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Abstract 1 

Physical inactivity and sedentary behavior are associated with higher risks of age-related 2 
morbidity and mortality. However, whether they causally contribute to accelerating biological 3 
aging has not been fully elucidated. Utilizing the largest available genome-wide association 4 
study (GWAS) summary data, we implemented a comprehensive analytical framework to 5 
investigate the causal relationships between moderate-to-vigorous leisure-time physical activity 6 
(MVPA), leisure screen time (LST), and four epigenetic age acceleration (EAA) measures: 7 
HannumAgeAccel, intrinsic HorvathAgeAccel, PhenoAgeAccel, and GrimAgeAccel. Shared 8 
genetic backgrounds across these traits were quantified through genetic correlation analysis. 9 
Overall and independent causal effects were assessed through univariable and multivariable 10 
Mendelian randomization (MR). A recently developed tissue-partitioned MR approach was 11 
further adopted to explore potential tissue-specific pathway that contributes to the observed 12 
causal relationships. Among the four EAA measures investigated, consistent results were 13 
identified for PhenoAgeAccel and GrimAgeAccel. These two measures were negatively 14 
genetically correlated with MVPA (𝑟!=−0.18~−0.29) and positively genetically correlated 15 

with LST (𝑟!=0.22~0.37). Univariable MR yielded a robust effect of genetically predicted LST 16 

on GrimAgeAccel (βIVW =0.69, P=1.10×10−7), while MVPA (βIVW=−1.02, P=1.50×10−2) and 17 
LST (βIVW=0.37, P=1.90×10−2) showed marginal causal effects on PhenoAgeAccel. 18 
Multivariable MR suggested an independent causal role of LST in GrimAgeAccel after 19 
accounting for effects of MVPA and other important confounders. Tissue-partitioned MR 20 
suggested skeletal muscle tissue associated variants be predominantly responsible for driving 21 
the effect of LST on GrimAgeAccel. Findings support sedentary lifestyles as a modifiable 22 
causal risk factor in accelerating epigenetic aging, emphasizing the need for preventive 23 
strategies to reduce sedentary screen time for healthy aging. 24 

Keywords: physical activity, sedentary behavior, biological aging, epigenetic clock, Mendelian 25 
randomization, causal inference, genetic correlation. 26 
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Introduction 1 

Aging is a dynamic and intricate process characterized by the gradual accumulation of 2 
perturbations, spanning from subtle molecular changes to observable alterations in physiology 3 
and functionality1. Due to the heterogeneity observed in the aging processes among individuals 4 
of similar chronological age2, biological age taking into account the internal physiological states 5 
and inter-individual variations represents a more precise indicator of aging3. Epigenetic clocks, 6 
which estimate chronological age or related phenotypes (e.g., mortality) based on levels of 7 
DNA methylation (DNAm) at specific cytosine-phosphate-guanine (CpG) sites4, have emerged 8 
as one of the most promising measures of biological aging5. Accumulating evidence suggests 9 
that exceeding chronological age according to epigenetic clock estimates, known as epigenetic 10 
age acceleration (EAA), is linked to multiple adverse aging-related health consequences6-8. 11 

Epigenetic clocks are largely modifiable9, identifying intervenable factors such as lifestyle 12 
choices that can decelerate or reverse EAA thus holds great potential in informing early 13 
interventions to promote healthy aging. Among them, physical activity and sedentary behavior 14 
are believed to play a role in reducing age-related morbidity and enhancing lifespan10-12. While 15 
several epidemiological studies have investigated the “physical activity-EAA” link, results 16 
across different epigenetic clocks remain inconsistent. For instance, a study involving 284 17 
participants reported a reverse association between daily step counts with extrinsic Hannum 18 
age acceleration (HannumAgeAccel, β = −0.100, P = 0.027), but a positive association between 19 
sit-to-stand transitions with intrinsic Horvath age acceleration (HorvathAgeAccel, β = 0.006, P 20 
= 0.049)13. However, two subsequent studies, one involving 3,567 participants and the other 21 
involving 2,758 participants, found no evidence to support such associations14 15. Meanwhile, 22 
the putative impact of sedentary behavior on biological aging remains largely unexplored, 23 
despite the recognition that its adverse health effects may largely be independent of physical 24 
activity levels16 17. In addition to the potential influence of insufficiently active lifestyles on 25 
aging, the aging process itself, accompanied by declining physical fitness, may also contribute 26 
to changes in physical activity and sedentary behavior18. Owing to biases derived from 27 
confounding and reverse causality, it is therefore difficult for conventional epidemiological 28 
studies to elucidate the causal relationships. 29 

One way to evaluate causality while mitigating the limitations of conventional epidemiological 30 
studies is through Mendelian randomization (MR), a framework that utilizes genetic variants 31 
(single-nucleotide polymorphism, SNP) as instrumental variables (IVs) to make causal 32 
inference by fulfilling three key assumptions (the relevance assumption, the independence 33 
assumption, and the exclusion restriction assumption)19. Multivariable MR extends this 34 
approach to assess the independent causal effects of multiple exposures on an outcome20. 35 
Further, tissue-partitioned MR that builds upon multivariable MR separates the phenotypic 36 
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subcomponents of an exposure, allowing for the identification of tissue-specific subcomponent 37 
that predominantly drives its causal effect on an outcome, providing insights into the underlying 38 
biological mechanisms21 22. To the best of our knowledge, no MR study of sedentary behavior 39 
with EAA has been performed; only one existing MR assessed the putative effect of physical 40 
activity on EAA and identified no evidence of a causal relationship using the then available IVs 41 
(N = 6)23. Given the discovery of additional genetic loci for each trait of interest24 25 and recent 42 
developments in novel methodological techniques, a comprehensive MR study is urgently 43 
needed to validate and expand previous findings. 44 

