used ANOVA or the Kruskal-Wallis test for continuous variables, 

and the chi-square test or Fisher's exact test for categorical variables, as appropriate. For 

comparisons of inter-expert agreement with model-expert agreements, we employed the 

paired t-test of the mean metric values. Confidence intervals for the evaluation metrics 

were calculated using bootstrapping with 1000 iterations. In this analysis, the number of 

predicted voxels was used as the criterion. Spearman’s correlation analysis was used to 

assess the clot volume correlation between manual and automated segmentations. In the 

clinical validation dataset, the frequency of HAS between stroke subtypes was compared 

using the chi-square test. Associations of the predicted clot length and volume with 

procedure time in patients undergoing endovascular procedures were analyzed using 

Pearson's correlation analysis. Additionally, patients undergoing the procedure were 

stratified into two groups based on post-procedure mTICI scores (0, 1, and 2a versus 2b 

and 3), and length and volume were compared using the t-test. The association of 

predicted clot length or volume with infarct volumes on DWI was analyzed using 

Pearson's correlation analysis. Furthermore, clot length and volume were compared by 3-

month mRS scores using ANOVA. All statistical analyses were performed using STATA 

16.0 (STATA Corp., Texas, USA), and a p<0.05 was considered statistically significant. 

 

 

 

Results  
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Baseline characteristics  

Following the exclusion criteria, 45, 8, and 172 patients were excluded from training and 

validation, external validation, and clinical validation datasets (Figure 1), respectively, 

remaining 673, 365, and 774 patients. The mean± SD ages were 68.8± 13.2, 67.6± 13.4, and 

68.8± 13.6 years and frequencies of male were 55.0%, 59.5%, and 57.6%, respectively 

(Table 1). LVO was more frequent in external validation datasets than other datasets 

(59.4%, 65.2%, and 24.2% in training and validation dataset, external validation dataset, 

and clinical validation dataset, respectively; p<0.0001). Accordingly, HAS were more 

frequent in the external validation dataset regardless of which experts performed the 

labeling (p=0.038). CT vendors and imaging parameters were significantly different 

between datasets, indicating heterogeneity of datasets. Slice thickness of NCCT scans 

ranged from 3.0 to 5.0mm.    

 

Performance of deep learning models detecting and segmenting 

hyperdense artery sign 

In the internal validation dataset, the models showed sensitivity of 0.630~0.877, 

specificity of 0.702~0.835, and AUROC of 0.727~0.889. In the external validation dataset, 

the models showed sensitivity of 0.729~0.817, specificity of 0.595~0.826, and AUROC of 

0.755~0.839. For both datasets, the ensemble model showed a slightly higher AUROC 

compared to the other two models (Table 2). 

 In the internal validation dataset annotated by expert 1, the ensemble model 

achieved a DSC of 0.611 (95% CI, 0.545−0.678), which was comparable to Model 1 and 

Model 2 (p>0.05). In the dataset annotated by expert 2, the ensemble model achieved a 

DSC of 0.686 (0.627−0.746), which was higher than Model 1 (p<0.001) and comparable 

to Model 2 (p>0.05). Similar results were observed in the external validation dataset, with 

the ensemble model achieving higher or comparable DSCs compared to Model 1 and 

Model 2. In the external validation dataset, DSCs between the ensemble model and each 

expert (0.622 [0.596−0.648] for expert 1 and 0.606 [0.579−0.633] for expert 2) were 

comparable to the inter-expert DSC (p > 0.05).  

 The volumetric correlation between the ensemble model's outputs and expert 

annotations was higher than the inter-expert correlation (0.573), with model-expert 
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correlations of 0.673 for expert 1 and 0.627 for expert 2 (Figure 2). The AVD between the 

ensemble model and each expert was lower than the AVD between the experts, with 

model-expert differences of 45.78 (± 66.01) mm³ and 54.21 (± 79.38) mm³ for experts 1 

and 2, respectively. The mean processing time for segmenting HAS using the algorithm 

was 3.18 ±  0.12 seconds on NCCT scans with 4mm thickness (n=100). 

