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ABSTRACT

Mixed-model  association analysis (MMAA) is  the preferred tool  for performing a genome-wide association

study, because it enables robust control of type 1 error and increased statistical power to detect trait-associated

loci.  However,  existing MMAA tools  often suffer  from long runtimes and high  memory requirements.  We

present LDAK-KVIK, a novel MMAA tool for analyzing quantitative and binary phenotypes. Using simulated

phenotypes,  we  show that  LDAK-KVIK produces  well-calibrated test  statistics,  both for  homogeneous and

heterogeneous datasets. LDAK-KVIK is computationally-efficient, requiring less than 20 CPU hours and 8Gb

memory to analyse genome-wide data for 350k individuals. These demands are similar to those of REGENIE,

one of the most efficient existing MMAA tools, and up to 30 times less than those of BOLT-LMM, currently the

most powerful MMAA tool. When applied to real phenotypes, LDAK-KVIK has the highest power of all tools

considered. For example, across 40 quantitative phenotypes from the UK Biobank (average sample size 349k),

LDAK-KVIK  finds  16%  more  significant  loci  than  classical  linear  regression,  whereas  BOLT-LMM  and

REGENIE find 15% and 11% more, respectively. LDAK-KVIK can also perform gene-based tests; across the 40

quantitative UK Biobank phenotypes, LDAK-KVIK finds 18% more significant genes than the leading existing

tool.

INTRODUCTION 

Genome-wide  association  studies  (GWAS)  have  greatly  advanced  our  understanding  of  the  genetic  basis

underlying  complex  diseases,  offering  valuable  insights  into  disease  mechanisms  and  potential  therapeutic

targets.1,2 Since the first GWAS was carried out in 2005, sample sizes have regularly increased, such that studies

involving over 100,000 individuals are now common.3–7 Initially, GWAS relied on classical linear or logistic

regression to test for association between single nucleotide polymorphisms (SNPs) and phenotypes. However, in

recent  years,  mixed-model  association  analysis  (MMAA) has  become the  method of  choice.8,9 MMAA can

reduce false  positives  by accounting for  cryptic  relatedness,  and increase true positives  by factoring in  the

contributions of SNPs other than the one being tested.10
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The most  effective  MMAA methods  are  two-step.11–13 In  Step  1,  they  construct  leave-one-chromosome-out

(LOCO) polygenic scores (PRS) and estimate  λ ,  a  test  statistic scaling factor.  In Step 2,  they regress the

phenotype on the SNPs,  including the LOCO PRS as  an offset,  then scale  the resulting test  statistics.  The

computational demand of a two-step MMAA tool depends mainly on its algorithmic design, whereas its power

depends primarily on the accuracy of its LOCO PRS.14,15 For example, REGENIE13 tends to be faster than BOLT-

LMM12 because its algorithm for estimating SNP effect sizes is block-based instead of genome-wide. However,

BOLT-LMM tends to detect more significant associations than REGENIE because it usually constructs more

accurate PRS.

In this paper, we introduce LDAK-KVIK, a novel two-step MMAA tool for analyzing quantitative and binary

phenotypes. We first use simulated data to show that LDAK-KVIK controls type 1 error for both homogeneous

and heterogeneous data sets, and also when analyzing highly imbalanced phenotypes (e.g., diseases with very

few cases). We then apply LDAK-KVIK to large-scale data from the UK Biobank. 16,17 When used for single-SNP

association  analysis,  LDAK-KVIK  finds  more  significant  associations  than  BOLT-LMM,12 REGENIE,13

fastGWA18 and GCTA-LOCO,10 four of the leading existing MMAA tools.  Meanwhile, when used for gene-

based association analysis, LDAK-KVIK finds more significant associations than LDAK-GBAT,19 the leading

existing  tool  for  gene-based  association  testing.  LDAK-KVIK is  available  in  our  software  package  LDAK

(www.  dougspeed.com  ).

RESULTS

Overview of LDAK-KVIK.

A detailed description of LDAK-KVIK is provided in the Online Methods and Supplementary Notes 1-5. Here

we highlight its key features.

LDAK-KVIK is a computationally efficient MMAA tool. Firstly, it never needs to store genotypes for more than

512 SNPs, and thus has very low memory demands. Secondly, we have developed a chunk-based variational

Bayes solver (illustrated in Supplementary Figure 1) that requires 5-20 times fewer updates than conventional

variational  Bayes  solvers  (Supplementary  Figure  2).12,20 Our  solver  not  only  estimates  SNP effect  sizes

(required when constructing the Step 1 PRS), but also efficiently computes terms of the form V -1A, where V is

phenotypic variance matrix and A is a vector of genotypes or phenotypes (required when estimating heritability).

Thirdly, we have developed a fast empirical algorithm for computing the saddlepoint approximation (SPA).21

LDAK-KVIK increases detection power, relative to existing MMAA tools, by using more realistic models for

how SNP effect  sizes  vary  across  the  genome.22,23 Firstly,  LDAK-KVIK  models  how  per-SNP heritability
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depends  on  minor  allele  frequency  (MAF),  whereas  existing  MMAA tools  typically  assume  that  per-SNP

heritability is constant.24,25 Secondly, LDAK-KVIK uses an elastic net prior distribution for SNP effect sizes (i.e.,

a mixture of a normal and a Laplace distribution), whereas existing MMAA tools generally restrict to mixtures

of normal distributions.26

We have developed a novel test for structure, based on the average pairwise correlation between 512 SNPs

randomly picked from the genome (the correlation is calculated after regressing out covariates). The outcome of

this test  determines  how LDAK-KVIK calculates the test  statistic  scaling factor  λ :  if  the  test  finds weak

structure (specifically,  estimates that  the maximum average inflation of  χ2(1)  test  statistics is  below 0.1),

LDAK-KVIK sets λ=1 , which is the correct value when analyzing homogeneous data; if the test finds strong

structure, LDAK-KVIK replaces the elastic net prior distribution for SNP effect sizes with an infinitesimal prior,

and estimates λ  using the Grammar-Gamma Formula.11

In addition to testing SNPs individually for association with the phenotype, LDAK-KVIK can also perform

gene-based tests. This is achieved by providing the results of the single-SNP analysis to our existing software

LDAK-GBAT.19 To  avoid  confusion,  we  refer  to  our  new  tool  as  LDAK-KVIK  when  testing  SNPs  for

association, and as LDAK-KVIK-GBAT when testing genes for association.

Data.

We use genotype and phenotype data from the UK Biobank (obtained via application 21432).16,17 In total, we

construct  four  datasets:  the  “white  dataset”  contains  367,981  white  British  individuals,  the  “homogeneous

dataset”  contains  63,000  unrelated,  white  British  individuals,  the  “twins  dataset”  contains  63,000  twins

(generated by duplicating the genotypes of 31,500 individuals from the homogeneous dataset), while the “multi-

ancestry dataset” contains 60,019 individuals of various ethnic backgrounds (including approximately 35k white,

5k Indian, 4k Caribbean and 3k African). After reducing to autosomal, biallelic SNPs with MAF>0.001, the

white, homogeneous and twins datasets each contain 690,264 SNPs, while the multi-ancestry dataset contains

471,760 SNPs.