Here, leveraging the hitherto largest genome-wide association study (GWAS) summary 45 
statistics and comprehensive genetic correlation and MR analyses, we aimed to (i) understand 46 
the average shared genetic basis underlying physical activity, sedentary behavior and EAA 47 
measures; (ii) investigate the overall causal effects of genetically predicted physical activity 48 
and sedentary behavior on each EAA measure; (iii) examine their independent causal effects 49 
after accounting for the interplay between physical activity and sedentary behavior, as well as 50 
the confounding effects from other important factors; (iv) explore which tissue-dependent 51 
biological pathways may predominantly contribute to the observed causal effects. 52 

 53 

Methods 54 

In our study, we used publicly available summary-level data that had obtained ethical approval 55 
in all original studies. We followed the guidelines of the Strengthening the Reporting of 56 
Observational Studies in Epidemiology - Mendelian Randomization (STROBE-MR)26 57 
(Supplementary File 1, https://www.strobe-mr.org/). Flowchart of the overall study design is 58 
depicted in Figure 1. 59 

GWAS datasets 60 

Physical activity and sedentary behavior We obtained the hitherto largest summary-level 61 
data for physical activity and sedentary behavior from a GWAS meta-analysis of 51 studies, 62 
comprising 661,399 participants of European ancestry24. In brief, this meta-analysis utilized 63 
questionnaire-based data, capturing self-reported domain- and intensity-specific physical 64 
activity and sedentary traits as phenotypes. Moderate-to-vigorous leisure-time physical activity 65 
(MVPA) and leisure screen time (LST) were used as proxies for levels of leisure-time physical 66 
activity and sedentary behavior, respectively. MVPA (N = 608,595, SNP-heritability = 8%) 67 
was categorized as a dichotomous variable to account for the heterogeneity of the 68 
questionnaires used across cohorts, whereas LST (N = 526,725, SNP-heritability = 16%) was 69 
defined as a continuous variable.  70 
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Epigenetic clock acceleration We obtained the hitherto largest summary-level data for EAA 71 
measures from a GWAS meta-analysis of 30 cohorts, comprising 34,710 participants of 72 
European ancestry25. Four EAA measures were chosen to index epigenetic age acceleration, 73 
including HannumAgeAccel27 (N = 34,449), intrinsic HorvathAgeAccel28 (N = 34,461), 74 
PhenoAge acceleration29 (PhenoAgeAccel, N = 34,463), and GrimAge acceleration30 75 
(GrimAgeAccel, N = 34,467), with SNP-heritability estimated ranging from 10% to 17%. 76 

The Hannum and Horvath clocks, referred to as the first-generation epigenetic clocks, were 77 
developed to estimate chronological age based on DNAm data from blood and human 78 
tissues/cell types, respectively27 28. Intrinsic HorvathAgeAccel, as a derivative of the Horvath 79 
clock, was adjusted to exclude the effects of blood cell composition and capture the cell-80 
intrinsic properties of aging31. PhenoAge and GrimAge, recognized as the second-generation 81 
epigenetic clocks, were developed to predict health and lifespan by incorporating DNAm 82 
information associated with mortality and certain clinical biomarkers29 30. Details of these EAA 83 
measures can be found in the referenced publications25 27-30. 84 

Confounders Six additional factors, including educational attainment, smoking, drinking, 85 
obesity, sleep duration, and parental longevity, were considered potential confounders in the 86 
MVPA/LST-EAA relationship. We obtained GWAS summary data for educational attainment 87 
from the Social Science Genetic Association Consortium, involving 766,345 individuals of 88 
European ancestry after excluding subjects of 23andMe (due to data restrictions)32. For smoking 89 
and drinking, we obtained GWAS summary data from GWAS & Sequencing Consortium of 90 
Alcohol and Nicotine, involving 632,802 individuals of European ancestry for smoking 91 
initiation and 537,349 individuals of European ancestry for alcohol consumption (both 92 
excluded subjects of 23andMe)33. For obesity, we used GWAS summary data from a GWAS 93 
meta-analysis of the UK Biobank and the Genetic Investigation of Anthropometric Traits 94 
Consortium, involving 806,834 individuals of European ancestry for body-mass index (BMI)34. 95 
For sleep duration and parental longevity, we used GWAS summary data of European ancestry 96 
from the UK Biobank, including data on sleep duration for 446,118 individuals and on parental 97 
age at death for 208,118 individuals, respectively35 36. 98 

Details on the characteristics of each GWAS dataset are presented in Supplementary Table 1. 99 

Statistical analysis 100 

Genome-wide genetic correlation We first conducted a genome-wide genetic correlation 101 
analysis to quantify the average shared genetic effects underlying MVPA, LST and EAA 102 
measures using the linkage-disequilibrium (LD) score regression (LDSC) software37. The 103 
genetic correlation estimates (𝑟!) range from −1 to +1, where +1 denotes a total positive 104 

correlation and −1 denotes a total negative correlation. We used pre-computed LD-scores 105 
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of ~1.2 million common SNPs in European ancestry from the Hapmap3 reference panel, 106 
aligning with the European origin of our GWAS samples. According to Bonferroni 107 
correction, a statistically significant 𝑟! was defined as P < 6.25×10−3 (α = 0.05/8, number of 108 

trait-pairs), and a suggestively significant 𝑟! was defined as 6.25×10−3 ≤ P < 0.0538. 109 

