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Abstract 
Importance:  
Polygenic risk scores (PRSs) for coronary artery disease (CAD) are a growing clinical and 
commercial reality. Whether existing scores provide similar individual-level assessments of 
disease liability is a critical consideration for clinical implementation that remains 
uncharacterized. 
Objective: 
Characterize the reliability of CAD PRSs that perform equivalently at the population level at 
predicting individual-level risk. 
Design: 
Cross-sectional Study. 
Setting: 
All of Us Research Program (AOU), Penn Medicine Biobank (PMBB), and UCLA ATLAS 
Precision Health Biobank. 
Participants:  
Volunteers of diverse genetic backgrounds enrolled in AOU, PMBB, and UCLA with available 
electronic health record and genotyping data. 
Exposures: 
Polygenic risk for CAD from previously published PRSs and new PRSs developed separately 
from the testing cohorts. 
Main Outcomes and Measures: 
Sets of CAD PRSs that perform population prediction equivalently were identified by comparing 
calibration and discrimination (Brier score and AUROC) of generalized linear models of 
prevalent CAD using Bayesian analysis of variance. Among equivalently performing scores, 
individual-level agreement between risk estimates was tested with intraclass correlation (ICC) 
and Light’s Kappa, measures of inter-rater reliability. 
Results: 
50 PRSs were calculated for 171,095 AOU participants. When included in a model of prevalent 
CAD, 48 scores had practically equivalent Brier scores and AUROCs (region of practical 
equivalence = 0.02). Across these scores, 84% of participants had at least one score in both the 
top and bottom risk quintile. Continuous agreement of individual risk predictions from the 48 
scores was poor, with an ICC of 0.351 (95% CI; 0.349, 0.352). Agreement between two 
statistically equivalent scores was moderate, with an ICC of 0.649 (95% CI; 0.646, 0.652). 
Light’s Kappa, used to evaluate consistency of assignment to high-risk thresholds, did not exceed 
0.56 (interpreted as ‘fair’) across statistically and practically equivalent scores. Repeating the 
analysis among 41,193 PMBB and 50,748 UCLA participants yielded different sets of 
statistically and practically equivalent scores which also lacked strong individual agreement. 
Conclusions and Relevance: 
Across three diverse biobanks, CAD PRSs that performed equivalently at the population level 
produced unreliable individual risk estimates. Approaches to clinical implementation of CAD 
PRSs must consider the potential for discordant individual risk estimates from otherwise 
indistinguishable scores. 
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Introduction 
 Polygenic risk scores (PRSs), which estimate an individual’s genetic liability for disease, 
have been proposed as a tool for improving prevention and treatment of coronary artery disease 
(CAD).1 This is grounded in an understanding that an estimated 40-60% of CAD susceptibility is 
attributable to genetics, and that ones’ genotype is fixed at conception.2 Although the genetic 
underpinnings of CAD are not yet comprehensively established, large-scale efforts continue to 
identify CAD-associated variation. Polygenic risk scores (PRS) aggregate the effects of many 
risk variants to predict the genetic component of one’s disease risk. Advocates propose that PRSs 
have the potential to enable early and precise identification of individuals at increased risk for 
CAD, and facilitate implementation of focused primary prevention as part of precision 
cardiovascular medicine initiatives.3 These applications include combining PRSs with clinical 
variables into a comprehensive risk models, considering a PRS as a “risk enhancer” to be applied 
to individuals at borderline risk, or considering a PRS risk estimate as a stand-alone test.4 
Although use of CAD PRSs in any form is not currently the standard of care,1 it is nevertheless a 
growing reality, increasingly trialed by academic medical centers and major consortia,5–7 and 
offered clinically via physician-based and direct-to-consumer genetic testing companies.4,8  
 Advances in statistical techniques and the size and diversity of the genetic datasets used to 
construct PRSs continue to fuel the development of novel scores. To date, dozens of CAD PRS 
have been deposited in the PGS Catalog, which seeks to standardize and improve the reporting of 
PRSs. Proprietary commercial scores, for which the underlying genetic association data, 
methodology and weights are unknown and unregulated, are also being marketed.9,10 The 
growing menu of unique scores available for research, clinical, and commercial purposes 
presents patients and providers with the challenge of distinguishing between them. 
 Consensus recommendations from experts have been developed to describe the population-
level evaluation of PRSs with consideration of performance measures of discrimination and 
calibration11–13 that can facilitate comparisons across PRSs in a given setting. These metrics 
provide a framework to assess how scores can effectively estimate risk at the population level, 
and how future scores can be compared to each other and improved over time. However, the 
degree to which different scores predict an individual’s underlying genetic liability to disease 
accurately and consistently is an important angle that has been largely overlooked. Whenever a 
clinical test is ordered for an individual – from blood panels to imaging – it is reasonable to 
expect that any qualified person or machine performing the test for that individual should 
produce similar results (with a tolerable level of error). In other words, these tests should be 
reliable. Reliability is a core consideration when evaluating the utility of clinical tests.14 Whether 
multiple PRSs for the same disease tend to provide similar individual-level assessments of 
disease liability remains largely uncharacterized. 15  
 To compare the reliability of risk assessment between PRSs, we sought to evaluate the 
population-level performance of available CAD PRSs, and among the set of equivalently 
performing scores, assess individual-level agreement of their risk estimates. We implemented 
this framework by analyzing risk predictions generated from new and existing PRSs across a 
total of 263,036 participants from three diverse biobanks. 
 
