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45 ABSTRACT

46 Prenatal prediction of postnatal outcomes in newborns with congenital diaphragmatic hernia (CDH) 

47 remains challenging, especially for mortality and neonatal persistent pulmonary hypertension 

48 (PPHN). Despite the increasing utilization of advanced artificial intelligence (AI) technologies in the 

49 neonatal field, this study is pioneering in exploring AI methodologies in the context of CDH. It 

50 represents an initial attempt to implement a Machine Learning (ML) system to predict postnatal 

51 mortality and PPHN severity, using prenatal and early postnatal data as input variables. We enrolled 

52 50 patients with isolated left-sided CDH from singleton pregnancies and retrospectively collected 

53 clinical and imaging variables from fetal ultrasound (US) and shape features extracted from magnetic 

54 resonance imaging (MRI), combined with gestational age and birth weight. A supervised ML model 

55 for predicting mortality and PPHN severity was developed, achieving good accuracy (88% for 

56 mortality prediction and 82% for PPHN) and sensitivity (95% for mortality and 85% for PPHN). The 

57 area under the curve (AUC) of the ROC curve was 0.88 for mortality and 0.82 for PPHN predictions. 

58 Our results may lead to novel AI applications in the neonatal field, focusing on predicting postnatal 

59 outcomes based on prenatal data, ultimately improving prognostic assessments and intervention 

60 strategies for such a complex disease.

61 Clinical Trial Registration: The trial was registered at ClinicalTrials.gov with Identifier 

62 NCT04609163

63

64 Keywords: Newborn, Congenital Diaphragmatic hernia, Neonatal Persistent Pulmonary 

65 Hypertension, Mortality, Machine Learning, Deep Learning.

66
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68 What is Known: prenatal prediction of postnatal mortality and severity of pulmonary hypertension 

69 in CDH newborns remains challenging and largely based on imaging through the volumetric 

70 assessment of fetal lungs. 

71

72 What is New: developing a ML system for predicting PPHN severity and mortality risk based on the 

73 integrated assessment of prenatal and early postnatal variables is feasible, with good accuracy.

74
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75 INTRODUCTION

76 Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterized by incomplete 

77 closure of the diaphragm and herniation of abdominal organs into the chest, resulting in pulmonary 

78 hypoplasia, neonatal persistent pulmonary hypertension, and cardiac dysfunction [1–3]. CDH occurs 

79 in nearly 1 in 2500 births. Several factors influence the prognosis, such as defect size and location, 

80 associated anomalies, presence of liver up in the thorax, and gestational age at birth [4,5]. Risk 

81 stratification is essential to identify patients who might benefit from specific interventions and to 

82 enable a risk-adjusted analysis of outcomes, healthcare costs, and management approaches. Prenatal 

83 and postnatal CDH predicting tools have largely increased and have been validated during the last 

84 years based on clinical and instrumental data [6,7,16–18,8–15]. However, a universal risk 

85 stratification method has not been identified yet, and an agreed-upon set of risk-specific management 

86 guidelines is still lacking [19].

87 In particular, predicting the severity of Neonatal Persistent Pulmonary Hypertension (PPHN) using 

88 conventional prenatal diagnostic methods remains challenging. As a result, there is growing interest 

89 in leveraging advanced technologies that favor a timely and accurate prognosis. 

90 Artificial Intelligence (AI) is increasingly applied in the neonatal field to support medical data 

91 analysis. Predictive algorithms are being developed using traditional Machine Learning (ML) 

92 approaches as well as its more advanced Deep Learning (DL) extension. ML and DL can process and 

93 analyze medical data, including images from different sources such as ultrasound, magnetic 

94 resonance imaging (MRI), and X-ray. Integrating these algorithms into healthcare systems holds 

95 promise for enhancing diagnostic accuracy and disease pattern classification. These algorithms could 

96 help predict specific outcomes, guide interventions, and improve the overall quality of care 

97 [20,21,30,22–29]. 