 

Inter-expert agreement on hyperdense artery sign  

In the external validation dataset, Cohen’s kappa and percent agreement for the presence 

of HAS between experts were 0.521 and 76.5%, respectively. The DSC between experts for 

HAS segmentation in patients marked as HAS-positive by both experts was 0.622 (95% 

CI, 0.594−0.650). For patients marked as HAS-positive by either or both experts, the DSC 

between experts was 0.312±0.314. Spearman’s correlation coefficient and AVD for 

manually segmented clot volumes between experts were 0.573 and 57.09(± 78.99) mm3, 

respectively.   

 

Review of false positive and false negative cases by deep learning algorithm 

In the external validation dataset, the algorithm detected 71 false positive HAS. Among 

these, 24 showed symmetrically increased density in the bilateral MCAs, 24 displayed 

asymmetric density between the bilateral MCAs, 16 had calcified M1-MCA segments, 5 

had relatively high attenuated MCAs due to adjacent chronic ischemic lesions, and 2 

exhibited cortical high attenuated lesions (Figure 3). Additionally, the algorithm missed 

HAS in 27 patients. Among these, 11 had ambiguous density differences between the 

bilateral MCAs, 9 had HAS in the MCA-M2 or MCA-M3 segments, 3 had HAS in the 

calcified MCA, and 4 had short segment clot signs in the MCA. 

  

Clinical validation of clot segmentation model   

In the clinical validation dataset (n=774), 187 (24.2%) patients had LVO, and 69 patients 

(8.9%) had a HAS. The AUROC, sensitivity, specificity, PPV, and NPV of the algorithm 

were 0.846 (95% CI, 0.819–0.871), 0.768 (0.651–0.861), 0.885 (0.859–0.908), 0.396 

(0.339–0.455), and 0.975 (0.962–0.984), respectively. The median length and volume 

(interquartile range) of automatically segmented clots were 8.2 mm (5.6−17.1 mm) and 
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116.8 mm³ (74.4−201.1 mm³), respectively. When patients (n=118) undergoing EVT were 

divided into two groups (mTICI 0, 1, or 2a vs. 2b or 3), both the length and volume of the 

clot tended to be lower in the latter group compared with the former group, although the 

differences were not statistically significant (p=0.57 and p=0.19, respectively; Figure S2). 

In patients receiving EVT, no association was found between algorithm-detected clot 

length or volume and the procedure time of EVT (Figure S3). 

 In patients with follow-up DWI (n=702), infarct volumes on DWI were higher in 

the HAS-positive group than in the HAS-negative group (median [IQR] 6.98 [0.43−75.01] 

mL vs. 1.16 [0.21−6.87] mL, p<0.001). Additionally, the predicted length and volume of 

the clot were significantly correlated with infarct volume (r=0.34 and 0.42, respectively; 

both p<0.001; Figure 4A and 4B). When we restricted the analysis to patients with LVO 

(n=171), similar associations were observed (r=0.31 and r=0.36, respectively; both 

p<0.001; Figure 4C and 4D). Regarding the mRS score at 3 months after stroke, both the 

predicted length and volume of the clot tended to increase as the mRS score increased in 

the entire population (Figure S4). In patients with LVO, we observed a trend of increased 

predicted length and volume of the clot, although the difference was not statistically 

significant. 

 

 

Discussion  

In the present study, we trained the deep learning model segmenting HAS using 

independently annotated data from two experts in patients with LVO confirmed by CTA. 

The model demonstrated stable performance for both datasets annotated by different 

experts. In the clinical validation, the model effectively detected HAS and predicted 

length and volume of HAS were associated with infarct volume on DWI and functional 

outcomes. To the best of our knowledge, our algorithm was trained on the largest dataset 

to date. Additionally, this is the first study to present clinical validation results of 

automated HAS segmentation. 

