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Abstract (300 Words):  

Background: Determining spatial relationships between disease and the exposome is limited by 

available methodologies. aPEER (algorithm for Projection of Exposome and Epidemiological 

Relationships) uses machine learning (ML) and network analysis to find spatial relationships 

between diseases and the exposome in the United States. 

Methods: Using aPEER we examined the relationship between 12 chronic diseases and 186 

pollutants. PCA, K-means clustering, and map projection produced clusters of counties derived 

from pollutants, and the Jaccard correlation of these clusters with counties with high rates of 

disease was calculated. Pollution correlation matrices were used together with network analysis 

to identify the strongest disease-pollution relationships. Results were compared to LISA, Moran’s 

I, univariate, elastic net, and random forest regression. 

Findings: aPEER produced 68,820 maps with human interpretable, distinct pollution-derived 

regions. Diseases with the strongest pollution associations were hypertension (J=0.5316, 

p=3.89x10-208), COPD (J=0.4545, p=8.27x10-131), stroke (J=0.4517, p=1.15x10-127), stroke 

mortality (J=0.4445, p=4.28x10-125), and diabetes mellitus (J=0.4425, p=2.34x10-127). Methanol, 

acetaldehyde, and formaldehyde were identified as strongly associated with stroke, COPD, 

stroke mortality, hypertension, and diabetes mellitus in the southeast United States (which 

correlated with both the Stroke and Diabetes Belts). Pollutants were strongly predictive of 

chronic disease geography and outperformed conventional prediction models based on 

preventive services and social determinants of health (using elastic net and random forest 

regression).  

Interpretation: aPEER used machine learning to identify disease and air pollutant relationships 

with similar or superior AUCs compared to social determinants of health (SDOH) and healthcare 

preventive service models. These findings highlight the utility of aPEER in epidemiological and 

geospatial analysis as well as the emerging role of exposomics in understanding chronic disease 

pathology. 

Funding: Boston Public Health Commission, NHLBI (R03 HL157890) and the CDC. 

 

Research in context 

 

Evidence before this study 

Many chronic diseases, such as diabetes and stroke mortality, have well defined geographical 

distributions in the United States. While the reason for these distributions have been actively 

investigated for decades, limited studies have examined the role of pollution. To assess the 

current scientific literature available, we completed a structured review in Medline, Google 

Scholar, and PubMed for any publications in English up to June 24, 2024 using the search 

terms "stroke", "cerebral infarction", "isch(a)emic stroke", "intracerebral h(a)emorrage", 

"h(a)emorrhagic stroke", or "subarachnoid h(a)emorrage", “diabetes” AND “Stroke Belt”, 

“Stroke Region”, “Diabetes Belt”, “Diabetes Region”, or “Disease Belt”. Although there were 

multiple studies examining the role of genetics and poverty with relation to the geographical 

distribution of diseases, few examined pollution. 

 

Added value of this study 
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In this study a novel machine learning algorithm was developed which modeled geospatial 

relationships between chronic disease rates for 3141 counties and county-level pollution 

measures in the United States. aPEER detected significant relationships between pollutants and 

several cardiometabolic conditions (using Jaccard correlation coefficient, hypertension 

(J=0.5316, p=3.89x10-208), COPD (J=0.4545, p=8.27x10-131), stroke (J=0.4517, p=1.15x10-

127), stroke mortality (J=0.4445, p=4.28x10-125), and diabetes (J=0.4425, p=2.34x10-127)). 

Using just pollution measures, aPEER consistently identified a region in the southeast United 

States which correlated closely with both the Stroke and Diabetes Belts, and matched the 

distribution of multiple cardiometabolic diseases. It was possible to predict the geographical 

distribution of high chronic disease rates using elastic net and random forest regressions from 

pollution indicators with similar or superior accuracy (determined by receiver operator curves) 

compared to preventive healthcare or social determinants of health models.  