98 However, to our knowledge, these methodologies still need to be successfully applied to newborns 

99 with CDH. The aim of our study was to provide a predictive algorithm for mortality and PPHN in 

100 CDH based on the integrated analysis of prenatal and early postnatal data.
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101 MATERIALS AND METHODS

102 Study design

103 This study represents an exploratory secondary analysis of a retrospective cohort study performed at 

104 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy (CLANNISH, Clinical 

105 Trials identification n°: NCT04609163) [29]. The study involved the following services: the Fetal 

106 Surgery Center, Pediatric Radiology Service, and Neonatal Intensive Care Unit (NICU). Moreover, 

107 the Department of Mathematics and Physics at the Università del Salento (Lecce, Italy) and the 

108 Department of Physics and Chemistry at the Università degli Studi di Palermo (Palermo, Italy) 

109 developed the AI algorithms. 

110 The current study adhered to the principles of good clinical practice and followed the guidelines of 

111 the Helsinki Declaration. It received approval from the local ethics committee (Milan Area 2, Italy) 

112 with approval number/ID 800_2020bis. However, considering its retrospective design, the ethics 

113 committee waived the need for informed consent. The study was also registered on ClinicalTrials.gov 

114 with the identifier NCT04609163.

115

116 Patients

117 The study population, inclusion-exclusion criteria, and a comprehensive description of the primary 

118 study design were previously published and are briefly summarized here [29]. Inborn CDH patients 

119 born between 01/01/2016 and 30/04/2020 admitted to the NICU at birth were included. The take-

120 charge of the mothers took place at our Fetal Surgery Center at a gestational age of 30+6 weeks or 

121 below. Non-isolated CDH and twin pregnancies were excluded. Only left-sided CDH were 

122 considered because of their larger numerosity, homogeneity, and variability in liver position, leaving 

123 out right-sided CDH.

124 A total of 50 patients were included in the final study population. 

125

126 Data Collection

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.25.24311009doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.25.24311009
http://creativecommons.org/licenses/by/4.0/


6

127 Clinical maternal and fetal prenatal variables were retrospectively collected using Astraia software 

128 (Astraia Software GmbH, Ismaning, Germany) and NeoCare software (GPI SpA, Trento, Italy). A 

129 prenatal ultrasound (US) performed between 25+0 and 30+6 weeks of gestation was considered for 

130 each patient. In the case of fetal endoscopic tracheal occlusion (FETO), the fetal US was performed 

131 before the fetal procedure. Additionally, native sequences from fetal MRI were gathered for 36 out 

132 of 50 cases, with separate acquisitions for the lung and liver. The imaging software employed for this 

133 study was Synapse PACS and Synapse 3D (FUJIFILM Medical Systems, Lexington, MA, US). Lung 

134 volumes were computed using T2 HASTE sequences, selecting the best-quality image plane without 

135 motion-induced artifacts [31]. On the other hand, liver volumes were calculated based on T1 VIBE 

136 sequences [32]. An experienced pediatric radiologist (IB) freehand delineated Regions Of Interest 

137 (ROIs) to define the areas of the left and right lungs and the liver, excluding the pulmonary hila and 

138 mediastinal structures for each slice. Organ volumes were calculated using the software. 

139 Subsequently, the DICOM (Digital Imaging and Communications in Medicine) files were 

140 anonymized and converted to the NIfTI (neuroimaging informatics technology initiative) format for 

141 easy manipulation. 