 Several observational studies has shown that HAS was present in 40–50% of 

patients with LVO.17-19 Previous studies utilizing AI have demonstrated promising results 

in detecting HAS.4,6,20 In a recent study, however, the AI software achieved a sensitivity 
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of 77%, even though the standard reference was defined as LVO on CTA, raising concern 

about selection bias.7 Another study demonstrated an AI algorithm with 82.9% sensitivity 

and 89.7% specificity for detecting HAS,6 which is comparable to our results. However, 

they did not validate the algorithm in the external dataset not used in the training. In our 

study, we not only validated the segmentation results on an external dataset not used for 

training but also tested the detection performance on another clinical validation dataset 

that did not overlap. Additionally, the size of our training data is larger compared to 

previous studies. Considering that NCCT images can vary significantly depending on the 

filters used by different vendors, our algorithm, validated with a dataset comprising 

diverse CT vendors, may provide more reliable results compared to algorithms proposed 

in prior studies. 

 The inter-expert agreement for HAS in the present study was 0.521, aligning with 

the prior study by Mair et al.,21 in which the inter-observer kappa was 0.59 in 273 patients 

(25% having HAS). These results indicate that HAS detection is rather subjective. While 

previous studies trained their models using annotation data from a single expert or 

consensus or experts which possibly biased to the arbiter,7,8,22,23 we trained our model 

using shuffled annotations from two experts. This approach makes our model more 

consistent and robust when applied to external datasets. This assumption is further 

corroborated by the consistent performance of our algorithm on the external dataset 

annotated by two experts, and the observation that the performance of the model trained 

on one expert's annotations is compromised when validated on another expert's data. 

 Despite the publication of many AI segmentation models in the medical field, few 

are utilized in clinical practice. This is partly due to a lack of validation not only in 

laboratory settings but also with clinical data based on patient outcomes.24,25 In our study, 

we compared the volume and length of automatically segmented HAS with patient 

outcomes using a large multicenter dataset. A study of the Third International Stroke 

Trial (IST-3)3 showed that the presence of HAS at baseline was associated with a 2.2-fold 

increased risk of symptomatic infarct swelling, which aligns with our observation of a 

positive association between the length and volume of segmented clots and infarct volume 

on follow-up DWI. Additionally, we found a trend of association between the length and 

volume of clots and 3-month mRS scores, in accordance with prior studies demonstrating 
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the association between HAS and poor functional outcomes.26,27 These findings extend 

the clinical applicability of automated detection of HAS and clot segmentation. 

Furthermore, each case analysis took only 3.2 seconds, making the algorithm feasible for 

analyzing large-scale data. This capability will facilitate further research on HAS using 

extensive datasets, as recent studies have highlighted the importance of clot radiomics in 

patients undergoing mechanical thrombectomy.28,29 

 In external validation, false positive cases were mainly associated with increased 

MCA density, likely due to elevated hematocrit levels or residual contrast agents.30 MCA 

calcification also contributed to false positives.13 False negatives often occurred when the 

density difference between the bilateral MCAs was ambiguous or when clots were located 

in the distal MCA, which the algorithm tended to miss. Recent studies have shown that 

incorporating brain parenchymal information along with HAS improves LVO detection 

performance, and utilizing NIHSS information further enhances accuracy.11 Therefore, 

combining our HAS detection algorithm with brain parenchyma analysis and NIHSS 

information may help mitigate the issues of false positives and false negatives. 

 While our study has several strengths, including training on a large dataset, 

utilizing independent annotations from two experts, and conducting various performance 

validations, there are some limitations. Firstly, although we confirmed performance with 

various CT vendors used in clinical practice, it is difficult to guarantee performance with 

vendors not included in our external or clinical validation. Secondly, our study was 

trained and validated on an Asian population, which limits its applicability to other ethnic 

groups. Although there is no evidence suggesting that the characteristics of clots or their 

appearance on CT differ by ethnicity, the frequency of clot signs varies among different 

ethnic groups.31,32 Therefore, our findings need to be validated in studies involving diverse 

ethnic populations. Thirdly, using thin slice thickness may improve the accuracy of the 

algorithm.21  However, thin section NCCT is less feasible as shown in the present study; 

almost hospital utilized 4–5mm slice thickness of NCCT.  