Methods 
Study Population 
The primary analysis was conducted using data from the All of Us (AOU) Research Program, a 
National Institutes of Health-funded biobank composed of adult volunteers across the United 
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States who have given written consent for analysis of their deidentified EHR and genetic 
data.16,17 At the time of analysis, 237,568 participants had available whole genome sequencing. 
For each participant, genetic sex was imputed using PLINK’s check_sex function. A binary CAD 
phenotype was assigned in the presence of at least one of the following codes: 410, 411, 412, 
413, 41, V45.81 (ICD-9), I21, I22, I24, Z95.1, Z98.61, I20.0 (ICD-10). Age was calculated using 
participant birth year and the most recent data release cutoff date. Individuals without EHR data 
were excluded. All analyses were performed on deidentified data from All of Us Controlled Tier 
Dataset v7 by authorized researchers. Similar approaches were used for the Penn Medicine 
Biobank (PMBB) and UCLA ATLAS Precision Health Biobank  (UCLA) (eMethods).18–20  
 
Selection and Creation of Polygenic Risk Scores 
 Polygenic risk scores for CAD were selected from the Polygenic Score (PGS) Catalog 
(eMethods).9 In addition, two novel CAD PRSs were created by applying Bayesian approaches – 
PRS-CSx-auto and LDPred2-auto – to summary statistics from a multi-population meta-analysis 
of genome-wide association studies (GWAS), comprising 380,508 individuals with and 
1,836,455 individuals without CAD (eFigure 1); these scores were named “PGS_LDP2Auto” 
and “PGS_prscsx,” after the methods used to construct them (eMethods).21–23 None of the 
selected or created scores utilized AOU, PMBB, or UCLA data for training.  
 
Calculation of Polygenic Risk Scores 
 Polygenic scores for each individual in the AOU, PMBB, and UCLA cohorts were calculated 
using pgsc_calc, which combines individual genotypes with the existing PRS weights.9,24 Scores 
were calculated for each sample using whole-genome sequence data from AOU and imputed 
genotypes from PMBB and UCLA, and weights from all PGS Catalog scores meeting described 
criteria, as well as PGS_LDP2Auto and PGS_prscsx. Match rate, or the percent of variants in a 
weight file that were successfully identified in the genomic data, was recorded. 
 Heterogeneity of allele frequencies and linkage disequilibrium patterns across populations 
can influence raw PRS distributions, limiting interpretation and generalizability.8,25 To minimize 
these effects, scores were adjusted using a principal component analysis (PCA)-based method to 
normalize both mean and variance to the 1000 Genomes + HGDP reference panel (eMethods).26 
All downstream analysis utilized PCA-normalized scores. These values were accordingly 
translated into risk percentiles based on a standard normal distribution.  
 PRS performance in diverse populations depends on representation of genetically similar 
individuals in the GWASs used to construct the PRS.15,27 CAD PRSs vary widely in their use of 
diverse GWAS data. To characterize the impact of genetic background on PRS performance, 
population subgroup-stratified sensitivity analyses were conducted. Individuals were assigned to 
one of six population groups based on their genetic similarity to populations included in the 1000 
Genomes + HGDP reference panel: African (AFR), admixed American (AMR), East Asian 
(EAS), European (EUR), Middle Eastern (MID), and Central/South Asian (CSA). Sensitivity 
analyses were conducted in the AFR and EUR groups. Population group assignment was 
implemented using pgsc_calc (eMethods).28 
 