Univariable Mendelian randomization To investigate the overall causal effects of genetically 110 
predicted MVPA or LST on EAA measures, a univariable MR was first performed through 111 
exposure-associated SNPs as IVs, then through the genome-wide summary statistics for the 112 
exposure traits. 113 

To meet the relevance assumption of MR, we screened IVs through a clumping strategy of P < 114 
5×10-8 and an LD window of ± 1.0 Mb (𝑟" < 0.001). For IVs that were not available in the 115 
outcome GWAS, we used LDlinkR (R package) to identify proxy SNPs in LD (𝑟" > 0.8) with 116 
the index SNPs from the outcome GWAS data39. We calculated the proportion of trait variance 117 
explained by each IV (R2), as well as their F-statistics. An F-statistic below 10 suggests a weak 118 
instrument, which would be excluded from the analysis40. Statistical power was calculated with 119 
a web-based application (https://sb452.shinyapps.io/power/)41. Heterogeneity of the 120 
instruments was calculated using Cochran’s Q statistics42. Details on the characteristics of IVs 121 
are presented in Supplementary Table 2-3. 122 

We applied inverse-variance weighted (IVW) as our primary approach. This method pools the 123 
estimate from each IV and provides an overall estimate of the causal effect assuming all IVs to 124 
be valid (meet the MR assumptions); or are invalid in such a way that the overall pleiotropy is 125 
balanced to be zero19 41. We performed several sensitivity analyses to assess the robustness of 126 
the primary results and to further validate the exclusion restriction and independence 127 
assumptions of MR41. These include: (i) MR-Egger regression incorporating an intercept term 128 
to account for directional pleiotropy43; (ii) weighted-median approach exhibiting stronger 129 
robustness against invalid IVs44; (iii) MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) 130 
dealing with uncorrelated pleiotropy based on outlier removal45; (iv) IVW excluding 131 
palindromic IVs with strand ambiguity; (v) IVW excluding pleiotropic IVs associated with 132 
potential confounders (accessed in GWAS catalog on 02/20/2024, https://www.ebi.ac.uk/gwas/; 133 
pleiotropic IVs are listed in Supplementary Table 2); (vi) leave-one-out analysis where each 134 
IV was excluded at a time and IVW was conducted using the remaining IVs; (vii) IVW-based 135 
reverse-direction MR to rule out the possibility of causal effects of EAA measures on MVPA 136 
or LST. 137 

We then employed the Causal Analysis Using Summary Effect Estimates (CAUSE) method46. 138 
Integrating information from genome-wide SNPs, CAUSE has several advantages over the 139 
conventional MR approaches: it accounts for both uncorrelated and correlated horizontal 140 
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pleiotropy, improves statistical power, corrects for potential sample overlap, and reduces the 141 
likelihood of false positives. Under a Bayesian framework, CAUSE assumes a proportion (q 142 
value) of variants that are likely to show correlated horizontal pleiotropy, and provides posterior 143 
distribution estimates under two models - the sharing model, which allows only for horizontal 144 
pleiotropic effects, and the causal model, which accommodates both horizontal pleiotropy and 145 
causality. A one-sided Pcausal vs. sharing is generated to evaluate whether the sharing model is at 146 
least as effective as the causal model in fitting the data, with a rejection of the null hypothesis 147 
(Pcausal vs. sharing < 0.05) indicating that the data are more likely to be explained by causal effects. 148 
To mitigate the impact of strong regional LD structure, we excluded variants within the Major 149 
Histocompatibility Complex (MHC) region (chr6: 25M-35M). 150 

Bonferroni correction was applied across all univariable MR approaches, considering a P < 151 
6.25×10−3 as evidence for statistical significance and a 6.25×10−3 ≤ P < 0.05 as suggestive 152 
significance38. To define a robust causal effect, we required that the MR effect estimate 153 
demonstrated statistical significance in any univariable MR approach and remained 154 
directionally consistent across all approaches, and its null hypothesis for model fitting was 155 
rejected (Pcausal vs. sharing < 0.05) in CAUSE. 156 

Multivariable Mendelian randomization To further evaluate the independent causal effect of 157 
MVPA or LST on each EAA measure, a multivariable MR was subsequently conducted20. 158 
Given the potential inter-correlation between MVPA and LST, a multivariable model (referred 159 
to as Model 1) was first constructed incorporating both MVPA and LST to estimate their causal 160 
effects on EAA independent from each other. Considering potential confounding effects from 161 
other factors, a second multivariable model (Model 2) was developed, wherein each speculated 162 
confounding factor (i.e., educational attainment, smoking, drinking, BMI, sleep duration, and 163 
parental age at death) was included individually together with the exposure. In the third 164 
multivariable model (Model 3), confounders in Model 2 were included simultaneously to assess 165 
their combined influence. We removed SNPs in LD (𝑟"  ≥ 0.001) to avoid overlapping or 166 
correlated SNPs after combining different sets of IVs (Supplementary Table 4-7). Conditional 167 
F-statistics were calculated to evaluate the joint instrument strength in multivariable MR 168 
settings, with values below 10 indicating weak instruments47. According to Bonferroni 169 
correction, a P < 6.25×10−3 was considered as evidence for statistical significance, and a 170 
6.25×10−3 ≤ P < 0.05 as suggestive significance38. 171 