 NCCT is one of the most frequently performed tests in emergency rooms. Our 

algorithm can promptly and accurately identify HAS, helping to screen potential patients 

who may require intervention. This is especially beneficial in environments with a 
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shortage of experts and has the potential to reduce the time to intervention, thereby 

improving outcomes for patients with ischemic stroke.  
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Tables 

Table 1. Baseline characteristics of study population 

 
Train/Internal 
Validation 
(n=673) 

External Validation 
(n=365) 

Clinical Validation 
(n=774) 

p value 

Age (years) 68.8± 13.2 67.8± 13.4 68.8± 13.6 0.105 

Sex, men  368 (55.0%) 217 (59.5%) 446 (57.6%) 0.290 

LVO  400 (59.4%) 238 (65.2%) 187 (24.2%) <0.0001 

HAS     

    Expert 1 136 (20.2%) 103 (28.2%) 97 (12.5%)  

    Expert 2 171 (25.4%) 103 (28.2%) 75 (9.7%)  

    Consensus   69 (8.9%)  

Initial NIHSS score 6 (2-12) 10 (4-16) 3 (1-8) <0.0001 

Previous stroke 132 (19.7%) 80 (22.3%) 145 (18.7%) 0.3772 

Hypertension 415 (62.0%) 246 (68.0%) 500 (64.6%) 0.1623 

Diabetes 184 (35.3%) 94 (18.0%) 243 (46.6%) 0.1055 

Atrial fibrillation 191 (28.6%) 113 (31.2%) 177 (22.9%) 0.0046 

Slice thickness    <0.0001 

    3mm 1 (0.1%) 0 108 (14.0%)  

    ≤4mm 0 635 (100%) 171 (22.1%)  

    ≤5mm 672 (99.9%) 0 467 (60.3%)  

    >5mm 0 0 28 (3.6%)  

CT Vendors    <0.0001 

GE MEDICAL 
SYSTEMS 

275 (40.9%) 0 370 (47.8%)  

SIEMENS 347 (51.5%) 365 (100%) 177 (22.9%)  

Philips 51 (7.6%) 0 119 (15.4%)  

TOSHIBA (Canon 
Medical Systems) 

0 0 108 (13.9%)  

Data are presented as mean± SD or number (percentage). LVO=large vessel occlusion; 

HAS=hyperdense artery sign; NIHSS=National Institute Health Stroke Scale
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Table 2. Performance of deep learning models in internal and external validation datasets 

Dataset Annotation Model DSC AUROC Sensitivity Specificity PPV NPV 

Internal 
Validation 
(n=64) 
 

Expert 1 

Ensemble 
0.611  
(0.545-0.678) 

0.797  
(0.730-0.863) 

0.753  
(0.639-0.868) 

0.789  
(0.732-0.847) 

0.543  
(0.436-0.65) 

0.905  
(0.858-0.953) 

Model 1  
0.563  
(0.497-0.629) 

0.830 
(0.765-0.896) 

0.809  
(0.703-0.914) 

0.730  
(0.666-0.795) 

0.499  
(0.400-0.597) 

0.920  
(0.877-0.964) 

Model 2 
0.553  
(0.484-0.621) 

0.727  
(0.649-0.805) 

0.681  
(0.557-0.804) 

0.702  
(0.639-0.765) 

0.429  
(0.329-0.529) 

0.869  
(0.814-0.925) 

Expert 2 

Ensemble 
0.686  
(0.627-0.746) 

0.889  
(0.838-0.940) 

0.877  
(0.792-0.963) 

0.835  
(0.783-0.887) 

0.636  
(0.530-0.741) 

0.953  
(0.921-0.986) 

Model 1  
0.516  
(0.447-0.585) 

0.751  
(0.674-0.828) 