142 Clinical and Imaging variables

143      A detailed summary of the clinical and imaging variables included is reported in Table 1. 

144

Table 1. Clinical and imaging variables 
Maternal data
Mother age 
Ethnicity
Number of gestations ending the outcome for fetuses with an Assisted Reproduction (MAR): 
yes/no
Antenatal use of corticosteroids: yes/no
Premature rupture of membranes (pPROM): yes/no
Gestational age at pPROM
Gestational age at CDH diagnosis 
Fetal ultrasound data
Gestational age 
Estimated Fetal Weight the (EFW)
Amniotic Fluid (AF)
Umbilical Artery Pulsatility Index 
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Pulmonary Flow Pulsatility Index 
Pulmonary flow Peak Systolic Velocity
Peak early diastolic reversed flow
Organ herniation of Bowel, Stomach, Liver: yes/no
Observed/expected lung-to-head ratio (tracing method)
CDH severity: mild, moderate, severe 
Fetal Endoscopic Tracheal Occlusion (FETO): yes/no
Gestational age at balloon insertion and removal 
MRI data 
Gestational age 
Apparent diffusion coefficient (ADC)
Right and left lung volume 
Total fetal lung volume (TFLV)
Observed/expected TFLV (O/E TFLV%) 
Total liver volume 
Herniated Liver volume 
Percentage of liver herniation (%LH)
Mediastinal shift angle (MSA) 
Apparent diffusion coefficient (ADC) of the left and right lung 
Early postnatal data
Gestational age at birth 
Birth weight

145

146 Radiomics features

147 In addition to the clinical variables, standard 3D radiomics features were extracted from the 

148 segmented ROIs in the MRI using the freely available and open-source Pyradiomics v. 3.01 software 

149 tool [30,33]. Pyradiomics produces many variables, with and without preprocessing by various filters 

150 and optional reslicing, with different interpolators. Only features from the original images without 

151 preprocessing were considered in this work. Due to significant dissimilarity in the gray-level content 

152 of the MRI scans, only shape features were utilized (MeshVolume, VoxelVolume, SurfaceArea, 

153 SurfaceVolumeRatio, Sphericity, Maximum3DDiameter, MajorAxisLength, MinorAxisLength, 

154 LeastAxisLength, Elongation, and Flatness). The geometric meaning of each feature is detailed in 

155 Table 2.

156

Table 2. Geometric meaning of Pyradiomics shape features

Feature Geometric Meaning
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MeshVolume The shape volume, calculated using a mesh 
representation. It is the three-dimensional space 
enclosed by the surface of the object.

VoxelVolume The volume calculated by counting the number of 
voxels (3D pixels) within the shape and multiplying 
by the volume of a single voxel. This represents the 
discretized volume of the object.

SurfaceArea The total area of the surface of the shape. This 
quantifies the two-dimensional extent of the object's 
surface.

SurfaceVolumeRatio The ratio of surface area to volume. This measure 
indicates how 'compact' an object is; lower values 
suggest a more compact shape.

Sphericity A measure of how spherical (round) the object is. 
Perfect spheres have a sphericity of 1. Lower values 
indicate less spherical shapes.

Maximum3DDiameter The largest distance between any two points on the 
surface of the shape. This is the maximum length of 
the object in any dimension.

MajorAxisLength The length of the major axis of the shape, which is 
the longest dimension in the principal component 
analysis (PCA) of the object.

MinorAxisLength The length of the minor axis, which is perpendicular 
to the major axis and is the second longest dimension 
in the PCA of the object.

LeastAxisLength The shortest axis length from the PCA of the object. 
It's perpendicular to both the major and minor axes.

Elongation The ratio of the minor axis length to the major axis 
length. It indicates how much longer the shape is in 
one direction compared to the other.

Flatness The ratio of the least axis length to the major axis 
length. This measure indicates how 'flat' or 
'elongated' an object is compared to being spherical.

157

158 Variables computed from the gray levels were discarded, avoiding additional image manipulation, 

159 such as intensity standardization. A total of 80 features were considered: 56 prenatal variables, 2 very 

160 early postnatal variables as gestational age and birth weight, and 22 MRI-extracted shape features (11 

161 from the lungs, 11 from the liver).