We first analyze simulated phenotypes. When generating these, we randomly select causal SNPs from the start of

each  chromosome  then  use  the  chromosome  ends  as  null  SNPs  for  evaluating  type  1  error  (illustrated  in

Supplementary Figure 3). We subsequently analyze 40 quantitative and 20 binary phenotypes from the UK

Biobank.  The  quantitative  phenotypes  are  height,  body  mass  index,  20  biochemistry  measurements  (e.g.,

cholesterol, c-reactive protein, and urate), 16 blood measurements (e.g., haemoglobin concentration, lymphocyte

percentage  and  platelet  count)  and  two  urine  measurements  (levels  of  creatinine  and  sodium).  The  binary
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phenotypes are defined based on ICD-10 codes27 (e.g., hypertension, obesity, and asthma) and have prevalences

ranging from 0.02% to 29%. Additional details of the data are provided in Supplementary Note 6.

For  the  analyses  below,  we  always  include  ten  principal  components  as  covariates;  when  analyzing  real

phenotypes, we additionally include age, sex, age2 and age*sex. As explained above, LDAK-KVIK includes a

test  for  structure.  For  the  white,  homogeneous  and  multi-ancestry  datasets,  LDAK-KVIK  determines  the

structure is weak (the estimates of the maximum average inflation of test statistics are approximately 0.04, 0.002

and  0.03,  respectively).  By  contrast,  LDAK-KVIK  determines  the  twins  dataset  has  strong  structure  (the

estimated maximum average inflation is 1.0).

Existing tools.

For single-SNP association testing, we compare LDAK-KVIK with classical linear and logistic regression, and

with four existing MMAA tools: BOLT-LMM,12 REGENIE,13 fastGWA18 and GCTA-LOCO10 (a summary of

each tool is provided in  Supplementary Note 7).  Note that REGENIE and fastGWA are designed for both

quantitative  and  binary  phenotypes,  whereas  BOLT-LMM  and  GCTA-LOCO are  designed  for  quantitative

phenotypes. For gene-based association testing, we compare LDAK-KVIK-GBAT with our existing tool LDAK-

GBAT,19 which we previously found to be consistently more powerful  than five alternative tools (including

MAGMA28 and FastBAT29).

Heritability models.

We consider heritability models of the form E [h j
2 ]∝ [ f j (1−f j ) ]1+α

, where E [h j
2 ]  is the expected heritability

contributed by SNP j, and fj is its MAF. When α=−1  all SNPs are expected to contribute equal heritability

(this is the most commonly-used heritability model in human statistical genetics24,30). When α=−0.25  SNPs

with higher MAF are expected to contribute more heritability than SNPs with lower MAF (this model better

reflects  what  is  observed  for  human  complex  traits  22,31).  All  four  existing  MMAA tools  assume  α=−1

throughout their operations (e.g., REGENIE assumes α=−1  when constructing the Step 1 PRS, while BOLT-

LMM assumes α=−1  both when constructing the Step 1 PRS and when estimating λ ). By contrast, LDAK-

KVIK estimates α  from the data.

LDAK-KVIK controls type 1 error.

We simulate quantitative and binary phenotypes for the homogeneous, twins and mixed-ancestry datasets. For

each dataset, we consider 12 different scenarios, obtained by varying the heritability (0.2 or 0.5), the number of
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causal SNPs (5k or 20k), and for binary phenotypes, also the prevalence (10% or 1%). When generating causal

SNP effect sizes, we assume α=−1 . We perform single-SNP analysis using LDAK-KVIK, then measure type

1 error based on the average χ2(1)  test statistic of null SNPs, and the proportions of null SNPs with p-values

below 0.05, 0.001 and 5x10-5.  Supplementary Figure 4 shows that LDAK-KVIK has well-controlled type 1

error for all 12 scenarios across all three datasets. This remains the case when we instead perform a gene-based

analysis (Supplementary Figure 5).

For comparison,  Supplementary Figures 6-9 provide results from analyzing the simulated phenotypes using

BOLT-LMM, REGENIE, fastGWA and GCTA-LOCO. In general, each of the four tools controls type 1 error for

all  scenarios  considered,  except  that  REGENIE tends to  produce inflated test  statistics  for  common binary

phenotypes (e.g., when analyzing the 40  binary phenotypes with prevalence 10% for the homogeneous dataset,

the average χ2(1)  test statistic is 1.03).

LDAK-KVIK is computationally efficient.

Table 1 compares the runtime and memory requirements of LDAK-KVIK with existing MMAA tools when

testing for association 690k directly-genotyped SNPs, using either the homogeneous or white datasets (63k and

368k  individuals,  respectively).  For  quantitative  phenotypes,  LDAK-KVIK  and  REGENIE  have  similar

demands,  typically requiring between 10 and 20 CPU hours and less than 16 Gb memory to analyze 368k

individuals.  fastGWA is  the  most  computationally-efficient  tool,  but  only if  we ignore the  one-off  cost  for

constructing the genomic relationship matrix (which for 368k individuals, took 763 CPU hours). By contrast,

BOLT-LMM  and  GCTA-LOCO  are  substantially  more  demanding.  For  example,  BOLT-LMM  takes

approximately 450 CPU hours to analyse 368k individuals, while GCTA-LOCO takes over 400 CPU hours just

to analyse 63k individuals (and thus it is not feasible for us to apply GCTA-LOCO to 368k individuals). The

computational demands of LDAK-KVIK are similar when we switch from quantitative to binary phenotypes

(which is also the case for REGENIE and fastGWA).

Supplementary Figure 10 and Supplementary Table 1 provide further  details of the LDAK-KVIK runtimes

and  results  from  additional  analyses.  For  example,  we  see  that  for  quantitative  (binary)  phenotypes,

approximately 95% (85%) of the total time is spent in Step 1. This means that if we increase the number of

association analysis SNPs from 690k to 10M, mimicking the situation where we perform a GWAS using imputed

data,  the  impact  is  relatively  modest  (e.g.,  for  quantitative  phenotypes,  the  average  time  to  analyse  368k

individuals increases from 16 CPU hours to 26 CPU hours). Meanwhile, we see that the runtime of LDAK-

KVIK-GBAT is approximately 15% longer runtime than that of LDAK-GBAT, due to the extra time required to

perform the gene-based association analysis.
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Note that the runtimes in Table 1 correspond to analyzing phenotypes individually. However, both LDAK-KVIK

and REGENIE are able to analyze multiple phenotypes simultaneously, which generally leads to a lower per-

phenotype runtime. For example, Supplementary Table 2 shows that when analyzing five and ten quantitative

phenotypes at once, the per-phenotype runtimes of LDAK-KVIK are reduced by 62% and 72%, respectively.