 

Implications of all the available evidence 

For the first time, it was possible to predict hypertension, COPD, stroke mortality, diabetes, 

and stroke rates from pollution indicators with comparable or superior accuracy compared to 

conventional models, and readily identify a region of increased pollution in the United States 

that closely matched the Stroke Belt using machine learning methods. These results highlight 

the utility of machine learning in exploring and analyzing spatial data, and the importance of 

pollution in predicting the geographical variation of disease, with implications for 

cardiometabolic disease pathogenesis and management. 
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Introduction 

Several diseases follow consistent geographical patterns: stroke, one of the leading causes of 

mortality in the United States, is geographically associated with a region in the southeast of the 

country known as the Stroke Belt 1–5, and more recently a closely related region with increased 

diabetes rates (the Diabetes Belt) has been defined 6. There is growing evidence that air 

pollution, in particular, ozone and particulate matter (PM2.5), can also influence the incidence of 

stroke,7 as well as other diseases such as asthma 8,9 and diabetes 10. To date, examination of 

geographical disease distributions by population-level variables is limited by the use of 

conventional statistical techniques, i.e., choropleths 11,12, local indicators of spatial association 

(LISA) 13, and the spatial autocorrelation statistic Moran’s I 14. These techniques cannot 

systematically examine the geographical associations between chronic disease, population level 

variables and high-dimensional indicators including air-borne chemicals and water pollutants 
15,16. Machine learning and network analysis methodologies coupled with the availability of large 

chronic disease, demographic, and environmental exposure data,17 have created an opportunity to 

investigate more complex spatial relationships between disease and pollution. 

While effects of pollution can be relatively small for some conditions, the ubiquity of this 

exposure elevates the absolute risk at the population level to that of traditional risk factors 7. The 

exposome (defined by Wild et al. as the complete set of life-course exposures an individual will 

encounter 15,18) encompasses pollutants that might impact an individual’s health. Understanding 

the regional links between some measures that comprise the exposome, such as air pollution 

measures and different chronic diseases could promote informed and targeted interventions and 

policies to mitigate risk in exposed populations 19.  

Here, we present a novel, machine-learning pipeline called aPEER (algorithm for Projection of 

Exposome and Epidemiological Relationships) that uses unsupervised machine-learning 

methods to integrate, visualize, and prioritize multiple indicators measured at varying spatial 

resolutions in a geographically mapped human-interpretable format (Figure 1). Using a 

combination of principal component analysis (PCA), K-means clustering, geographical 

projection, correlation and network analysis (using the Jaccard correlation coefficient 20) to 

quantify the correlation between groups of geographical subregions (counties), we identified 

pollutants in the exposome which were strongly geospatially associated with a disease. Novel 

disease-pollution relationships were then validated based on their ability to predict the 

geographical distribution of chronic diseases using elastic net and random-forest models. aPEER 

identified novel geospatial relationships between multiple chronic diseases and key pollutants 

that were strongly predictive of chronic disease prevalence. These findings underscore the 

importance of understanding the potential impact of the hundreds of environmental exposures 

(collectively referred to as the exposome) on chronic diseases.   
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Materials and Methods 

 

Overview 

 

The aPEER (algorithm for Projection of Exposome and Epidemiology Relationships) pipeline 

was developed to find geographical associations between chronic diseases and the exposome 

(Figure 1). In Step 1, we generated 12 reference maps of chronic disease prevalence and stroke 

mortality by selecting counties with chronic disease rates ≥ 70th percentile (we selected 70% as 

an illustrative example, but also completed analyses at the 60th, 80th and 90th percentiles as part 

of a sensitivity analysis described below). In Steps 2-4, we sought to find the subset of 186 

possible pollutants whose geographical distribution best matched each disease reference map. To 

derive these pollution-disease relationships, we performed binary space decomposition of the 

186 pollutants into pairs, and calculated pollution derived clusters of counties (Step 2) using 

principal component analysis (PCA), K-means clustering, and map projection for each pair of 

pollution indicators. We then calculated correlation matrices between these pollution-derived 

clusters and reference maps using the Jaccard correlation coefficient J (illustrated in Step 3 in 

Figure 1, which measured the correlation between the set of counties in pollution clusters and the 

counties in disease reference maps). Then we identified key pollutants using network analysis of 

the correlation matrices (Step 4) which produced lists of hubs (key pollutants) for each chronic 

disease.  