162 To ensure fairness in the classification process, the features were normalized to the 0-1 range using 

163 min-max normalization on the training set. The same normalization parameters were then applied to 

164 the validation set samples. However, in some cases, the lack of MRI data resulted in missing values 

165 in the features extracted by Pyradiomics. This was also observed for non-radiomics features based on 
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166 the patient's diagnostic pathway. Imputation by a weighted average was considered [34] to handle 

167 these missing values, as in Equation 1: 

𝑓𝑛(𝑚) =

𝑓(1)
𝑛

𝜎(1)
𝑛

+
𝑓(2)

𝑛

𝜎(2)
𝑛

1
𝜎(1)

𝑛
+ 1

𝜎(2)
𝑛

(1)

168

169 where 𝑓𝑛(𝑚) is the value to be assigned to the (missing) n-th feature for the m-th sample, 𝑓(1)
𝑛  and 

170 𝑓(2)
𝑛  are the average values of the n-th features for classes 1 and 2, respectively, and 𝜎(1)

𝑛  and 𝜎(2)
𝑛  are 

171 the corresponding standard deviations. This way, in the approximation of Gaussian distributions, a 

172 neutral value for the distributions of the two classes is used as the missing feature.

173

174 Target variables: neonatal persistent pulmonary hypertension and mortality

175 For each included patient, a neonatologist performed a systematic revision of the first available 

176 echocardiogram within 24 hours after birth, focusing on direct and indirect signs of pulmonary 

177 hypertension. Data collection was focused on the presence and characteristics of the shunts through 

178 patent ductus arteriosus and foramen ovale, the characteristics of the intraventricular sept, the 

179 estimation of the systolic pulmonary artery pressure through tricuspid valve regurgitation, the 

180 systemic pressures, and concomitant use of pulmonary vasodilators. Patients were then stratified 

181 according to the presence and severity of pulmonary hypertension into two categories: severe (over-

182 systemic, considered as the positive class) vs moderate/mild (iso/under-systemic). According to 

183 mortality, the study population was divided into non-survivors (positive class) vs survivors. 

184

185 Feature selection

186 We employed the Recursive Feature Elimination (RFE) technique with Cross-Validation (CV), 

187 specifically using the Leave One Patient Out CV (LOPO-CV) scheme. The RFE method starts with 
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188 the entire feature set and recursively removes the minor essential features based on a chosen metric 

189 (in this case, accuracy) until the desired number of features is reached.  Typically, the final number 

190 of features to select is a parameter that needs to be specified. This parameter was determined 

191 dynamically by varying its value and calculating the corresponding accuracy in our approach. We 

192 then selected the parameter value that maximized accuracy. The Random Forest (RF) classifier was 

193 used to evaluate the various configurations. 

194

195 Training

196 To exploit the available samples as much as possible, we used a LOPO-CV scheme. In this method, 

197 we selected one patient as the validation set while using the remaining patients for training. We 

198 trained several classifiers and obtained performance metrics such as the confusion matrix, sensitivity, 

199 specificity, area under the ROC curve (AUC), and the area under the P-R curve. All the optimization 

200 steps were based on maximizing accuracy.

201

202 Classifiers

203 Three classification algorithms were tested: eXtreme Gradient Boosting (XGBoost), Support Vector 

204 Machine (SVM), and K-Nearest Neighbors (KNN). The first classifier was used because it natively 

205 and effectively deals with missing clinical values. The choice of the other two classifiers was due to 

206 their ability to allow good performance in conditions of a limited number of available samples, as 

207 they are characterized by a reduced number of parameters to be tuned [35]. Hyperparameter tuning 

208 was performed to avoid overfitting and improve model performance.

209

210 RESULTS

211 The final study population consisted of 50 patients: 26 severe (52%) and 24 moderate/mild (48%) 

212 cases of PPHN. According to mortality, 37 survivors (74%) and 13 non-survivors (26%) were present. 
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213 As regards mortality analysis, the feature selection procedure led to the choice of 10 out of 80 features, 

214 in particular: maternal age, gestational age at CDH diagnosis, CDH severity (mild, moderate, severe), 

215 centile of estimated fetal weight (EFW), observed/expected lung to head ratio (o/e LHR) by tracing 

216 method, umbilical artery pulsatility index, left and right fetal lung volume (FLV) at MRI, 

217 observed/expected total fetal lung volume (o/e TFLV), gestational age at birth, and birth weight. 