63k Individuals 368k Individuals

MMAA Tool CPU Hours Memory (Gb) CPU Hours Memory (Gb)

Quantitative

Phenotypes

BOLT-LMM 18 12 452 61

REGENIE 2.4 3 11 16

fastGWA 0.2 (24) 1 (1) 0.3 (763) 3 (3)

GCTA-LOCO 488 167 Not Feasible

LDAK-KVIK 2.5 2 16 6

Binary

Phenotypes

REGENIE 3.3 3 15 16

fastGWA 0.3 (24) 1 (46) 1.8 (764) 3 (3)

LDAK-KVIK 2.7 2 19 6

Table  1.  Computational  requirements of  MMAA tools.  We perform GWAS for  five  quantitative phenotypes

(glucose,  glycated  haemoglobin,  haemoglobin  concentration,  height  and  high-density  lipoprotein)  and  five

binary  phenotypes  (asthma,  atrial  fibrillation,  chronic  ischaemic  heart  disease,  dental  caries  and  residual

haemorrhoidal skin tags). Each GWAS analyzes 690k SNPs using either the homogeneous or white dataset (63k

and 368k individuals, respectively). All analyses were performed on AMD EPYC Genoa 9654 CPU processors,

using either 4 CPUs (LDAK-KVIK, REGENIE and fastGWA) or 12 CPUs (BOLT-LMM and GCTA-LOCO).

Values  report  the  mean  CPU  hours  and  memory  usage  across  either  the  five  quantitative  or  five  binary

phenotypes.  We  report  two  sets  of  values  for  fastGWA,  depending  on  whether  we  exclude  or  include  the

computation of  the genomic relatedness matrix (which only needs to be done once per dataset).  It  was not

feasible for us to apply GCTA-LOCO to 368k samples (we estimate it would require over 500Gb memory and

over 10,000 CPU hours).
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Figure  1.  Type  1  error  and  power  of  MMAA tools  when  analyzing  homogeneous  data. We  generate

quantitative phenotypes for 63k homogeneous individuals. Each phenotype has heritability 0.5 and 5k causal

SNPs, with causal SNP effect sizes sampled assuming either α=−1  (left) or α=−0.25  (right). We analyze

the  phenotypes  using  linear  regression,  BOLT-LMM,  REGENIE,  fastGWA,  GCTA-LOCO and  LDAK-KVIK.

Panels  report  the mean  χ2(1)  test  statistic  of  null  SNPs (top)  and causal  SNPs (bottom) for each of  ten

replicates. The three horizontal lines in each box mark the medians and inter-quartile ranges. Note that in the

top panels, the horizontal dashed lines mark the expected value if a tool is well-calibrated, while in the bottom

panels, values are reported relative to the results from linear regression.
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LDAK-KVIK is powerful

Figure 1 and  Supplementary Figure 11 compare the power of MMAA tools when performing single-SNP

analysis of the simulated phenotypes for the homogeneous dataset.  For the quantitative phenotypes, LDAK-

KVIK and BOLT-LMM are consistently the two most powerful MMAA tools, substantially ahead of REGENIE

and GCTA-LOCO, while fastGWA generally has lowest power. For the binary phenotypes, the three MMAA

tools generally have very similar power, reflecting that it is challenging to construct accurate PRS for phenotypes

with low (observed-scale) heritability.  Supplementary Figure 12 shows that for gene-based analysis, LDAK-

KVIK-GBAT tends to be substantially more powerful than LDAK-GBAT for quantitative phenotypes, while the

two tools have similar power for binary phenotypes.

The importance of modeling the relationship between per-SNP heritability and MAF.

So far,  we have only considered phenotypes generated assuming  α=−1  (all  causal  SNPs are expected to

contribute equal heritability). We now also analyze phenotypes generated assuming α=−0.25  (i.e., the per-

SNP heritability of causal SNPs tends to increase with MAF). Changing from α=−1  to α=−0.25  has two

main consequences. Firstly, we note that BOLT-LMM has inflated type 1 error, which is a consequence of it

assuming  α=−1  when computing the test statistic scaling factor  λ  (Figure 1). Secondly, we find that the

power of LDAK-KVIK generally increases relative to the other tools, reflecting that it can reliably infer the true

value of α , and use this to construct more accurate Step 1 PRS.

Given the inflation observed for BOLT-LMM, we now perform additional simulations, where we switch from

the homogeneous to the white dataset (i.e., increase the sample size from 63k to 368k).  Figure 2 shows that

BOLT-LMM can have substantially-inflated type 1 error when applied to large datasets. For example, across ten

quantitative phenotypes with heritability 0.5 and 5k causal SNPs, generated assuming  α=−0.25 , the mean

χ2(1)  test statistic of null SNPs is 1.09 (i.e., 9% higher than the expected value if BOLT-LMM was well-

calibrated). This inflation is due to BOLT-LMM overestimating  λ . For example, for the ten phenotypes just

mentioned, its estimates of λ  range from 1.08 to 1.11, despite the true value being close to one (because the

dataset is approximately homogeneous). To avoid this inflation, we create BOLT-LMM-Unscaled, whose results

match those from BOLT-LMM, except that we force  λ=1 .  Figure 2 shows that BOLT-LMM-Unscaled has

well-controlled type 1 error when applied to the white dataset.
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Figure 2. BOLT-LMM can produce inflated test statistics. We generate quantitative phenotypes for 368k white

individuals. Each phenotype has heritability 0.2 or 0.5 and 5k causal SNPs, with causal SNP effect sizes sampled

assuming α=−0.25 . We analyze the phenotypes using BOLT-LMM, BOLT-LMM-Unscaled and LDAK-KVIK.

The left (right) panels reports the mean test statistic of null (causal) SNPs for each of ten replicates. The middle

panels  provide  QQ-plots  for  BOLT-LMM (constructed  using  only  null  SNPs  and  combined  across  all  ten

replicates). In the left and right panels, the three horizontal lines in each box report the medians and inter-

quartile ranges. Note that in the left panels, the horizontal dashed lines mark the expected value if a tool is well-

calibrated, while in the right panels, values are reported relative to the results from linear regression.
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Single-SNP analysis of UK Biobank phenotypes.

Supplementary Figure 13 reports estimates of α  for the 40 quantitative UK Biobank phenotypes. The mean

estimate is -0.23 (s.d. 0.005), with α  significantly greater than -1 for all phenotypes (P<0.01). These results,

combined with those in  Figure 2, indicate that BOLT-LMM will tend to produce inflated test statistics when

applied to the quantitative UK Biobank phenotypes, and so for the following analyses, we replace BOLT-LMM

with BOLT-LMM-Unscaled.

Figure 3 compares the number of associations found by Bolt-LMM-Unscaled, REGENIE, fastGWA and LDAK-

KVIK  when  analyzing  the  40  quantitative  phenotypes.  We  find  that  LDAK-KVIK identifies  15.6%  more

independent,  genome-wide significant  (P<5x10-8) SNPs than linear regression,  which is  slightly higher than

BOLT-LMM-Unscaled  (15.1%),  and  substantially  higher  than  REGENIE  (11.3%)  and  fastGWA (-1.9%).