Population-Level Assessment:  Identification of equivalently performing polygenic risk scores 
 The association between each PRS and prevalent CAD was assessed using generalized linear 
regression models with a logit link, including age and sex as covariates. These covariates were 
included to minimize ascertainment bias. Genetic principal components were not included in the 
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primary analysis model on the premise that they are already accounted for by PCA-based score 
normalization. Inclusion of PCs, as well as exclusion of all covariates were both evaluated as 
sensitivity analyses. The approach to risk model evaluation considered relevant published 
reporting standards11,12: risk score distribution was assessed visually, and PRS effect size was 
quantified with odds ratios; discrimination and calibration were visualized with calibration plots 
and ROCs, and quantified using Brier score and area under the receiver operator curve 
(AUROC). Bayesian methods were used to perform between-model comparisons and identify a 
set of PRSs with statistically and practically equivalent performances relative to the ‘best’ 
performing score for each metric (eMethods).  
 
Individual-Level Polygenic Risk Score Assessment 
 United States regulatory guidelines state that new clinical tests should be evaluated by 
assessing the agreement between the results of new test and that of a reference standard.29 Scores 
were therefore evaluated through this lens of agreement to determine how consistently scores 
with comparable population-level performance assigned individual risk. 
 First, descriptive statistics were calculated to understand the individual-level distributions of 
genetic risk estimations provided by equivalently performing scores. Each individual’s average 
risk percentile was calculated, defined as the mean of percentiles assigned by each score meeting 
the Region of Practical Equivalence (ROPE) of 0.02, as ‘practical equivalence’ criteria. In 
addition, we calculated the standard deviation and the ratio of the standard deviation to the mean 
(i.e., the coefficient of variation (CV)) across scores per individual. Distributions of mean risk 
percentiles and standard deviations across biobank populations were plotted, and we calculated 
the population-level median of the individual-level average scores, standard deviations, and CV. 
Bootstrapped 95% confidence intervals were obtained using the “boot” and “simpleboot” R 
packages. 
 Agreement across scores was next assessed using inter-rater reliability. If one considers PRSs 
with equivalent performance as independent, equally qualified testers of the same phenomenon 
(in this case, genetic liability for CAD), one can apply tests of inter-rater reliability to determine 
whether scores that are equivalent are also practically interchangeable. The intraclass correlation 
coefficient (ICC), which is used as a metric of the consistency of quantitative measurements 
made by different raters measuring the same quantity, was used to compare PRS percentile as a 
continuous variable.30  
 Since many tested and proposed clinical applications of PRS use percentile cutoffs to define 
‘high-risk’ groups, agreement of binary assignment above/below these thresholds was also 
assessed by evaluating inter-rater agreement of the categorical classification. This was 
quantitatively assessed using Light’s Kappa (eMethods).31  
 Pearson’s correlation coefficient (r) of individual risk estimates was calculated for all pairs of 
scores in the primary cohort.  
 