218 Remarkably, no shape features were selected. Table 3 shows the classification results obtained for 

219 mortality prediction.

220

Table 3. Classification figures of merit for mortality, computed in a LOPO scheme

Classifier AUC Accuracy Sensitivity Specificity

XGBoost 0.88 88% 95% 69%

SVM 0.78 80% 97% 31%

KNN 0.78 82% 95% 46%

LOPO: Leave One Patient Out; KNN: K-Nearest Neighbors; SVM: Support Vector Machine; 
XGBoost: eXtreme Gradient Boosting.

221

222 The results of the different classification methods were comparable regarding AUC and accuracy, 

223 though XGboost had better performance. Figure 1 shows the ROC and P-R curves for mortality 

224 prediction obtained by XGboost with feature selection. The trained model correctly identified 88% 

225 of cases and achieved a sensitivity of 95% and a specificity of 69%. The AUC from the ROC curve 

226 was 0.87, while the P-R curve subtended an area of 0.95 (with the frequency of positive cases equal 

227 to 52%). From the P-R curve, precision drops after 50% sensitivity but remains more than 85% when 

228 sensitivity is 90%, and even if we require complete sensitivity, precision remains relatively high 

229 (around 80%).

230
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231 Fig 1. Mortality prediction. Left: ROC curve, right: P-R curve, obtained with the XGBoost classifier 

232 on prenatal clinical variables. No shape features extracted from MRIs were used, as required by the 

233 feature selection procedure. 

234

235 As far as PH is concerned, feature selection led to the identification of the 14 features, in particular: 

236 gestational age at CDH diagnosis, liver position, grading of stomach herniation, gestational age at US 

237 ultrasound, centile of EFW, umbilical artery pulsatility index, peak early diastolic reversed flow, o/e 

238 TFLV, apparent diffusion coefficient of left lung, original shape elongation, gestational age at birth, 

239 and birth weight. 

240 In this case, both clinical and shape features were selected. Table 4 reports the classification results 

241 obtained for PPHN classification. The results produced by the different classification methods show 

242 that XGboost also performed better in this case.

243 The XGboost classifier demonstrated significantly superior classification capabilities to the other two 

244 classifiers (Tables 3 and 4).

245

246 Figure 2 shows the ROC and P-R curves for PPHN classification obtained by XGboost with the 

247 features selection. The AUC from the test ROC curve was 0.82, while the P-R curve subtended an 

248 area of 0.75 (with the frequency of positive cases equal to 26%). The trained model correctly 

249 identified 82% of cases and achieved a sensitivity of 85% and a specificity of 79%. From the P-R 

Table 4. Classification figures of merit for PPHN, computed in a LOPO scheme

Classifier AUC Accuracy Sensitivity Specificity

XGBoost 0.82 82% 85% 79

SVM 0.75 74 79 71

KNN 0.65 54 53 33

LOPO: Leave One Patient Out; KNN: K-Nearest Neighbors; PPHN: Neonatal Persistent 

Pulmonary Hypertension; SVM: Support Vector Machine; XGBoost: eXtreme Gradient Boosting.
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250 curve, we deduce that even at very high sensitivity values (about 83-84%), precision is more than 

251 80%. 

252

253 Fig 2. Left: the ROC curve; right: the Precision-Recall (P-R) curve for PPHN predictions with the 

254 XGBoost classifier on prenatal clinical variables and shape features extracted from MRIs.

255

256 DISCUSSION

257 Congenital diaphragmatic hernia (CDH) is a life-threatening anomaly requiring high-skilled and 

258 multidisciplinary team of experts for appropriate management since from antenatal diagnosis [36].