Tissue-partitioned Mendelian randomization Previous post-GWAS analyses have shown 172 
that loci associated with MVPA or LST are mainly enriched for gene expressions in brain and 173 
skeletal muscle tissues24. Both brain and skeletal muscle tissues play a non-negligible role in 174 
regulating physical activity and sedentary behavior – while the brain is responsible for 175 
generating and regulating behavioral patterns and motivation, the skeletal muscle facilitates or 176 
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restricts movement48. Hence, MVPA/LST influencing genes expressed in the brain may be 177 
more likely to achieve their effects by regulating behavior, whereas those expressed in skeletal 178 
muscle may impact greater extent pathways related to muscle metabolism. Accordingly, the 179 
observed causal effects of MVPA/LST on EAA may involve separate pathways mediated 180 
through the brain or skeletal muscle. While other pathways may also likely mediate these effects, 181 
they are not the most relevant candidates in this study. 182 

To investigate the primary biological pathways underlying the observed causal relationships, 183 
we finally performed an exploratory tissue-partitioned MR. This approach enables us to 184 
separate the effects of phenotypic subcomponents of MVPA/LST, here, the “brain-tissue 185 
instrumented MVPA/LST” and the “skeletal muscle-tissue instrumented MVPA/LST”, through 186 
fractionation of the original IVs according to whether they colocalize with gene expression in 187 
the brain or skeletal muscle tissue21. 188 

Specifically, at each locus surrounding the original MVPA/LST IVs (within a 200 kb window), 189 
we used the Bayesian method “coloc” to assess the presence of a single causal variant 190 
responsible for both the MVPA/LST GWAS signal and the tissue-specific gene-expression-191 
association signal, a phenomenon referred to as colocalization. Colocalization analyses were 192 
conducted twice at each locus: first with expression quantitative trait loci (eQTL) data derived 193 
from brain tissue and then separately with eQTL data from skeletal muscle tissue. A posterior 194 
probability (PPH4) ≥ 0.8 was considered as strong evidence of colocalization, as recommended 195 
by authors of the original method21 49. Consequently, the initial set of IVs was divided into two 196 
sets, with each set specifically indexing the brain- or the skeletal muscle-tissue instrumented 197 
MVPA/LST (tissue-specific IVs). We obtained the brain eQTL dataset from a meta-analysis 198 
study of 10 brain regions (N = 1,194, all of European ancestry)50, and the skeletal muscle eQTL 199 
dataset from the GTEx consortium v.8 (N = 706, ~80% European ancestry)51. Variants residing 200 
within the MHC region (chr6: 25M-35M) were excluded from the analysis. 201 

Exposure-outcome pairs that showed robust causal relationships in univariable MR and 202 
directionally consistent estimates in multivariable MR were selected for inclusion in the tissue-203 
partitioned analysis. Utilizing the derived tissue-specific IVs, we first performed a univariable 204 
MR to evaluate the unadjusted effect of each phenotypic subcomponent of the exposure(s) on 205 
the outcome(s). Following this, a multivariable MR was performed to estimate the independent 206 
effect of each subcomponent, with IVs weighted using their tissue-specific PPH4 values21. 207 
Given the largely reduced number of IVs and the resulting decreased statistical power, we used 208 
a conventional significance threshold of P < 0.05 in the analysis. Further details regarding the 209 
analytical procedures can be found in Supplementary File 2. 210 
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All MR analyses were conducted using R software (v4.1.0) with packages including 211 
“TwoSampleMR” (v0.5.4), “MRPRESSO” (v1.0), “MendelianRandomization” (v0.7.0), 212 
“CAUSE” (v1.2.0), “MVMR” (v0.4), and “coloc” (v5.1.0). 213 

 214 

Results 215 

Genome-wide genetic correlation 216 

After Bonferroni correction, we observed statistically significant negative genetic correlations 217 
of MVPA with PhenoAgeAccel (𝑟! = −0.18, P = 2.40×10−3) and GrimAgeAccel (𝑟! = −0.29, 218 

P = 9.69×10−7), as well as statistically significant positive genetic correlations of LST with 219 
PhenoAgeAccel (𝑟! = 0.22, P = 1.02×10−5) and GrimAgeAccel (𝑟! = 0.37, P = 1.14×10−11). A 220 

suggestively significant genetic correlation was observed for LST with HannumAgeAccel (𝑟! 221 

= 0.08, P = 4.84×10−2). No significant genetic correlations were found for other trait-pairs 222 
(Table 1). 223 

Univariable Mendelian randomization 224 

Motivated by the significant genetic overlap, we proceeded to examine the potential causal 225 
effects of MVPA and LST on EAA measures. Altogether 15 independent SNPs were 226 
determined as IVs for MVPA, and 130 independent SNPs as IVs for LST. F-statistics of these 227 
IVs indicated a minimal likelihood of weak instrument bias (all F-statistics > 10; 228 
Supplementary Table 2-3). At an alpha level of 0.05, our univariable MR was estimated to 229 
have 80% power to detect causal estimates (β) ranging from 0.15 to 0.50 (Supplementary 230 
Table 8). 231 

As shown in Figure 2, we identified a statistically significant relationship between genetically 232 
predicted longer LST and faster GrimAgeAccel (βIVW = 0.69, 95% confidence intervals, 233 
95%CIs = 0.43 ~ 0.94, P = 1.10×10−7; Supplementary Table 9). Despite a modest 234 
heterogeneity indicated across individual SNP estimates (PCochran’s Q = 0.02), all sensitivity 235 
analyses generated statistically significant and directionally consistent results (Supplementary 236 
Table 9-11). We also found that genetically predicted lower levels of MVPA (βIVW = −1.02, 237 
95%CIs = −1.84 ~ −0.20, P = 1.50×10−2) and genetically predicted longer LST (βIVW = 0.37, 238 
95%CIs = 0.06 ~ 0.67, P = 1.90×10−2) were associated with faster PhenoAgeAccel under 239 
suggestive significance. No evidence of a significant causal effect of MVPA or LST on 240 
HannumAgeAccel or intrinsic HorvathAgeAccel was found.  241 