 

The key pollutants for each chronic disease from Steps 2-4 were validated in Step 5: first, key 

pollutants (hubs) were used to “assemble” pollution clusters, and pollution-disease pair with the 

highest J correlation coefficients were ranked. Next, we assessed the ability of pollutants to 

predict the presence of counties with high disease rates using elastic net and random forest 

regression, and compared model performance to preventive healthcare and SDOH models. We 

also compared aPEER’s performance to known geospatial analysis methods Moran’s I and 

LISA, as well as a baseline elastic net regression model predicting county-level chronic disease 

rates from pollutants. Finally, we examined the relationship among disease-pollution hubs using 

hierarchical clustering analysis of the hubs identified from the networks (Step 6). All analyses 

and results were presented by following the MI-CLAIM checklist 21.  

 

Databases and Data Sources 

 

The database generated for this study consisted of 226 indicators for 3,141 counties (the 

complete set of indicators from Center for Disease Control (CDC) PLACES, Environmental 

Protection Agency’s (EPA) EJSCREEN, and EPA AirToxScreen databases) and integrated into a 

dataframe in Python (version 3.9) using Pandas (version 1.3.4).  

 

Chronic Disease data: Health-related indicators for 3,141 US counties including rates of 

chronic disease, participation in preventive services, and risk factors were extracted from the 
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Behavioral Risk Factor Surveillance System (BRFSS) and available through the 2023 CDC 

PLACES database22 (Supplementary Table 1). From these datasets we identified 11 disease and 

health-related measures for analysis (based on the leading contributors to disability-adjusted life 

years (DALYs) in the United States23), specifically, arthritis, asthma, chronic obstructive 

pulmonary disease (COPD), cancer, coronary heart disease, depression, diabetes, hypertension, 

obesity, renal disease, and stroke. Stroke mortality data for ages 35 or older was downloaded 

from the CDC Stroke Death Rates database (between 2017-2019)24. High disease prevalence or 

high stroke-mortality counties were defined as having age-adjusted rates ≥ 70th percentile.   

 

Pollution, SDOH, Demographic, and Geographical Data: Pollution data for 9 pollution 

indicators along with seven social determinants of health (SDOH) / health equity census-tract 

level measures was extracted from the Environmental Protection Agency (EPA) Environmental 

Justice (EJSCREEN) 2021 database25, together with 177 chemical ambient air concentrations 

from the EPA’s 2018 AirToxScreen database26 reported at the census block group level (in 

μg/m3), and calculated at the county level by population-weighting the census block group level 

exposures and then calculating the sum for each county from the blocks. Together, the 

EJSCREEN and AirToxScreen measures resulted in 186 pollution measures examined in this 

study. Geographical boundary information for counties, in the form of GeoJSON, were obtained 

from the US Census TIGER database27. The 9 EJSCREEN pollution indicators 28 included 

particulate matter 2.5 (PM2.5; µg/m3), ozone (parts per billion), traffic proximity (vehicles per 

day / meters), lead paint exposure (% of housing units built before 1960), superfund proximity 

(superfund site count / km), RMP facility proximity (facility count / km), hazardous waste 

proximity (count of hazardous waste facilities within 5 km (or nearest beyond 5 km), each 

divided by distance in kilometers), underground storage tanks (count of facilities (multiplied by a 

factor of 7.7) within a 1,500-foot buffered block group), and wastewater discharge (modeled 

toxic concentrations at stream segments within 500 meters, divided by distance in kilometers 

(km)) (Supplementary Table 1). The year of pollution exposure was selected to precede the year 

when chronic disease rates were reported.  

 

Machine Learning Analyses  

 

The mean and median of all county-level variables (Table 1) from CDC PLACES, and 

EJSCREEN databases were calculated using the NumPy library (version 1.20.3). As a baseline 

model to benchmark aPEER, we conducted univariate and multivariate elastic net regressions 

(with 12 different disease-related measures as dependent variables, and county-level SDOH, 

pollution, and other indicators as independent variables) at the county level using the statsmodels 

library (version 0.12.1). A full description of this analysis is contained in Supplemental Methods 

Section 1. 
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To identify and refine the strongest geographical disease-pollution associations, aPEER used a 6-

step process (Figure 1):  

 

Step 1 - Generate 12 Disease Reference Maps 

The 12 county-level disease reference maps of counties with disease prevalence rates ≥ 70th 

percentile were generated for each disease. National maps of the mainland United States were 

then generated at the county level using GeoJSON derived from the TIGER database, and the 

PolygonPatch function from the descartes (version 1.1.0) library. 