0.630  
(0.504-0.755) 

0.754  
(0.691-0.818) 

0.462  
(0.353-0.571) 

0.858  
(0.802-0.915) 

Model 2 
0.698  
(0.638-0.758) 

0.881  
(0.828-0.934) 

0.878  
(0.793-0.963) 

0.769  
(0.71-0.829) 

0.560  
(0.458-0.663) 

0.949  
(0.913-0.986) 

External 
Validation 
(n=365) 
 

Expert 1 

Ensemble 
0.622  
(0.596-0.648) 

0.839  
(0.816-0.863) 

0.817  
(0.779-0.855) 

0.794  
(0.769-0.819) 

0.609  
(0.568-0.65) 

0.917  
(0.899-0.935) 

Model 1  
0.638  
(0.612-0.664) 

0.814  
(0.789-0.838) 

0.759  
(0.717-0.8) 

0.824  
(0.801-0.847) 

0.629  
(0.587-0.671) 

0.897  
(0.878-0.916) 

Model 2 
0.514  
(0.489-0.540) 

0.755  
(0.727-0.782) 

0.805  
(0.766-0.844) 

0.595  
(0.564-0.626) 

0.439  
(0.402-0.475) 

0.886  
(0.863-0.909) 

Expert 2 

Ensemble 
0.606  
(0.579-0.633) 

0.829  
(0.805-0.854) 

0.796  
(0.756-0.836) 

0.801  
(0.778-0.825) 

0.611  
(0.569-0.653) 

0.909  
(0.891-0.928) 

Model 1  
0.600  
(0.573-0.627) 

0.802  
(0.776-0.827) 

0.729  
(0.686-0.772) 

0.826  
(0.802-0.850) 

0.622  
(0.577-0.667) 

0.886  
(0.866-0.906) 

Model 2 
0.512  
(0.484-0.540) 

0.776  
(0.749-0.803) 

0.815  
(0.778-0.852) 

0.603  
(0.572-0.634) 

0.448  
(0.411-0.484) 

0.892  
(0.869-0.915) 
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Data are presented as mean (95% confidence interval) for DSC and estimate (95% confidence interval) for other values. Model 1 and model 2 were trained 

using datasets annotated by the expert 1 and expert 2, respectively.  

DSC=Dice similarity coefficient; AUROC=area under the receiver operating characteristics curve; PPV=positive predictive value; NPV=negative predictive 

value. 
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Figure Legends 

 

Figure 1. Study flow chart. NCCT=noncontrast CT; CTA=CT angiography; LVO=large vessel occlusion; HAS=hyperdense 

artery sign  
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Figure 2. Volumetric analysis comparing clot volumes from manual annotation and automated segmentation algorithm. 

Dot plots for clot volumes by two experts (A), expert 1 and the algorithm (B), and expert 2 and the algorithm (C). Lines 

and shaded areas indicate regression lines and their 95% confidence intervals
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Figure 3. Representative false positive and false negative cases in the external validation 

dataset. (A) The artificial intelligence (AI) model detected calcification of the middle 

cerebral artery (MCA) (the first panel), high attenuation adjacent chronic lesion (the 

second panel), high attenuation area in the cortex (the third panel), and  asymmetric 

density between the bilateral MCAs (the fourth panel) as hyperdense artery sign (HAS). 

(B) The algorithm missed HAS at the M2-MCA segment (the first panel), in the calcified 

MCA (the second panel), at short segment of the MCA (the third panel), and ambiguous 

density differences between the bilateral MCAs (the fourth panel).  
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Figure 4. Correlation of length and volume of segmented clot and infarct volumes on 

follow-up diffusion-weighted image (DWI) in the clinical validation dataset. Correlation 

of clot length (A) and volume (B) with infarct volume on DWI in all patients.  Correlation 

of clot length (C) and volume (D) with infarct volume on DWI in patients with large vessel 

occlusion. Lines and shaded areas indicate regression lines and their 95% confidence 

interval. 
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