Statistical Analysis 
 All analyses were performed using R (version 4.3.0 in PMBB, Version 4.3.1 in AOU and 
UCLA). Statistically equivalent scores were defined as those with a less than 95% probability of 
a positive difference of both Brier score and AUROC. Practically equivalent scores were those 
with a >95% probability of model performance being ‘practically equivalent’ using a ROPE 
estimate.32,33 An a priori practical effect size was set at 0.02, and in sensitivity analyses ranges of 
0.01 and 0.005 were considered. For individual-level analysis, Light’s Kappa (κ) and ICC were 
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used to compare categorical and continuous agreement of PRS percentiles. Although both ICC 
and κ are descriptive measures, guidelines exist to aid interpretation of intermediate values. For 
both, 0 indicates agreement that is no better than random chance, and 1 indicates perfect 
agreement. A Kappa between 0.41 and 0.60 can be interpreted as fair agreement; an ICC 
coefficient between 0.50 and 0.75 is generally interpreted as a fair to good relationship.  34–37 
Methods are described in further detail in eMaterials. 
 
Results 
Clinical Characteristics 
 The AOU study population comprised 17,589 (10.3%) participants with and 153,506 (89.7%) 
participants without CAD (eResults). 97,265 (63.4%) of those without CAD and 7,682 (43.7%) 
of those with CAD were female. 100,493 (58.7%) of participants were most genetically similar 
to a European reference population, 35,590 (20.8%) to an African reference population, 29,805 
(17.4%) to an Admixed American reference population, and the remaining to Central/South 
Asian, East Asian, and Middle Eastern reference populations (ST1, eFigure 2). Those with CAD 
were older on average (69.3 years versus 54.9) (ST1). Both PMBB and UCLA featured a higher 
rate of prevalent disease. Of 41,193 PMBB participants, 9,215 (22.4%) had CAD (ST2). Of 
53,092 UCLA participants, 12,513 (23.5%) had CAD (ST3). These cohorts are representative of 
national demographic patterns and are well-powered for PRS assessment and replication, 
allowing for reliable and generalizable population- and individual-level assessment. 
 
Population-Level PRS Performance 
 We first aimed to identify a set of polygenic scores that predicted prevalent CAD in a 
statistically equivalent way based on population-based performance prediction metrics (Figure 
1). We obtained total of 50 CAD polygenic scores, consisting of 48 from the PGS catalog and 
two additional scores constructed specifically for this study (PGS_LDP2Auto and PGS_prscsx, 
Methods, ST4). The majority of genetic variants included in each score were present for AOU, 
PMBB, and UCLA participants (ST6-8). We observed that two scores had negative associations 
with prevalent CAD and were subsequently excluded from downstream analysis (ST9, eFigure3, 
eResults). When added to a model of prevalent disease that included age and sex as covariates in 
AOU, the remaining 48 scores were significantly associated with CAD (p<0.05) with odds ratios 
that ranged from 1.10 (PGS000059) to 1.46 (PGS_LDP2Auto) per standard deviation increase in 
each PRS (eFigure3, ST9), confirming the expected statistical association of these models. 
 We next evaluated population-based performance measures for a range of prediction metrics. 
We calculated Brier scores and AUROC for all PRS scores (Methods). We found that the model 
for the PGS_LDP2Auto score had the best calibration measured by Brier score (0.0825, 95% 
Credible Interval 0.0829-0.0827), whereas the model including PGS003725 had the best 
discrimination as measured by AUROC (0.777, 95% Credible Interval 0.777, 0.778) (ST10). To 
determine the set of score that were practically equivalent, we applied a prespecified primary 
region of practical equivalence effect size of 0.02 (Methods). All 48 scores had practically 
equivalent population-level performance (Figure 2). Sensitivity analyses that applied more 
stringent practical effect size margins of 0.01 and 0.005 resulted in 19 and 5 equivalent scores, 
respectively (ST10). Two scores met our prespecified definition for statistically equivalent 
performance across both measures of calibration and discrimination. Analyses in PMBB and 
UCLA revealed similar results, identifying 33 and 48 ROPE 0.02 equivalent scores, respectively 
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(eResults, ST11-14, eFigure 4-7). This result indicates that most CAD PRS are indistinguishable 
using population-level performance metrics. 
 Finally, we performed sensitivity analyses in AOU to assess the robustness of the broad 
population performances of these measures. When stratifying by genetic similarity to continental 
reference populations or removing model covariates, we observed broadly similarly hierarchies 
of score performance, but with unique sets of scores meeting equivalence criteria (eResults, 
ST15-21, eFigure8-15). This result indicates that the best-performing score at the population-
level can differ within as well as between cohorts. 
 