 

Step 2 - Generate County-Level Pairwise Maps from 186 Pollutants 

We grouped counties in the United States into distinct clusters by calculating principal 

component analysis (PCA) with the two normalized pollution measures for all pairwise 

combinations of 186 pollutants (17,205 combinations). We then calculated K-means clustering 

(varying the value k = {2,3,4,5}) using the first two principal components for each pair, which 

produced a set of clusters of counties (using the PCA and KMeans functions in the sklearn 

library version 0.24.2, see Supplementary Methods Part 2 for more details). This resulted in 

68,820 sets of county clusters, with each set corresponding to a pair of pollutants and a specific 

value k. Each set of clusters was then projected onto a map of the US (using PolygonPatch in the 

descartes library (version 1.1.0)). 

 

Step 3 - Calculate Disease-Specific Correlation Matrices 

We then identified which clustered maps (created from pairs of pollutants) were most similar to 

each of the 12 disease reference maps. To assess this similarity, we calculated the Jaccard 

correlation coefficient J which measures the similarity between the sets of counties defined by 

chronic diseases, as well as the sets of counties in each of the different clusters calculated from 

pairs of pollutants. J is defined as the number of items in the intersection between two sets, 

divided by the number of items in the union of two sets 20. To calculate J for a disease reference 

map and pollution pairs (with the multiple pollution clusters generated by K-means clustering 

with k = {2,3,4,5}) we calculated all possible J values for disease-pollution clusters, and then 

identified the maximum J value as defined in equation 1: 

 

𝐽 = 𝑚𝑎𝑥𝑖=1
𝑘 (

(𝑃𝑖 ∩ 𝐷)

(𝑃𝑖 ∪ 𝐷)
)           (Equation 1) 

 

where Pi are counties in a cluster, and D the set of counties with disease prevalence ≥ 70th 

percentile, and i is a specific cluster k. A Fisher Exact Test was used to derive the p-value for 

each Jaccard correlation coefficient, and the p-value was designated as statistically significant 

using a Bonferroni-adjustment. We then generated a pairwise pollution correlation matrix for 

each disease resulting in 12 correlation matrices of Jaccard correlation coefficients (one for each 

disease) which is fully described in Supplemental Methods Section 2.  
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Step 4 - Construct Disease Specific Pollution Networks 

To identify pollutants most strongly associated with a disease, a network was constructed from 

the matrix of Jaccard correlation coefficients with p << 0.001 after Bonferroni adjustment. In this 

network, nodes constituted pollution indicators, and edges represented a statistically-significant 

Jaccard correlation coefficient associated with a pair of pollutants (nodes) for a disease. The 

length of each edge was scaled inversely proportional to the value of the Jaccard similarity 

coefficient. Hubs were then identified based on the number of connections (degree) for each 

node (see Supplemental Methods Section 3). Networks were calculated using the networkx 

library (version 2.6.3) in Python, and statistics including network density, diameter, and triadic 

closure were calculated using the networkx density, diameter, and transitivity functions, 

respectively. A full description of the network construction is detailed in Supplemental Methods 

Section 3. 

 

Step 5 - Map Assembly and Benchmark 

We then validated the pollution hub-disease relationships using elastic net and random forest 

regression (to determine if the geographical distribution of a disease could be predicted with high 

accuracy from the hub pollutants), as well as performing a process of map assembly, which 

involves creating geographical clusters from the hub pollutants that match the disease reference 

maps. 