As for the reverse direction, 10, 26, 11, and 4 SNPs were utilized as IVs for HannumAgeAccel, 242 
intrinsic HorvathAgeAccel, PhenoAgeAccel, and GrimAgeAccel, respectively, with F-243 
statistics indicating minimal weak instrument bias (all F-statistics > 10; Supplementary Table 244 
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3). No evidence was found to support a reverse effect of any genetically predicted EAA measure 245 
on MVPA or LST (Supplementary Table 12). 246 

Leveraging genome-wide summary statistics, evidence from CAUSE further supported the 247 
significant causal relationships between LST and GrimAgeAccel (median causal effect = 0.39, 248 
95%CIs = 0.24 ~ 0.55, Pcausal vs. sharing = 7.00×10−3; Figure 2 and Supplementary Table 13). 249 
The low absolute value of median shared effect (−0.04) and the low q value (0.04) implied that 250 
horizontal pleiotropy was limited. CAUSE yielded a suggestively significant estimate for 251 
genetically predicted LST with PhenoAgeAccel (median causal effect = 0.25, 95%CIs = 0.06 252 
~ 0.43), but not for genetically predicted MVPA with PhenoAgeAccel (median causal effect = 253 
−0.30, 95%CIs = −0.60 ~ 0.04). Nevertheless, results of modeling tests suggested that both 254 
associations (LST/MVPA-PhenoAgeAccel) were more likely to be explained by horizontal 255 
correlated pleiotropy rather than causality (Pcausal vs. sharing > 0.05). 256 

Multivariable Mendelian randomization 257 

We prioritized evaluating the independent causal relationship between genetically predicted 258 
LST and GrimAgeAccel, based on its robust overall effect confirmed in univariable MR by 259 
both the conventional IV-based method and the genome-wide summary statistics-based 260 
approach. Taking into account the effect of MVPA, results of Model 1 demonstrated a 261 
statistically significant independent effect of genetically predicted LST on GrimAgeAccel 262 
(Figure 3 and Supplementary Table 14). Model 2, which incorporated LST with each 263 
potential confounder (other than MVPA), provided additional support for its independent causal 264 
role. Causal estimates obtained from each separate analysis consistently demonstrated the same 265 
direction and were largely statistically significant (except for educational attainment, which 266 
yielded to an estimate of suggestive significance; Figure 3 and Supplementary Table 14). 267 
Model 3 including all potential confounders again generated directionally consistent “LST-268 
GrimAgeAccel” causal associations, despite the attenuated magnitude of effect and the weaker 269 
significance. Most conditional F-statistics for LST indicated a minimal likelihood of weak 270 
instrument bias in multivariable MR settings (>10), with a few exceptions for example when 271 
jointly considering MVPA, educational attainment, and BMI (Supplementary Table 15). 272 

For the “LST-PhenoAgeAccel” and the “MVPA-PhenoAgeAccel” associations that exhibited 273 
suggestive significance in univariable MR, the directions of the estimates derived from Models 274 
1-3 remained consistently aligned with their corresponding overall effects. Nevertheless, half 275 
of the causal estimates failed to reach suggestive significance, and only the effect of genetically 276 
predicted MVPA on PhenoAgeAccel after adjusting for smoking survived Bonferroni 277 
corrections (Figure 3 and Supplementary Table 14). 278 

Tissue-partitioned Mendelian randomization 279 
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A tissue-partitioned MR was finally conducted to explore whether the “brain-tissue 280 
instrumented LST” or the “skeletal muscle-tissue instrumented LST” predominantly drives the 281 
observed causal effect of LST on GrimAgeAccel. Among the 130 original IVs for LST, 28 were 282 
identified with strong evidence of colocalization for brain-tissue-derived gene expressions, and 283 
30 for skeletal muscle-tissue-derived gene expressions (Supplementary Table 16). The 284 
average effect sizes of the two IV sets on LST were virtually identical (brain = 0.028 vs. skeletal 285 
muscle = 0.027). 286 

As shown in Figure 4 and Supplementary Table 17, univariable MR suggested significant 287 
genetically predicted effects of both brain- (βIVW = 0.55, 95%CIs = 0.00 ~ 1.10, P = 4.90×10−2) 288 
and skeletal muscle-tissue (βIVW = 0.86, 95%CIs = 0.35 ~ 1.37, P = 9.70×10−4) instrumented 289 
LST on GrimAgeAccel. Multivariable MR concomitantly incorporating both subcomponents 290 
demonstrated a significant effect of skeletal muscle-tissue instrumented LST on GrimAgeAccel 291 
(βIVW = 1.16, 95%CIs = 0.22 ~ 2.09, P = 1.05×10−2). We also repeated the analysis with an 292 
expanded set of IVs using a more relaxed clumping strategy of P < 1×10-5 and an LD window 293 
of ± 1.0 Mb (𝑟" < 0.001), and generated largely consistent results (Supplementary Table 17-294 
19). Unfortunately, the conditional F-statistics for tissue-specific instrumented LST were all 295 
below 10 (Supplementary Table 18). 296 