Agreement of Individual PRS Risk Assessments 
 Having identified a set of CAD PRS that have equivalent population-level metrics, we next 
evaluated the consistency of individual-level risk estimates. We defined an individual’s average 
risk percentile as the mean of the PRS percentile risk estimates provided by the 48 scores. Across 
AOU participants, the median standard deviation of risk percentiles for each individual was 
22.94 (22.92, 22.96) and the median coefficient of variation for each individual was 0.504 
(0.503, 0.505), providing scale-dependent and -independent evidence of the variability of 
individual-level estimates (Figure 3, eResults). We observed similar in analyses of PMBB and 
UCLA ATLAS and across sensitivity analyses (eFigure16-21).  

Next we examined the distribution of scores in the top / bottom 20th percentiles of risk across 
all 48 scores. We observed that 84% of individuals had at least one risk estimate above the top 
20th risk percentile, and one in the bottom 20th risk percentile (ST22). To help illustrate this 
individual-level variability, we plotted individual-level risk percentiles for five randomly 
selected participants across all practically equivalent scores (Figure 4) and designed an 
interactive web app that allows users to explore CAD PRS percentiles for randomly selected 
individuals from the 1000 Genomes + HGDP reference population 
(sabramow.github.io/PRS_Var/). These results empirically highlight how an individual’s 
estimated risk can differ depending on which score was used.   
 We next quantified interrater reliability across scores. Among the 48 practically equivalent 
scores, ICC was 0.351 (0.349, 0.352) which, according to common interpretation frameworks 
can be considered poor (Table 1a).35–37 ICCs for the sets of 5 and 19 scores that met practical 
equivalence criteria with a ROPE of 0.005 and 0.01 were 0.734 (0.732, 0.736) and 0.555 (0.551, 
0.558) respectively. The five ROPE 0.005 equivalent scores included two pairs of scores from 
the same studies (PGS_prscsx and PGS_LDP2Auto, and PGS003725 and PGS003726). The ICC 

between the two scores which performed equivalently at the population-level (PGS003725 and 
PGS_LDP2Auto) of 0.646 (0.643, 0.649) can be considered moderate to good.35–37 Because 
thresholding PRSs to assign individuals into “high-risk” categories is commonly applied, Light’s 
Kappa was then used to assess whether scores agreed in their risk categorization. Across a range 
of possible thresholds, performance was almost universally poor but tended to improve with 
more stringent equivalence thresholds (Table 1b, ST22, eResults).  
 Next, we repeated our approach in our other settings. In each of these analyses, we used the 
corresponding sets of equivalent and practically equivalent scores determined for each analysis 
cohort. We found that metrics and patterns of variability and risk percentile congruence were 
similar we replicated our analysis pipeline in population-stratified AOU analysis, and in PMBB 
and UCLA (eResults, ST23-24, ST26-27). These results confirmed that low inter-rater reliability 
was not exclusive to our primary cohort.  
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 Noting that some pairs of scores seemed to produce more highly correlated individual 
estimates than others, we considered whether improvements in performance associated with 
improvements in agreement. For our primary cohort, we produced a heatmap of the correlation 
coefficients between all score pairs, and also plotted this coefficient by the difference between 
the performance metrics of the two scores. We observed that correlation between risk estimates 
provided by pairs of scores varied widely. Two main trends emerged: correlation was highest 
among pairs of scores derived from the same studies, and also tended to be higher among scores 
that performed similarly overall and better compared to the rest of the rest of the scores (eFigure 
22-23). This trend suggests that using a common data set to generate multiple scores can inflate 
agreement, and that inter-score agreement may be improving with time and score performance.  
  