Supplementary Figure 14 shows that ranking of MMAA tools is the same if we instead measure power based

on the mean χ2(1)  test statistic of SNPs that are genome-wide significant from linear regression.

Supplementary Figure 15 shows that when analyzing the 20 binary phenotypes, all MMAA tools find similar

numbers of associations. For example, REGENIE and LDAK-KVIK in total find 676 and 686 independent,

genome-wide significant SNPs, respectively, which is only slightly higher than logistic regression (667 SNPs).

These results are consistent with those when analyzing the simulated phenotypes, and again reflect the difficulty

of constructing accurate PRS for binary phenotypes.
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Figure 3. Performance of MMAA tools when analyzing 40 quantitative phenotypes from UK Biobank. We 

analyze each phenotype using BOLT-LMM-Unscaled, REGENIE, fastGWA and LDAK-KVIK, then count the 

number of independent, genome-wide significant loci (SNPs with P<5x10-8, filtered so that no pair within 1Mb 

has squared correlation above 0.1). Points compare the number of loci found by each tool, relative to the results 

from linear regression, with the estimated SNP heritability (obtained using our software SumHer25). The ten 

phenotypes with highest SNP heritability are named, while the dashed lines are obtained by regressing the 

relative numbers of loci found by each tool on the estimates of SNP heritability.
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Figure 4. Accuracy of Step 1 PRS and power of LDAK-KVIK-GBAT. a, We applied LDAK-KVIK and BOLT-

LMM to the 40 quantitative phenotypes from the UK Biobank. Points report the accuracy of the Step 1 PRS from

each tool, measured by the squared correlation between predicted and observed phenotypes across 41k samples

(distinct from those used for the association analysis). For comparison, we also report the accuracy of Ridge

Regression PRS, which are similar to the PRS constructed by REGENIE.  b, Points compare the numbers of

significant  genes  (P<0.05/17,322=2.9x10-6)  from LDAK-GBAT and  LDAK-KVIK-GBAT,  for  each  of  the  40

quantitative phenotype. The diagonal lines mark y=x.
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Accuracy of Step 1 PRS.

Figure 4a compares the accuracy of the Step 1 PRS constructed by LDAK-KVIK and BOLT-LMM, for each of

the 40 quantitative UK Biobank phenotypes. For comparison, we also consider Ridge Regression PRS, which

are constructed using similar assumptions to the PRS constructed by REGENIE (the latter does not report effect

sizes,  so we can not measure the accuracy of its PRS directly).  We see that  the PRS accuracies mirror the

detection powers of the three MMAA tools (Figure 3). For example, the PRS from LDAK-KVIK tend to be

slightly more accurate than the PRS from BOLT-LMM and substantially more accurate than the PRS from Ridge

Regression, explaining why LDAK-KVIK found slightly more significant loci than BOLT-LMM-Unscaled and

substantially more significant loci  than REGENIE.  Supplementary Figure 16 shows that for the 20 binary

phenotypes, the Step 1 PRS tend to have very low accuracy, explaining why the power of the MMAA tools was

similar to that of logistic regression.

Gene-based analysis of UK Biobank phenotypes.

We test 17,332 genes for association, defined based on RefSeq annotations. 32 Figure 4b and  Supplementary

Figure 17  report the number of significant genes (P<0.05/17,322=2.9x10-6) from LDAK-GBAT and LDAK-

KVIK-GBAT.  Across  the  40  quantitative  phenotypes,  LDAK-KVIK-GBAT  finds  on  average  18.4%  more

significant genes than LDAK-GBAT. By contrast, across the 20 binary phenotypes, there is no advantage using

LDAK-KVIK-GBAT  instead  of  LDAK-GBAT  (in  total,  the  tools  find  1508  and  1515  significant  genes,

respectively).

DISCUSSION

We  have  presented  LDAK-KVIK,  a  novel  tool  for  performing  single-SNP  and  gene-based  mixed-model

association  analysis.  We  have  shown  that  LDAK-KVIK  can  be  validly  applied  to  homogeneous  and

heterogeneous  datasets,  and  to  both  quantitative  and  binary  phenotypes.  LDAK-KVIK  is  computationally

efficient; with access to parallel computing, it can analyse data for 100,000s of individuals within a few hours,

and has low memory requirements. Furthermore, LDAK-KVIK is powerful; for example, when used for single-

SNP analysis of quantitative phenotypes, LDAK-KVIK consistently finds more significant associations than the

existing MMAA tools BOLT-LMM, REGENIE, fastGWA and GCTA-LOCO.

Compared to  BOLT-LMM, the main advantage of LDAK-KVIK is its  computational  efficiency (e.g.,  when

analyzing the UK Biobank phenotypes, LDAK-KVIK was 30 times faster and required five times less memory).

This is mainly due to the development of a chunk-based variational Bayes solver.  Supplementary Figure 2

shows that our variational Bayes solver can construct PRS 5-10 times faster than the standard (genome-wide)
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variational  Bayes solver,  and can compute terms of  the  form V -1A ten times faster  than conjugate  gradient

descent. Further, our variational Bayes solver has a small memory footprint (less than 1Gb), because it never

needs to store data for more than 256 SNPs at a time.

Compared to REGENIE, the main advantage of LDAK-KVIK is its power (e.g., across the 40 quantitative UK

Biobank phenotypes, LDAK-KVIK found 3.7% (s.d. 0.6%) more independent, genome-wide significant loci,

and when restricted to SNPs significant from linear regression, the  test statistics from LDAK-KVIK were on

average 2.8% (s.d. 0.3%) higher). This power increase mainly reflects that LDAK-KVIK uses more realistic

models  for  the  genetic  architecture  of  complex  traits.  Specifically,  LDAK-KVIK  models  the  relationship

between per-SNP heritabilities and MAF, and uses an elastic net prior distribution for SNP effect sizes. As shown

in  Figure 4a,  these features result  in LDAK-KVIK constructing more accurate  PRS in Step 1,  which then

increases the chance of discovering associations in Step 2.

We recognize that LDAK-KVIK can be considered much slower than fastGWA. However, there are four points

to note. Firstly, LDAK-KVIK is only slower if we ignore the time fastGWA takes to compute the genomic

relatedness matrix. Although a one-off cost, this can be non-trivial (e.g., when analyzing 368k individuals, this

step  took  763  CPU  hours,  which  is  longer  than  the  total  time  LDAK-KVIK  required  to  analyse  all  40

quantitative  phenoptypes).  Secondly,  LDAK-KVIK  is  usually  substantially  more  powerful  than  fastGWA,

reflecting  that  fastGWA focuses  on  controlling  type  1  error,  instead  of  improving  power  relative  to  linear

regression. Thirdly, fastGWA is only designed for homogeneous data, or data containing related individuals,

whereas LDAK-KVIK can also be applied to datasets including individuals from multiple ancestries. Fourthly,

LDAK-KVIK includes  an  option  to  perform an  approximate  version  of  fastGWA,  that  uses  a  much faster

algorithm for identifying related pairs of individuals. Supplementary Figure 18 shows that when applied to the

60 quantitative and binary UK Biobank phenotypes, our approximate version of fastGWA gives results very

similar to those from the original version of fastGWA, yet in total takes under two CPU hours to analyze each

trait (instead of 763 CPU hours).