 297 

Discussion 298 

The current study investigated the shared genetic background and causal relationships between 299 
MVPA and LST with four EAA measures, utilizing the largest combination of available 300 
datasets and a comprehensive analytical framework. Our findings reveal moderate genetic 301 
overlaps of MVPA or LST with both PhenoAgeAccel and GrimAgeAccel. Among these, we 302 
highlight strong evidence for an independent causal link between increased LST and 303 
accelerated biological aging measured by GrimAgeAccel, with skeletal muscle-related 304 
biological pathways playing a predominant role in mediating this effect. 305 

Accumulative studies have consistently shown that the rate of epigenetic aging can be 306 
influenced by environmental or lifestyle factors52. However, the strength of such relationships 307 
varies across different epigenetic clocks, possibly due to the slightly diverse aspects of aging 308 
that each clock captures5 53. The second-generation clocks, trained on aging-related outcomes 309 
rather than solely chronological age, have been found to exhibit stronger correlations with 310 
health-related behaviors compared to the first-generation clocks53. Multiple observational 311 
studies have reported links between higher levels of physical activity with slower 312 
PhenoAgeAccel and GrimAgeAccel but not with HannumAgeAccel or intrinsic 313 
HorvathAgeAccel14 15. Our identification of genome-wide genetic correlations for MVPA or 314 
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LST with only the acceleration of the second-generation epigenetic clocks provides additional 315 
support for prior observational findings from a genetic perspective. 316 

Among the observed genetic overlaps, our MR study further uncovered compelling evidence to 317 
support a robust causal effect of genetically predicted LST on GrimAgeAccel, which remains 318 
significant even after accounting for the effects of MVPA and other major confounders. In 319 
addition, we discerned a marginal association between genetically predicted longer LST with 320 
faster PhenoAgeAccel. Two previous cross-sectional studies reported a positive correlation 321 
between sedentary time and GrimAgeAccel (β = 0.043, P = 0.015; β = 0.200, P = 0.025), with 322 
no correlations found for the other EAA measures14 54. A more recent study using prospective 323 
data revealed an acceleration of GrimAge in the sedentary group compared with the active 324 
group (P = 0.034), but this association was largely attenuated after adjusting for other lifestyle 325 
factors55. While these studies hint at a potential link between sedentary behavior and GAA, the 326 
evidence is largely weakened by the inherent limitations of the observational design, primarily 327 
due to confounding factors and reverse causality, as well as by the single-point measurements 328 
of EAA, limiting the tracking of longitudinal changes of epigenetic clock. Utilizing both 329 
exposure-associated SNPs and genome-wide summary results, we have for the first time 330 
confirmed the causal relationships between LST with GrimAgeAccel, alongside a potential 331 
association with PhenoAgeAccel, under a comprehensive MR framework. Our work closely 332 
aligns with and greatly expands upon the previous observational studies by providing more 333 
reliable evidence of causal inference, thereby paving the way for targeted interventions. 334 

Our MR study also revealed a marginal causal effect of genetically predicted MVPA on 335 
PhenoAgeAccel, aligning with a cross-sectional observational study (β = −0.26, P = 0.021)14. 336 
In contrast to LST, there has already been one previous MR conducted to examine the causal 337 
links between MVPA and two measures of EAA – PhenoAgeAccel (βIVW = 0.368, P = 0.747) 338 
and GrimAgeAccel (βIVW = −0.186, P = 0.837), which found no significant results23. However, 339 
the limited number of IVs adopted by this study (6 compared to ours 15), derived from a small-340 
scale MVPA GWAS, might have compromised the precision of estimates due to insufficient 341 
power. By using the largest and most updated GWAS summary data for MVPA, findings from 342 
our MR suggested an inverse effect of MVPA on PhenoAgeAccel. This effect, however, largely 343 
dissipated after accounting for the effects of LST and other confounding factors, calling for 344 
further validation with more powerful IVs as they become available. Compared with the robust 345 
effects observed for LST, the substantially attenuated associations between MVPA and EAA 346 
measures further highlight the primary causal contribution of LST, rather than MVPA, in 347 
accelerating epigenetic aging. 348 

Disintegrating genetically predicted LST, the major aging-accelerating risk factor, into tissue-349 
partitioned subcomponents, our work further highlights an important role of skeletal muscle in 350 
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driving its causal effect on GrimAgeAccel. Loss of muscle mass and strength is a well-351 
established distinctive feature of the aging process56, closely related to mobility impairments, 352 
physical frailty, and all-cause mortality57-59. Several mechanisms have been proposed to explain 353 
the alterations in skeletal muscle during aging, such as an imbalance between protein synthesis 354 
and degradation60, mitochondrial dysfunction61, a decrease in type II fiber satellite cells62, and 355 
infiltration of intramuscular and intermuscular fat63. Some of these mechanisms are indeed 356 
supported by the detected genes whose skeletal muscle-specific expression was colocalized 357 
with LST GWAS associations in our analysis (Supplementary Table 16) – for instance, 358 
IGFBP2 (involved in IGF signaling pathways which closely influence protein synthesis and 359 
degradation64) and ATP5J2 (involved in mitochondrial function and energy metabolism65), 360 
indicating energy use and metabolism alterations in muscles during prolonged sedentary 361 
periods. A plausible explanation for our identification is that the altered expression of genes 362 
associated with LST in skeletal muscle exacerbates muscle atrophy and weakness through 363 
multiple pathways (such as a decrease of energy expenditure and metabolism alterations)66 67, 364 
thereby accelerating biological aging58 64. Future research is needed to uncover the exact 365 
biological mechanisms, especially those related to muscle wasting or weakness during the aging 366 
process. 367 