Discussion 
 In this study, we designed and implemented a framework to evaluate whether CAD PRSs that 
have similar population level performance provide consistent and reliable assessments of 
individual-level disease liability. Results from 263,035 individuals across three large-scale 
biobanks representative of national demographics demonstrate that individual-level estimates of 
genetic susceptibility to CAD vary considerably across extant PRSs. Although an individual’s 
genetic risk is fixed from conception, we found that 48 tested scores provided inconsistent 
individual-level estimates of CAD risk. These scores cannot be distinguished on population-level 
performance alone, and results of assessments of individual-level agreement call into question 
the validity of PRSs as clinical tests of the same phenomenon.  
 A central implication of these results is that PRSs which demonstrate equivalent performance 
at a population level for CAD may not be considered reliable, interchangeable clinical tests at the 
individual level. We found that inter-rater reliability estimates of practically equivalent (ROPE 
0.02) PRSs were poor, with a high coefficient of variation (50%), and 84% of participants had at 
least one risk estimate in both the top and bottom quintile. For comparison, The National 
Cholesterol Education Program recommends that laboratories measure LDL cholesterol with a 
coefficient of variation of less than 4%.38,39 Similar patterns were seen in UCLA and PMBB, and 
are consistent with a prior report of PRSs applied in the UK Biobank.40 Even among smaller sets 
of scores that were both practically and statistically indistinguishable, inter-rater reliability was 
not strong. 
 Tests of inter-rater reliability assume that raters are equally qualified, and therefore the 
existence of a singular ‘best’ PRS could in theory eschew the need to consider the agreement of 
different score estimates, as only the ‘best’ score’s should matter. However, multiple factors 
make this scenario challenging to practically envision and implement. First, objectively 
identifying a single superior score may not be possible. Implementing our framework for 
population-level performance assessment, we observed that the ‘best’ score varied by 
performance metric, cohort, and subpopulation. These conclusions are consistent with prior 
literature demonstrating that PRS performance varies depending on the environment in which it 
is assessed, owing to factors such as population structure.27,41 While our findings support that 
larger databases, newer statistical techniques,42–44 population-specific focus,10,45 and 
incorporation of susceptibility for ASCVD-related variables46–48 do tend to translate to globally 
better scores, no single score performed best in all analyses, and improvements were marginal (in 
most cases than our prespecified ROPE of 0.02). A second, related consideration is that score 
hierarchy is dependent on time. To clinically implement the ‘best’ available score would mean 
continually updating individual risk predictions, with each new score existing in the context of 
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its predecessors. The degree to which these updates prompt changes in clinical management will 
reflect the concordance between new and old scores.  
 Our data indicate a substantial potential for individuals undergoing PRS testing to receive 
discordant results. There is currently no infrastructure directing patients and providers on how to 
navigate and reconcile conflicting risk estimates, as the concept of inter-score reliability has been 
historically absent from ongoing discussions surrounding whether CAD PRSs are ‘ready’ for 
clinical use.49,50 There are also a growing number of proprietary scores which cannot be 
evaluated through the framework outlined here. Issues of score reliability may be improved with 
future FDA regulation of laboratory developed tests, 51 and our data suggest that population-level 
score improvement tends to increase – although not yet resolve – inter-rater reliability. 
Nevertheless, the current availability of multiple PRSs – especially those with indistinguishable 
or unknown performance – has the potential to undermine and complicate PRS’s clinical validity 
and reliability, and implementation may lead to confusion and harm.52  
 Taken collectively, our results motivate improvements in the framework with which future 
CAD PRSs are evaluated, guidelines are issued, and investigation are made that balances a desire 
for enhancing population-level performance with the pragmatic consideration of the 
ramifications of the proliferation of scores that disagree in their individual-level risk estimates. 
 