We realise that LDAK-KVIK has some limitations. Firstly,  we were unable to devise a reliable method for

estimating λ  when assuming a mixture prior for SNP effect sizes. Therefore, as a practical solution, LDAK-

KVIK begins by testing for structure. If this test finds weak structure, then LDAK-KVIK uses a mixture prior

and sets λ=1 . However, if this test finds strong structure, LDAK-KVIK switches to an infinitesimal prior, and

estimates  λ  using  the  Grammar-Gamma  formula.11 We  recognise  that  our  solution  is  imperfect,  because

switching to an infinitesimal prior typically results in less accurate Step 1 PRS, and therefore lower power to

detect associations in Step 2 (Supplementary Figures 19 & 20). In  Supplementary Note 8 we summarize

seven different approaches we tried when searching for a general method for estimating  λ , in the hope that

these might inspire others to succeed where we failed.
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A second limitation is that LDAK-KVIK estimates  α  using a grid search, with five pre-defined values (-1, -

0.75, -0.5, -0.25 and 0). While the use of pre-defined values enables high computational efficiency (because

LDAK-KVIK can evaluate model fit for all five values simultaneously), we appreciate that it limits the accuracy

of the algorithm. For example, when analyzing the 20 phenotypes underlying  Figure 2,  each of which was

generated  assuming  α=−0.25 ,  LDAK-KVIK only  infers  the  true  value  six  times  (for  the  remaining  14

phenotypes, its estimate of alpha is either -0.5 or 0). However, while imperfect, we believe that our algorithm is

a marked improvement on the status quo, which is to simply assume α=−1 .

Thirdly, we found that when analyzing binary phenotypes, LDAK-KVIK was often only slightly more powerful

than logistic regression. We note that this was the same for other MMAA tools. Furthermore, it partially reflects

that we have focused on non-ascertained phenotypes (e.g., the UK Biobank is a population-based sample, so the

proportion of cases for each ICD10 disease will  be close to the disease’s prevalence).  For  Supplementary

Figure 21, we  simulate  ascertained binary phenotypes.  We find that  LDAK-KVIK continues  to  have good

control of type 1 error, however its power advantage over logistic regression depends on the scenario considered

(e.g., its advantage tends to increase when analyzing more common phenotypes, but reduce when analyzing rarer

phenotypes).

We finish by pointing out that although designed for association testing, LDAK-KVIK also produces state-of-

the-art PRS. In particular, previous works have shown that BOLT-LMM is one of the leading tools for 

constructing PRS.14,23 Here we have found that LDAK-KVIK tends to produce more accurate PRS than BOLT-

LMM, and has substantially lower computational demands.
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ONLINE METHODS

Here we provide a concise description of LDAK-KVIK; please see Supplementary Notes 1-7 for an exhaustive

version, as well as details of existing MMAA tools and the UK Biobank data. Note that when describing LDAK-

KVIK, we first assume the phenotype is quantitative and that the data are approximately homogeneous, then

later explain the changes required when the phenotype is binary, or when we detect heterogeneity.

Notation.

Suppose there are n individuals,  each genotyped for m SNPs, recorded for q covariates and measured for a

phenotype. Let the (n x m) matrix X’ contain the genotypes, let the length-n vector Y’ contain the phenotypes,

and let the (n x q) matrix Z contain covariates. We use C to denote the total number of chromosomes, use X and

Y to denote, respectively, the genotypes and phenotypes after regressing out the covariates, and use λ  to denote

the test statistic scaling factor. Without loss of generality, we assume X j and Y are standardized to have mean

zero and variance one.

LDAK-KVIK Step 1.
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This step produces C LOCO Elastic Net PRS, each taking the form Pc=∑ X j γ̂ j , where γ̂ j  is the estimated

effect size for SNP j, and the sum is across all SNPs not on Chromosome c. This step also estimates λ .

LDAK-KVIK first performs our novel test for structure (described below); for now, we assume this test finds

only weak structure. LDAK-KVIK next computes ĥ j
2 , estimates of the heritability contributed by each SNP. For

this, it considers heritability models of the form

E[h j
2]=w j h

2/W ,     with    w j=[ f j(1−f j)]
1+α     and    W=∑ w j

where fj is the MAF of SNP j, h2 is the proportion of phenotypic variance explained by all SNPs, while  α
determines how per-SNP heritability depends on MAF. LDAK estimates α  and h2 using Randomized Haseman-

Elston Regression33 and Monte Carlo restricted maximum likelihood  12 (REML), then sets  ĥ j
2  to its expected

value given these estimates. Note that Monte Carlo REML must calculate terms of the form V -1Y, KV-1Y, V-1r

and KV-1r, where V is an (n x n) variance matrix, K is an (n x n) genomic relatedness matrix (GRM), and r is a

length-n vector whose elements are drawn from a standard normal distribution; we calculate these terms using

our novel Variational Bayes solver (described below).

LDAK-KVIK then constructs C LOCO Elastic Net PRS, for which it assumes26

γ j∼p DE (a j)+(1−p)N (0 ,b j) ,     with    a j=√ 2 p
(1−F )ĥ j

2
    and    b j=

F ĥ j
2

1−p
        (1)

where DE(aj) denotes a double exponential  distribution with rate a j.  The parameters p and F determine the

relative contributions of the double exponential and normal distributions. LDAK-KVIK finds suitable values for

these using cross-validation (by default,  LDAK-KVIK uses 90% of samples to construct genome-wide PRS

corresponding to ten different pairs of values for p and F, then picks the pair that has lowest mean-squared error

measured using the remaining 10% of samples). Note that all PRS are constructed using our novel variational

Bayes solver (described below). Finally, LDAK-KVIK calculates λ . Because we are, for now, assuming there

is only weak structure, LDAK-KVIK sets λ=1 .

LDAK-KVIK Step 2.

LDAK-KVIK  tests  SNP  j  for  association  using  least-squares  linear  regression  with  the  model

E [Y−Pc ]=X j β j ,  then scales the resulting χ2(1)  test statistic by λ .

Binary phenotypes.
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Many of  the  operations  in  LDAK-KVIK are  based  on  a  linear  model  of  the  form  Y i=∑ X i , j γ j+e i .  In

particular, this model is assumed (either explicitly or implicitly) when estimating h 2, when constructing PRS and

when testing SNPs for association. When the phenotype is quantitative, X j and Y contain standardized residuals

from linearly regressing Xj’ and Y’, respectively, on Z, and LDAK-KVIK assumes e i∼N (0 , I (1−ĥ2)) , where

I is an (n x n) identity matrix and ĥ2  is the estimate of h2. When the phenotype is binary, LDAK-KVIK first

computes the length-n vector  μ ' , which contains estimates of the probabilities that each individual is a case

given the covariates, and constructs the (n x n) diagonal matrix D, with  Di ,i∝μ 'i(1−μ ' i)  and trace(D-1)=n.