259 Despite advancements over time, morbidity and mortality remain significant (20–40%), even within 

260 high-volume tertiary referral centers [37–39]. An estimated quarter of survivors experience 

261 neurodevelopmental impairments across all domains, encompassing motor and sensory (hearing, 

262 visual) deficits as well as cognitive, language, and behavioral impairments [40]. 

263 CDH patients exhibit varying degrees of pulmonary hypoplasia and abnormal pulmonary vascular 

264 disease, resulting in varying extents of pulmonary hypertension. Up to 30–40% of newborns with 

265 CDH experience concomitant cardiac ventricular dysfunction [41,42]. PPHN is associated with 

266 adverse outcomes in CDH patients, underscoring the critical nature of its management in the care of 

267 these infants [43]. 

268 Various clinical and laboratory parameters and prognostic indices in the perinatal period have been 

269 subject to study to predict postnatal outcomes [39,44–47]. The identification of variables predictive 

270 of mortality is paramount for clinical decision-making and parental guidance. The o/e LHR and o/e 

271 TFLV serve as pivotal metrics in this regard. Each of these parameters evaluates the extent of 

272 pulmonary hypoplasia associated with CDH, a critical determinant of both survival and long-term 

273 prognosis.

274 The o/e LHR has been widely studied and utilized in the prediction of postnatal survival in cases of 

275 isolated CDH. Jani et al. highlighted the significance of the o/e LHR in predicting survival in fetuses 
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276 with isolated diaphragmatic hernia [48]. Snoek et al. further assessed the predictive value of the o/e 

277 LHR for survival and chronic lung disease (CLD) in survivors with left-sided CDH, reflecting its 

278 ongoing relevance in an era of standardized neonatal treatment [49]. Their multicenter study 

279 underscores the evolving understanding of o/e LHR in predicting outcomes for CDH patients.

280 On the other hand, the o/e TFLV exhibits a stronger correlation with postnatal outcomes than the 

281 absolute lung volume. Moreover, a growing body of evidence supports the superior accuracy of o/e 

282 TFLV in predicting survival compared to ultrasound-based estimations of lung size, which may not 

283 fully account for the ipsilateral lung and could thus underestimate the effective lung volume [50–55].

284 In cases of isolated CDH, o/e TFLV has demonstrated efficacy in distinguishing survival, with an o/e 

285 TFLV < 25% being associated with more severe forms and a reduced survival rate [54,56–60]. 

286 Furthermore, o/e TFLV has been shown to forecast the necessity for extracorporeal membrane 

287 oxygenation (ECMO) after birth, with the combined assessment of lung volumetry and o/e LHR 

288 proving more effective than ultrasound alone in predicting the need for ECMO [61–64].

289 Prenatal prediction of PPHN plays a crucial role in prenatal management, delivery planning and 

290 postnatal care. However, while both o/e LHR and o/e TFLV offer insights into the extent of CDH-

291 associated pulmonary hypoplasia, their predictive value for PPHN necessitates careful consideration.

292 Our findings support the possibility of successfully developing a ML system for predicting PPHN 

293 severity and mortality risk based on the integrated assessment of prenatal and early postnatal 

294 variables.

295 To achieve our goal, we enrolled 50 left-sided CDH cases. The dataset was relatively balanced 

296 concerning PPHN, with 26 severe and 24 moderate/mild cases, whereas mortality classes included 

297 37 survivors and 13 non-survivors. We combined prenatal clinical and imaging data with gestational 

298 age and weight at birth, which both play a key role in survival in neonatal patients, especially those 

299 in critical conditions. In addition, standard 3D radiomics features were extracted from the segmented 

300 ROIs using the freely available Pyradiomics software tool. This software package facilitated 

301 automatic reslicing with a selected interpolator and computed multiple radiomics variables. As the 
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302 MRIs exhibited significant variations in grayscales, which would have required some form of 

303 intensity standardization to use features based on gray values, we only utilized shape features to avoid 

304 additional image manipulation and discarded variables based on the gray levels. 