Limitations 
 This study should be interpreted in the context of its limitations. First, although we selected 
scores that were available from the PGS Catalog at the time of analysis, PRSs for CAD are 
continuously being developed. Second, primary conclusions regarding relative population-level 
performance of these scores are specific to tested models of prevalent CAD (including 
population-stratified, and with and without age and sex as covariates). Prevalent disease was 
chosen as a primary outcome to maximize number of cases and therefore power to detect 
differences in score performance. Other predictive modeling scenarios have been proposed53 and 
our results do not preclude the possibility that scores can be more conclusively differentiated 
from these other models. Third, minor differences in sequencing and imputation methodology 
(which in turn affects match percentage) and phenotype definitions used in UCLA, PMBB, and 
AOU may account for some of the variability between score performance metrics obtained from 
each biobank.54 Fourth, tests of inter-rater reliability assume that raters (in our case, PRSs) 
provide independent estimates of risk, but our tested PRSs cannot be considered truly 
independent raters because in most cases the scores build on a core set of CAD GWAS data. 
Although a lack of true independence does limit the formal validity of our inter-rater reliability 
metrics, the effect should be to bias the test statistic towards a higher degree of 
agreement/correlation, and thus only strengthens our interpretation of substandard inter-rater 
reliability. 
 
Conclusions and Relevance: 
When tested across three diverse biobanks, CAD PRSs that performed similarly at the population 
level demonstrated highly variable individual-level estimates of risk. Approaches to clinical 
implementation of CAD PRSs need to consider the potential for incongruent individual risk 
estimates from otherwise indistinguishable scores.  
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Tables and Figure Legends 
  
Figure 1: Overview of Approach. 50 polygenic risk scores were calculated for all individuals in 
the All of Us Research Program, Penn Medicine Biobank, and UCLA ATLAS. In each cohort, 
the scores with superior population-level performance when included in a model of prevalent 
disease were identified, and performance metrics were compared with all other scores. Using this 
to define a list of practically equivalent scores, we considered agreement between risk percentiles 
assigned individuals by different, ‘equivalent’ scores.  
 
Figure 2: Differences in Polygenic Risk Score AUROCs and Brier Scores in AOU. The mean 
of the posterior distribution of the difference between the AUROC/Brier Score of each 
combination of scores is plotted. The score with the ‘best’ model metric is denoted with bold 
text. Plus signs indicate scores with practically equivalent metrics (ROPE 0.02). Asterisks 
indicate scores with statistically equivalent metrics. Scores are ordered by year of publication, 
with PGS_LDPred2Auto and PGS_prscsx (newest) on the right.  
 
Figure 3: Within-Person Score Concordance in AOU. Concordance of individual score 
percentiles across all scores meeting practically equivalent ROPE 0.02 criteria in All of Us (48 
scores). A) Mean individual risk percentile; median 48.38(48.26, 48.49). B) Standard Deviation 
of the mean individual risk percentile; median 22.94 (22.92, 22.96). C) Coefficient of Variation; 
median 0.5039 (0.5028, 0.5052). 
 
Figure 4: Risk Predictions for Five Randomly Selected Individuals. 48 practically equivalent 
(defined as ROPE 0.02 in AOU) polygenic risk scores are plotted on the x-axis, in order of year 
of publication (newest on the right). On the y-axis is polygenic risk score percentile. Color 
corresponds to a unique randomly selected All of Us participant. Each participant’s risk 
percentile according to each score is plotted. 
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Table 1a: Intraclass Correlation Coefficient. Calculated using a two-way mixed effects model. 
    ICC (95% CI) 

Equivalence Criteria Number of Scores   
<95% probability of real positive difference 2 0.649 (0.646, 0.652) 

ROPE 0.005 5 0.734 (0.732, 0.736) 
ROPE 0.01 19 0.555 (0.551, 0.558) 
ROPE 0.02 48 0.351 (0.349, 0.352) 

 
 
 
Table 1b: Light’s Kappa. Values reflect congruence of scores meeting a denoted equivalence 
criteria in stratifying individuals above a specified percentile (99, 95, 90, 80, 70, 50). 
 
    Light’s Kappa 

Equivalence Criteria Number of Scores 99 95 90 80 70 50 
<95% probability of real 

positive difference 
2 0.233 0.340 0.390 0.436 0.464 0.476 

ROPE 0.005 5 0.334 0.431 0.476 0.520 0.542 0.557 
ROPE 0.01 19 0.182 0.267 0.310 0.357 0.381 0.401 
ROPE 0.02 48 0.089 0.146 0.177 0.213 0.231 0.245 
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