LDAK-KVIK then sets Xj to the residual from regressing Xj’ on Z using weighted linear regression with weight

matrix D, sets Y=D−1(Y '−μ ') , and assumes e i∼N (0 , D−1(1−ĥ2)) . These changes are motivated by the

observation that the estimated SNP effect sizes from regressing Y’ on Z and X j’ using logistic regression are

approximately equal to those from regressing D−1(Y '−μ ' )  on Z and Xj’ using weighted linear regression with

weight matrix D (see Supplementary Note 5 for a proof). Note that ensuring trace(D-1)=n allows us to continue

to treat h2 as a heritability (i.e., h2 continues to represent the proportion of variance of Y explained by all SNPs).

When analyzing quantitative phenotypes, LDAK-KVIK obtains the (unscaled) Step 2 test statistics via a Wald

Test (specifically,  U j=β̂ j
2/Var (β̂ j) , the square of the estimated effect size for SNP j divided by its estimated

variance).  When  analyzing  binary  phenotypes,  LDAK-KVIK  first  obtains  U j via  a  Wald  Test,  but  if  the

corresponding p-value (after scaling by λ ) is below 0.1, recomputes Uj using our novel SPA solver (described

below).

Novel test for structure.

LDAK-KVIK  picks  512  SNPs  semi-randomly  from  across  the  genome  (specifically,  LDAK-KVIK  first

randomly picks  10,000 SNPs,  then retains the  512 SNPs with highest  variance).  It  then computes  ρ̄2 ,  the

average squared correlation between the r pairs of SNPs on different chromosomes. To test ρ̄2  for significance,

we use the fact  that  under the null  hypothesis (i.e.,  if  the data are homogeneous and so SNPs on different

chromosomes are independent), the squared correlations are beta distributed with parameters 1/2 and (n-2)/2,

and so ρ̄2  will have expectation 1/(n-1) and variance 2(n-2)/[r(n-1)2(n+1)].

As well as using ρ̄2  to test for structure, we consider nρ̄2  an estimate of the maximum average inflation of test

statistics due to structure, which is based on the following logic. Suppose that we could partition the genetic

contribution to a phenotype as  G=L j+D j  where Lj and Dj are the components local and distal to SNP j,

respectively,  whose  heritability  contributions  are  h2
Lj and  h2

Dj,  respectively.  Then  when  testing  SNP j  for
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association with the phenotype, we could write its expected χ2(1)  test statistic from classical linear regression

as  E[S j]≈1+n( l j
2hLj

2 +d j
2 hDj

2 ) , where  l j
2=Cor (X j L j)

2  and  d j
2=Cor (X j D j)

2  are the proportions of local

and distal genetic variation tagged by SNP j, respectively. Under this partitioning, nd j
2 hDj

2  can be viewed as the

expected inflation of Sj due to structure. Finally, if we assume that  ρ̄2 is a reasonable estimator of  d̄2 ,  the

average value of d2
j across all SNPs, and recognize that hDj

2 ≤1 , then it follows that nρ̄2  is an upper bound for

the average inflation of test statistics due to structure.

LDAK-KVIK determines there is strong structure when nρ̄2>0.1  and the corresponding p-value is below 0.001

(otherwise, it determines the structure is weak). Our test for structure is very fast (e.g., when analyzing 368k

individuals, it takes less than one minute) and has low memory demands (because it is only necessary to store

genotypes for  512 SNPs).  When LDAK-KVIK determines  there  is  strong structure,  it  makes the following

changes. When analyzing a quantitative phenotype, it switches from the elastic net prior to the infinitesimal prior

γ j∼N (0 , ĥ j
2) , then estimates λ  using the Grammar-Gamma formula11. When analyzing a binary phenotype,

LDAK-KVIK uses the approximate version of fastGWA described below.

Approximate version of fastGWA.

The LDAK-KVIK version of fastGWA differs from the original version in three ways. Firstly, whereas fastGWA

constructs a GRM using all SNPs, our version uses only 512 SNPs (those used in the test for structure, described

above).  Secondly,  when constructing the sparse GRM, fastGWA recommends truncating values below 0.05,

whereas we truncate non-significant  values (specifically,  those with P>0.1/n, which typically corresponds to

values  below  0.2).  Thirdly,  when  analyzing  a  binary  phenotype,  we  assume  the  null  model

Y∼N (0 ,σ2 K+E−1) , where K is the sparse GRM and E is a diagonal matrix with  Ei ,i=μ 'i(1−μ ' i) . Note

that this  represents a simplified version of the quasi-likelihood used by fastGWA, because we set  μ ' ,  and

therefore also E,  based only on the covariates, whereas fastGWA updates μ '  to allow for the contribution of

the sparse GRM. Supplementary Figure 18 shows that despite these simplifications, our version of fastGWA

performs similarly to the original version, both for quantitative and binary phenotypes.

LDAK-KVIK-GBAT.

Previously, we developed LDAK-GBAT, a tool for gene-based association analysis.19 This tests each gene using

the mixed model Y∼N (0 , K SσS
2+ Iσg

2) , where KS is a local GRM computed using only SNPs within the gene.

LDAK-GBAT finds the maximum likelihood estimate of  σS
2 ,  then obtains a p-value by testing if  σ S

2>0 .
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Importantly, LDAK-GBAT requires only GWAS summary statistics and a reference panel. Therefore, LDAK-

KVIK-GBAT applies LDAK-GBAT using the association results from Step 2, and using 5000 randomly-picked

individuals from the data as an in-sample reference panel.

Overview of Variational Bayes.

This section explains the general idea of using variational Bayes to construct PRS, whereas the next section

provides  specific  details  of  our  novel  variational  Bayes  solver.  Please  note  that  a  detailed  description  of

variational Bayes is provided in the supplement of the BOLT-LMM paper.12

When constructing PRS, LDAK-KVIK estimates P(γ∣Y ) , the posterior distribution of SNP effect sizes given

the data. To do this, we first construct a model likelihood  L(Y∣γ)  by assuming that Y has the multivariate

normal distribution Y∼N (X γ , I (1− ĥ2)) ,  where I is an (n x n) identity matrix. Then we specify π (γ) , a

prior distribution for SNP effect sizes, and use variational Bayes to approximate  P(γ∣Y )  as the product of

independent, single-parameter posterior distributions (one for each SNP):

P(γ∣Y )∝L(Y∣γ)×π(γ)≈Q(γ)=∏ Q j(γ j)

LDAK-KVIK updates  Q(γ)  one SNP at a time, by replacing the current  Q j(γ j)  with the distribution that

minimizes the difference between the approximate and true log likelihoods (measured by the Kullback-Leibler

divergence). Once convergence has been achieved, the corresponding PRS is constructed by setting  γ j=ηj ,

where η j  is the expectation of Q j(γ j) .