Taken together, our research provides valuable implications for clinical practice and public 368 
health policy by emphasizing the importance of reducing sedentary time as an effective lifestyle 369 
intervention to promote healthy aging. Our findings suggest that the acceleration of the 370 
biological aging process observed among individuals with a physically inactive lifestyle, 371 
resulting from prolonged sedentary time, cannot be fully offset by short periods of exercise or 372 
changes in other health-related lifestyles. Therefore, we advocate minimizing the overall 373 
sedentary time and adopting “interval activity” and “exercise snacks” strategies, encouraging 374 
short breaks for standing, walking, or stretching during prolonged sitting to stimulate muscle 375 
activity and mitigate the adverse effects of sedentarism68 69. Furthermore, our results emphasize 376 
the potential of the second-generation epigenetic clocks, particularly GrimAge, as a valuable 377 
tool for assessing the effects of interventions targeting the reduction of sedentary behavior. 378 

Several limitations should be acknowledged. First, using self-reported MVPA as a proxy for 379 
physical activity may constrain our results by omitting factors like activity type, duration, 380 
intensity, and objective measurements. Additionally, our focus on self-reported LST may not 381 
capture the effects of other sedentary behaviors or differentiate between “mentally passive” 382 
(such as watching TV) and “mentally active” (such as using computers) sedentary activities due 383 
to data limitation70. Future investigations should delve deeper into these aspects for a more 384 
comprehensive understanding. Second, sample overlap in two-sample MR design is an 385 
important issue that needs to be considered71. In this study, ~5% of participants in the exposure 386 
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GWASs and ~20% of participants in the outcome GWASs included several of the same studies 387 
(inCHIANTI, TwinsUK, and the Rotterdam Study, etc.). To address this, we used the CAUSE 388 
method to correct for the sample overlap, reconfirming the robust causal effect of LST on 389 
GrimAgeAccel. Third, although our univariable MR yielded highly robust results, we observed 390 
that certain conditional F-statistics fell below 10 in multivariable MR settings. This suggests 391 
the potential presence of weak instrument bias, which could reduce the power of independent 392 
causal estimates in multivariable MR47. Therefore, the results of multivariable MR should be 393 
interpreted with caution, and future studies should aim to augment sample sizes and IVs to 394 
validate our findings. Finally, it should be noted that our tissue-partitioned MR analysis was 395 
hypothesis-driven rather than data-driven, indicating that our findings do not exclude the 396 
potential roles of other tissue-related pathways (beyond brain or skeletal muscle tissues) in 397 
driving the causal effect of genetically predicted LST on GrimAgeAccel. Future research is 398 
encouraged to explore these additional mechanisms.  399 

Conclusion 400 

To conclude, our study provides evidence in support of physically inactive lifestyles, especially 401 
increased sedentary time, as a modifiable causal risk factor of epigenetic aging acceleration. 402 
Findings from tissue-partitioned analysis shed new light on the underlying mechanisms, with 403 
implications for skeletal muscle tissue-related pathways. Our work emphasizes the importance 404 
of reducing sedentary time as a preventive strategy to delay the aging process and promote 405 
healthy aging.  406 

 407 

Availability of data and codes 408 

The data used in this study are publicly available. GWAS summary data are accessible in all 409 
original studies. GWAS summary data of leisure-time physical activity and sedentary behavior, 410 
https://www.ebi.ac.uk/gwas/publications/36071172, GWAS summary data of four epigenetic 411 
age acceleration measures, https://www.ebi.ac.uk/gwas/publications/34187551 or 412 
https://datashare.ed.ac.uk/handle/10283/3645, GWAS summary data of educational attainment, 413 
http://www.thessgac.org/data, GWAS summary data of smoking and drinking, 414 
https://www.ebi.ac.uk/gwas/publications/30643251, GWAS summary data of BMI, 415 
https://zenodo.org/record/1251813, GWAS summary data of sleep duration, 416 
https://www.ebi.ac.uk/gwas/publications/30846698, GWAS summary data of parents age at 417 
death, https://www.ebi.ac.uk/gwas/publications/29227965.  418 

The data of eQTL are accessible at the website of SMR (Summary Mendelian Randomization, 419 
https://cnsgenomics.com/software/smr/), which has already mapped the eQTL data to the hg19 420 
genome build using the GRCh37 reference assembly.  421 
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This paper does not report any original code. The software, R packages, and other resources 422 
used in this study are accessible at: LDSC, https://github.com/bulik/ldsc, PLINK, 423 
https://www.cog-genomics.org/plink/1.9/, LDlinkR, https://github.com/CBIIT/LDlinkR, 424 
TwoSampleMR, https://mrcieu.github.io/TwoSampleMR/, MR-PRESSO, 425 
https://github.com/rondolab/MR-PRESSO, NHGRI-EBI GWAS Catalog, 426 
https://www.ebi.ac.uk/gwas/, CAUSE, https://github.com/jean997/cause, MVMR, 427 
https://github.com/WSpiller/MVMR, MendelianRandomization, 428 
https://github.com/cran/MendelianRandomization, Coloc, 429 
https://chr1swallace.github.io/coloc/. 430 

Any additional information required to reanalyze the data reported in this paper is available 431 
from the corresponding author (Xia Jiang, PhD, E-mail: xia.jiang@ki.se, xiajiang@scu.edu.cn) 432 
upon reasonable request. 433 
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Tables and Figures 1 

Table 1. Genetic correlation between MVPA and LST with each measure of EAA 

Triat1 Trait2 rg 95%CI P-value 

MVPA 

HannumAgeAccel −0.073 (−0.186, 0.040) 0.20 
Intrinsic HorvathAgeAccel −0.017 (−0.116, 0.083) 0.74 