 

To calculate elastic net and random forest regressions, we defined the dependent variable y as 

any county that was identified in a disease reference map as having a disease prevalence or 

stroke mortality rate ≥ 70th percentile as having a value of 1, or 0 if it did not meet this rate 

cutoff. We then defined four models based on different combinations of independent variables: a 

“pollution” model consisting of all 186 county-level pollutants as independent variables, a “hub” 

model consisting only of the county-level hub pollutants, a “SDOH” (social determinants of 

health) model consisting of 3 county-level measures, including percent minority, low income, 

and less than high school education, and a “prevention” model consisting of the county level 

rates of mammograms, core female prevention services, core male prevention services, dental 

services, and annual checkup rates. Elastic net regression was completed using the 

LogisticRegressionCV function in sklearn (see Supplemental Methods Section 4 for full details), 

while random forest models were developed using the xgboost library (see Supplemental 

Methods Section 5 for full details). We also examined if known geospatial analysis techniques, 

namely Moran’s I and LISA using the splot library (version 1.1.5)) could detect the clusters 

identified by aPEER (see Supplemental Methods Section 6 for full details). 

 

We then assessed if hub pollutants produced maps that resembled chronic diseases through a 

process of map “assembly”. In map assembly, the pair of hub pollutants with the highest Jaccard 

correlation coefficient (from the correlation matrices calculated previously) were identified, and 

the cluster of counties corresponding to this highest value were plotted on a map (“assembled”) 
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for comparison to the 12 disease reference maps. We then ranked the pollution pair-disease 

relationships by Jaccard correlation coefficient to identify the strongest associations between the 

set of pollution cluster counties and the set of high disease rate counties. 

 

Step 6 - Cluster Disease Networks 

We examined the relationships between diseases and pollutants by clustering the pollution hub 

degrees for each of the 12 chronic diseases measures using the clustermap feature in the seaborn 

library (version 0.11.2). For comparison, we also clustered the top 5 statistically significant ꞵ 

coefficients from elastic net regression, and top 5 feature importance rank values from random 

forest regression, and compared the clustering pattern across the three different disease-pollution 

clustering approaches.  

 

Given that this analysis was performed with counties that had chronic disease prevalences ≥ 70th 

percentile, we examined the robustness of the disease-pollution associations by varying the 

percentile cutoff and repeating steps 1-6 at the 60th, 80th, and 90th percentiles. We then 

calculated the resulting disease-pollution associations and clustered them, and examined the 

resulting patterns across the different cutoffs. 

 

Ethics Approval  

 

Ethics approval was not required for this investigation because the data was publicly available, 

as no individual-level data was incorporated and small re-identifiable populations were not 

identified. 

 

Code and Data Availability 

 

The aPEER core algorithm, which creates clustered, color-coded maps from high dimensional 

data, can be downloaded from: https://github.com/adeonarinebphc/apeer/.  

 

Role of the funding source 

 

The funders did not play any role in the study design, collection, analysis, or interpretation of 

data, in writing the report, or the decision to submit the paper for publication. KTH is funded by 

NHLBI R03 HL157890, and AD is funded by the CDC.  

 

Results 

In Table 1, the descriptive statistics of the county-level data used in this study are described, 

highlighting measures from EPA's EJSCREEN and CDC PLACES data. We then identified 

counties with chronic disease rates ≥ 70% (resulting in about 950 counties for each disease, the 

resulting maps for each disease are depicted in Supplementary Figure 1). In Supplementary 
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Table 1, baseline univariate and multivariate elastic net regressions are presented, with the top 

beta coefficients listed for the 12 chronic disease measures. The highest multivariate beta 

coefficients include those for carbon tetrachloride in the obesity model (β = 1199.37, p = 

2.49x10-17) and in the arthritis model (β = 724.12, p = 4.59x10-7) and that for formaldehyde with 

stroke mortality (β = 565.81, p = 2.77 x 10-7). 