As explained above, Step 1 of LDAK-KVIK uses variational Bayes to construct Elastic Net PRS, assuming the

prior distribution defined in Equation 1. In this application, each Q j(γ j)  is a mixture of a left truncated normal

distribution, a right truncated normal distribution, and a (non-truncated) normal distribution:

Q j(γ)=p j - N - (η j - ,σ j -
2 )+ p j + N+(η j + ,σ j +

2 )+(1−p j -−p j +)N (ν jn ,σ jn
2 )

If  P j=∑ X j' γ̂ j'−X j γ̂ j  denotes a partial PRS where the effect sizes are based on the current estimate of

Q(γ) , then Q j(γ j)  is updated by setting

η j -=
X j

T (Y−P j)+(1− ĥ2)a j

X j
T X j

,     ηj +=
X j

T (Y−P j)−(1−ĥ2)a j

X j
T X j

,     σ j -
2 =σ j +

2 = 1−ĥ2

X j
T X j

η jn=
X j

T(Y−P j)

X j
T X j+(1− ĥ2)/b j

,     σ jn
2 =

1−ĥ2

X j
T X j+(1−ĥ2)/b j

,     p j -=
v j -

v j-+v j ++v j n
,     p j +=

v j +

v j -+v j ++v jn

where    v j -=
p
2 a j√2πσ j -

2 Φ(−ηj -

√σ j -
2 )exp( ηj -

2

2σ j -
2 ) ,     v j +=

p
2 a j√2πσ j +

2 Φ(−ηj +

√σ j +
2 )exp ( η j +

2

2σ j +
2 )
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and    v j n=(1−p)√σ jn
2

b j
exp( ηjn

2

2σ jn
2 )

Novel variational Bayes solver.

The variational Bayes solver implemented in BOLT-LMM uses sequential genome-wide scans.12 This means that

on each scan, it updates Q j(γ j)  once for each SNP in the genome (i.e., it first updates Q1(γ1) , then Q2(γ2) ,

and so on until  Qm(γm) ).  BOLT-LMM performs multiple scans,  continuing until  LL, the approximate log

likelihood, changes by less than a specified tolerance (by default, 0.0005). Typically, BOLT-LMM requires 50-

150 scans (convergence is slowest when analyzing highly-heritable traits with very large sample sizes).

By contrast,  our  novel  variational  Bayes solver  partitions  the  genome into chunks (by default,  each chunk

contains 256 SNPs), then uses chunk-based scans (see Supplementary Figure 1 for an illustration). On Scan 1,

our solver first updates Q j(γ j)  for SNPs in Chunk 1, continuing until LL has converged (the default tolerance

is n/106). Our solver then updates Q j(γ j)  for SNPs in Chunk 2, then for SNPs in Chunk 3, continuing until it

reaches the final chunk in the genome. On subsequent scans, our solver repeats the same process, except that it

only considers chunks that had a sizeable impact on LL (specifically, it only revisits a chunk if on the previous

scan, the updates for that chunk caused LL to change by more than n/106). Our solver typically requires no more

than ten scans to converge (because at this point, no chunks remain that have a sizeable impact on LL).

Our chunk-based solver has three main advantages over the genome-wide solver. Firstly, it prioritizes SNPs in

regions that have a larger influence on LL (which is more efficient than simply treating all SNPs the same).

Secondly, it enables on-the-fly reading of the genotypes (while this is, in theory, possible with the genome-wide

solver, it would be necessary to read the data 50-150 times). Thirdly, it is more cache-friendly. Supplementary

Figure 2 compares our chunk-based solver with a genome-wide version when analyzing either 50k or 100k

individuals. We see that both solvers have very similar accuracy (in that both produce models with very similar

LL). However, we find that the chunk-based solver is substantially faster, reflecting that it performs fewer scans,

and in turn fewer updates of Q j(γ j) . For example, when analyzing 100k individuals, the genome-wide solver

on average requires 56 scans (so updates each Q j(γ j)  56 times). By contrast, our chunk-based solver requires

on average 4 scans, and on average updates each Q j(γ j)  11 times. Supplementary Figure 22 shows that the

default convergence criterion suffices, in the sense that results are almost unchanged if the tolerance is made five

times smaller.

Computing terms of the form V-1A and KV-1A.
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Our variational Bayes solver can be used to construct Ridge Regression PRS by assuming the prior distribution

γ j∼N (0 , ĥ j
2) . In this application, each Q j(γ j)  has the form N (ηj ,σ j

2) , and is updated by setting

 ηj=
X j

T(Y−P j)

X j
T X j+(1−ĥ2)/ ĥ j

2
    and    σ j

2= 1− ĥ2

X j
T X j

However, for this choice of prior, the posterior mean has an explicit form (derived in Supplementary Note 4).

In particular, it can be shown that if P is a (genome-wide or LOCO) Ridge Regression PRS, then P= ĥ2 K V−1 Y

and  Y−P=(1−ĥ2)V −1Y  where  V is  a  (genome-wide or  LOCO) variance matrix.  It  follows that  we  can

estimate terms of the form V-1Y and KV-1Y by using our variational Bayes solver to construct Ridge Regression

PRS for Y, then dividing the estimated PRS by  ĥ2or dividing the corresponding residuals by  (1− ĥ2).  More

generally,  we can estimate terms of the form V-1A and KV-1A, where A is  an arbitrary length-n vector,  by

performing the same steps but replacing Y with A (i.e., instead of constructing a PRS for Y, we construct a PRS

for A). Therefore, our novel variational Bayes solver can not only be used to construct PRS, but also to compute

the terms required when performing either Monte Carlo REML or using the Grammar-Gamma formula.11

Overview of SPA.

Here we summarize the SPA; for a fuller description, we recommend reading the supplement of the REGENIE

paper.13 If A is a random variable, then its cumulant-generating function (CGF) is  K A (t)=log (E[exp( tA)]).