305 A feature selection phase was executed for both postnatal target variables, mortality, and PPHN. The 

306 RFE approach used RF classification to evaluate different configurations, which was appropriate for 

307 several reasons. First, this approach provides features of relative importance during the training 

308 process. Each time a decision tree is constructed, the model tracks how much each feature contributes 

309 to reducing the cost function, usually Gini impurity or entropy. An importance score for each feature 

310 is obtained by averaging this importance across all trees. Second, because of its "forest" nature, a RF 

311 is robust and less prone to overfitting than individual decision trees. This means that the computed 

312 importance of features is more reliable and less affected by noise in the data. Finally, RFs can handle 

313 highly correlated features without special preprocessing. In the presence of correlations, this approach 

314 can distribute importance among correlated features, providing a complete picture of each feature 

315 contribution.

316 We conducted a comprehensive evaluation of three classification algorithms: XGBoost, SVM, and 

317 KNN. Our models were trained using prenatal and early postnatal clinical variables, as well as 

318 selected shape features extracted from MRI data. Interestingly, we discovered that XGBoost 

319 outperformed the other models and emerged as the best classification model for both clinical targets. 

320 The supervised ML models, designed to predict PPHN severity and neonatal mortality, showed 

321 promising preliminary results. Our study suggests that predicting mortality and PPHN severity in the 

322 prenatal and very early postnatal period can be feasible by ML applications, achieving accuracies of 

323 88% for mortality and 82% for postnatal PPHN. With significant accuracy rates and reliable 

324 sensitivity, this model has the potential to revolutionize prognostic assessment in CDH, eventually 

325 improving patient outcomes. By implementing the algorithm, risk categories could be simulated 

326 based on available prenatal data and assuming gestational age and estimated fetal weight at birth. The 

327 algorithm could also be updated in real time at subsequent obstetric visits or based on the threat of 
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328 preterm delivery, as prematurity plays a significant role in survival, especially in infants with 

329 underlying disease. This would assist with parenting counseling, birth planning, and postnatal care. 

330 To the best of our knowledge, our studies are the first to explore the application of AI methods to 

331 CDH [29,30].

332 Despite being encouraging, some limitations must be considered. First, the restricted dataset deriving 

333 from the rarity of the condition represented the weakest point. An appropriate number of cases during 

334 training/validation and data interpretation is crucial for ML applications. Potential strategies may 

335 involve collaborating with other institutions and prospectively considering including future cases to 

336 augment the study population. Another critical aspect is data inhomogeneity, specifically the lack of 

337 a standard grayscale in the images. This would require a standardization procedure, after which gray-

338 level-based features could be used to increase ML quality for classification purposes. Nonetheless, 

339 MRI standardization is a delicate process that involves profound changes in image gray levels, which 

340 might even make ML procedures less accurate. Consequently, we preferred to simply discard ML 

341 features based on the gray-level content of ROIs, only using shape features. Interestingly, no shape 

342 features were selected for the mortality target, whereas clinical and shape variables were chosen for 

343 the PPHN target. We can speculate that the information provided by the images is more closely related 

344 to the structure and architecture of the lung parenchyma, which directly impacts the disease's 

345 pathophysiology. On the other hand, mortality may be an indirect result of these structural alterations, 

346 influenced by many factors. Although a conclusive interpretation is not yet possible, this aspect 

347 deserves further investigation, and an increase in the study population and image optimization are 

348 crucial. Finally, the retrospective data collection is largely affected by missing or inaccurate data and 

349 may be time-consuming for the clinician. Standardized assessment and computerized data collection 

350 could improve the dataset quality. 

351

352 CONCLUSIONS

353
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354 Although with limitations, with reasonable accuracy, a ML approach for predicting mortality and 

355 PPHN severity of CDH newborns using prenatal and very early post-natal variables appears feasible. 

356 Our results could pave the way for new AI applications in the neonatal field. They would enable risk-

357 adjusted analyses of outcomes, healthcare costs, and management strategies, ultimately improving 

358 the overall quality of care.
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