PhenoAgeAccel −0.179 (−0.294, −0.063) 2.40×10−3 
GrimAgeAccel −0.294 (−0.412, −0.177) 9.69×10−7 

LST 

HannumAgeAccel 0.084 (0.001, 0.168) 4.84×10−2 
Intrinsic HorvathAgeAccel 0.070 (−0.001, 0.142) 0.05 

PhenoAgeAccel 0.222 (0.123, 0.320) 1.02×10−5 
GrimAgeAccel 0.368 (0.262, 0.474) 1.14×10−11 

Bold-face: P-value < 6.25×10-3. MVPA (Moderate-to-vigorous intensity physical activity during leisure time), LST (leisure 
screen time), EAA (epigenetic age acceleration), HannumAgeAccel (Hannum age acceleration), Intrinsic HorvathAgeAccel 
(intrinsic Horvath age acceleration), PhenoAgeAccel (PhenoAge acceleration), GrimAgeAccel (GrimAge acceleration), rg 
(genetic correlation), and 95%CI (95% confidence interval). 
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 6 

Figure 1. The flowchart of the study. 7 

GWAS (genome-wide association study), HannumAgeAccel (Hannum age acceleration), Intrinsic 8 
HorvathAgeAccel (intrinsic Horvath age acceleration), PhenoAgeAccel (PhenoAge acceleration), and 9 
GrimAgeAccel (GrimAge acceleration).  10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2024. ; https://doi.org/10.1101/2024.07.25.24310997doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.25.24310997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

 11 

Figure 2. Total effects of physical activity and sedentary behavior on each epigenetic age 12 
acceleration using univariable Mendelian randomization. 13 

Causal effects of MVPA on EAA are shown in the left panel (A), and causal effects of LST on EAA 14 
are shown in the right panel (B). Diamonds represent the point estimates, and error bars represent 95% 15 
confidence intervals. Estimates with gray diamond for CAUSE indicate that the null hypothesis for 16 
model fitting was not rejected in CAUSE (Pcausal vs. sharing > 0.05), suggesting that the data are more likely 17 
to be explained by horizontal pleiotropic effects. One asterisk (*) represents P < 0.05 and two asterisks 18 
(**) represent the tests that survived Bonferroni correction (P < 6.25×10−3). IVW (inverse-variance 19 
weighted), SNPs (single-nucleotide polymorphisms), MVPA (Moderate-to-vigorous intensity physical 20 
activity during leisure time), LST (leisure screen time), HannumAgeAccel (Hannum age acceleration), 21 
Intrinsic HorvathAgeAccel (intrinsic Horvath age acceleration), PhenoAgeAccel (PhenoAge 22 
acceleration), GrimAgeAccel (GrimAge acceleration), and 95%CI (95% confidence interval). 23 
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Figure 3. Independent effects of physical activity and sedentary behavior on each epigenetic age 25 
acceleration using multivariable Mendelian randomization analysis. 26 

Independent causal effects of MVPA on EAA are shown in the upper panel (A), and independent causal 27 
effects of LST on EAA are shown in the lower panel (B). One asterisk (*) represents P < 0.05 and two 28 
asterisks (**) represent the tests that survived Bonferroni correction (P < 6.25×10−3). Diamonds 29 
represent the point estimates of total causal effects, and error bars represent 95% confidence intervals. 30 
M1 (Model 1) estimates the independent effects of MVPA and LST from each other. M2 (Model 2) 31 
estimates the independent effects of exposures after adjusting for one confounder at a time. M3 (Model 32 
3) estimates the independent effects of exposures after adjusting for all confounders together. Blue 33 
represents a negative effect and red represents a positive effect. The darker the color, the larger the 34 
absolute value of the effect.  35 

MVPA (Moderate-to-vigorous intensity physical activity during leisure time), LST (leisure screen time), 36 
HannumAgeAccel (Hannum age acceleration), Intrinsic HorvathAgeAccel (intrinsic Horvath age 37 
acceleration), PhenoAgeAccel (PhenoAge acceleration), and GrimAgeAccel (GrimAge acceleration), 38 
M2.adjEducational.attainment (causal effects of exposures on outcomes after controlling by educational 39 
attainment), M2.adjSmoking.initiation (causal effects of exposures on outcomes after controlling by 40 
smoking initiation), M2.adjAlcohol.consumption (causal effects of exposures on outcomes after 41 
controlling by alcohol consumption), M2.adjSleep.duration (causal effects of exposures on outcomes 42 
after controlling by sleep duration), and M2.adjParents.age.at.death (causal effects of exposures on 43 
outcomes after controlling by longevity).  44 
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Figure 4. The effects of brain- and skeletal muscle-tissue instrumented LST on GrimAgeAccel 46 
using tissue-partitioned Mendelian randomization analysis. 47 

Univariable MR analysis evaluates the unadjusted effects of phenotypic subcomponents of brain-tissue 48 
instrumented LST and skeletal muscle-tissue instrumented LST on GrimAgeAccel, while multivariable 49 
MR estimates the putatively independent effects of each subcomponent with IVs weighted by their 50 
PPH4 values for each tissue type. Diamonds represent the point estimates, and error bars represent 95% 51 
confidence intervals. One asterisk (*) represents P < 0.05. LST (leisure screen time), GrimAgeAccel 52 
(GrimAge acceleration), MR (Mendelian randomization), and 95%CI (95% confidence interval). 53 
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