The first, second and third derivatives of KA(t) are

K A
1 (t)=

m1(t)
m0(t)

,     K A
2 (t )=

m2(t )
m0( t)

−
m1(t )

2

m0(t )
2     and    K A

3 ( t )=
m3(t )
m0(t )

−
3m1(t )m2(t)

m0(t )
2 +

2 m1(t)
2

m0(t)
3

where  mk (t)=E[Ak exp(tA )]. The CGF is additive, such that if A and B are independent random variables,

then K aA+bB(t )=K A(at)+KB (bt). Similar relationships hold for the first, second and third derivatives:

KaA+bB
1 (t )=aK A

1 (at)+bK B
1 (bt ),     K aA+bB

2 ( t)=a2 K A
2 (at)+b2 K B

2 (bt)     and    KaA+bB
3 (t )=a3 K A

3 (at)+b3 K B
3 (bt)

Now suppose A arises as a test statistic from regressing a phenotype on X j. The most common way to calculate a

p-value is to compute U j=(A−E [A ])2/Var (A), where E[A] and Var(A) are, respectively, the expectation and

estimated variance of A under the null hypothesis, then to compare U j to a χ2(1)  distribution (or equivalently,

compare its square root to a standard normal distribution). However, this approach assumes the null distribution

of A is approximately normal, which can be inappropriate (e.g., if the phenotype is binary and very imbalanced,

or when testing rare variants).
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The SPA provides an alternative way to compute a p-value. It involves computing

U ' j=(w+ log( v
w
)/w)

2

    with    w=sign( t ')√2(t ' A−K A (t ' ))     and    v=t ' √K A
2 (t ' )         (2)

where t’ is the solution to K1(t’)=A. The SPA p-value is then obtained by comparing U’j to a χ2(1)  distribution.

Novel SPA solver.

Suppose the test statistic from regressing a phenotype B on X j takes the form A=a1B1  + … + anBn.  Our solver

starts by calculating K B(at)=log (∑ exp(atB i) /n) for 41 predetermined values of a (evenly spaced between -

2 and 2), and for 256 predetermined values of t (ranging from tmin to tmax, as described below). Note that these

calculations correspond to assuming that the B i are independent and identically distributed, and that their true

distribution matches the observed distribution. Our solver similarly computes 41 x 256 realizations for each of

K1
B(at),  K2

B(at)  and K3
B(at).  We refer  to the predetermined values  of  a and t  as  “bin centres” and “knots”,

respectively.

When LDAK-KVIK analyzes  a  quantitative  phenotype,  the  (uncalibrated)  Step 2 test  statistic  for  SNP j  is

A=X j
T (Y−Pc ), so we set ai=Xij and Bi=Yi-Pci in the above equations; when LDAK-KVIK analyzes a binary

phenotype, the test statistic is A=X j
T D(Y−Pc), so we set ai=Xij and Bi=Dii(Yi-Pci). Note that when calculating

the CDF of A and its derivatives, it is necessary to calculate terms of the form K B(ait), K1
B(ait) and K2

B(ait), and in

general, ai will not match one of the 41 bin centres. Therefore, we approximate these terms using first, second

and third order Taylor  Series.  Specifically,  if  a’ denotes  the bin centre closest  to a i,  then we use the three

approximations

K B(ai t)≈KB(a ' t)+KB
1 (a ' t)(a i t−a ' t )+K B

2 (a' t)(ai t−a ' t)2/2+K B
3 (a ' t)(ai t−a ' t)3/6

K B
1 (ai t)≈KB

1 (a ' t)+KB
2 (a ' t)(a i t−a ' t )+K B

3 (a' t )(ai t−a ' )2 /2

and    KB
2 (ai t)≈K B

2 (a' t )+KB
3 (a' t)(ai t−a ' t)

Our solver uses the second approximation to estimate K1
A(t) = a1K1

B(a1t) + … + anK1
B(ant) for each of the 256

knots. It then identifies tL and tR, the knots immediately left and right of the solution to K1
A(t)=A, and uses the

first  and  last  approximations  to  calculate  KA(tL),  KA(tR),  K2
A(tL)  and  K2

A(tR).  Lastly,  our  solver  uses  linear

interpolation to estimate t’, KA(t’) and K2
A(t’). Specifically, it computes ϵ=(K A

1 (t L)−A)/(K A
1 (tL)−K A

1 (tR)),

which  estimates  the  location  of  the  solution,  relative  to  the  closest  two  knots  (e.g.,  if  ε=0.5,  then  t’ is

approximately halfway between tL and tR), then sets

t '=(1−ϵ) tL+ϵ tR ,     K A( t ')=(1−ϵ)K A (t L)+ϵK A (tR)     and    K A
2 (t ' )=(1−ϵ)K A

2 (t L)+ϵK A
2 (t R)
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Our SPA solver now has all terms required to compute U’ j, the χ2(1)  test statistic defined in Equation 2. If our

solver performed the above calculations naively,  it  would likely be no faster  than existing solvers,  because

computing each of the CGF and its derivatives still requires n operations (e.g., to compute KA(t) for a particular

knot, it is necessary compute KB(ait) for each individual). However, the number of operations can be reduced

dramatically by first summarizing Xj with respect to the bin centres. Specifically, if b j denotes the jth bin centre,

and the function I(i,j) indicates whether ai is closest to bj, then our solver computes C1, …, C9, nine length-41

count vectors whose elements are

C1, j=∑ I (i , j ) ,     C2 , j=∑ I (i , j)ai ,     C3 , j=∑ I ( i , j )ai
2

C4 , j=∑ I (i , j)(ai−b j) ,     C5 , j=∑ I (i , j)ai(ai−b j),     C6 , j=∑ I (i , j)ai
2(ai−b j)

C7 , j=∑ I (i , j)(a i−b j)
2 ,     C8 , j=∑ I( i , j)ai(ai−b j)

2 ,     C9 , j=∑ I (i , j)(ai−b j)
3

Given these nine vectors, we can rewrite the CDF of A and its derivatives as

K A (t)=∑ (C1 , j K A(b j)+ t C4 , j K A
1 (b j)+t 2C7 , j K A

2 (b j)+ t3 C9 , j K A
3 (b j))

K A
1 (t)=∑ (C2 , j K A

1 (b j)+t C5 , j K A
2 (b j)+t 2C8 , j K A

3 (b j))

K A
2 (t)=∑ (C3 , j K A

2 (b j)+t C6 , j K A
3 (b j))

which can be computed using 164, 123 and 82 operations, respectively (numbers that, for large datasets, are

substantially smaller than n).

When deciding the predetermined knot values, we initially use 256 quantiles from a Cauchy distribution, scaled

such that  tmin=−2000√n and  tmax=2000√n. However, if our solver encounter a SNP whose test statistic is

either below K1
A(tmin) or above K1

A(tmax), then it resets the knot values so that tmin and tmax are five times larger

than their original values (this was not necessary for any of the analyses in this paper).

As explained above, our SPA assumes the true distribution of B, the adjusted phenotype, matches its empirical

distribution. This has the advantage that our SPA solver can be (validly) applied to any phenotype, whereas

existing SPA solvers generally assume the phenotype has a Bernouilli distribution, so can only be applied to

binary  phenotypes.  Furthermore,  our  SPA solver  makes  no  requirements  on  the  form  of  X j (although  the

predetermined bin centres assume that all elements of X j are between -2 and 2, if this is not the case, X j can

simply  be  rescaled).  This  means  that  our  solver  can  automatically  be  applied  to  dosage  data  produced by

genotype imputation (or in fact non-SNP data).

Supplementary Figure 23 shows that the default values for the numbers of bin centres and knots suffice, in the

sense that results are almost unchanged if we increase either of these values (e.g., increase the number of bin

centres from 41 to 100, or the number of knots from 256 to 512).
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