In Figure 2, example correlation matrices depicting the geospatial relationships between pairs of 

pollutants and hypertension (Figure 2A) and of pollutants and stroke mortality (Figure 2B) are 

illustrated (hypertension and stroke mortality were later found to be among the highest disease-

pollution associations determined by aPEER using map assembly). Acetaldehyde and 

formaldehyde had many of the highest associations, with the highest correlations found with 

pollution pairs acetaldehyde-benzo(a)pyrene (J = 0.5315, p << 0.01), formaldehyde-diesel PM (J 

= 0.5307, p << 0.01), and acetaldehyde-1,3-butadiene (J = 0.5274, p << 0.01), while a similar 

pattern of strong associations was found with acetaldehyde and formaldehyde and stroke 

mortality (Figure 2B), with the highest associations being benzo(a)pyrene-acetaldehyde (J = 

0.4579, p << 0.01) and formaldehyde-benzene J=0.4578, p << 0.01). The correlation matrices for 

the remaining chronic disease indicators are presented in Supplementary Figure 2. 

Using the correlation matrices, we then calculated pollution networks for each disease and 

identified the hubs in the network, with Figure 3 presenting the networks for hypertension 

(Figure 3A) and stroke mortality (Figure 3B), together with elastic net and random forest models 

predicting disease geography from the hub pollutants. Methanol, acetaldehyde, and 

formaldehyde were identified as hubs in both hypertension (8 hubs) and stroke mortality (3 

hubs). Validating the pollution hubs using elastic net and random forest models revealed very 

specific patterns in the area under the curve (AUCs), with the prevention model performing the 

best in elastic net models for hypertension (AUC = 0.9) and stroke mortality (AUC = 0.8), while 

the pollution model (consisting of all 186 pollutants) performed best (AUC = 0.93 and AUC = 

0.87) for hypertension and stroke mortality with random forest models (Figure 3). The hub 

pollutant models consistently outperformed the SDOH models irrespective of method for both 

hypertension and stroke mortality (AUC = 0.79-0.9). In general, the pollution model 

outperformed all other models when predicting the geographical distribution of the other chronic 

diseases, especially with random forest models (see Supplementary Figure 3), with the highest 

AUC noted for depression (AUC = 0.94 (random forest), AUC = 0.81 (elastic net)) followed by 

hypertension (AUC = 0.93 (random forest), AUC = 0.87 (elastic net)). The calibration curves for 

the various elastic net and random forest models are presented in Supplemental Figure 4, with 

higher accuracy in general found for random forest models. 

After identifying pollution hubs, we compared them to the beta coefficients from elastic net and 

important features derived from random forest (Figure 4). We found that formaldehyde, 

acetaldehyde, and methanol were consistently highly predictive of hypertension and stroke 

mortality. The ordering of formaldehyde, acetaldehyde, and methanol was very similar between 
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the aPEER pollution hubs and the beta coefficients derived by elastic net (Supplementary Figure 

4, and calibration curves for elastic net and random forest regression are depicted in 

Supplementary Figure 5). Formaldehyde, acetaldehyde, and methanol were also found to be 

among the top 10 pollution hubs for COPD, depression, diabetes, and stroke, (see Supplementary 

Figure 6).  

We then determined the strongest disease-pollution associations by assembling pollution maps 

from pairs of pollutants and ranking the associations by Jaccard correlation coefficient (Figure 

5A), and clustered aPEER pollution hub degree, pollution-related elastic net β coefficients, and 

random forest pollution-associated feature importance values (Figure 5B). Four out of the five 

top assembled map-chronic disease relationships were related to cardiometabolic conditions, 

including the acetaldehyde-benzo(a)pyrene pollution pair for hypertension (J=0.5316, 

p=3.89x10-208), formaldehyde-glycol ether for COPD (J=0.4545, p=8.27x10-131), acetaldehyde-

benzo(a)pyrene for stroke (J=0.4517, p=1.15x10-127), acetaldehyde-formaldehyde for stroke 

mortality (J=0.4445, p=4.28x10-125), and acetaldehyde-benao(a)pyrene for diabetes (J=0.4425, 

p=2.34x10-127) (Figure 5A). In Figure 5B, a consistent pattern of formaldehyde, acetaldehyde, 

and methanol clustering together is apparent; these pollutants also clustered together using β 

coefficients from elastic net. These relationships were partly noted after clustering feature 

importance from random forest analysis, with acetaldehyde clustering separately from methanol 

and formaldehyde (the full list of disease-pollution associations is presented in Supplementary 

Figure 7). To assess the robustness of the pollution-disease associations noted with aPEER, we 

completed a sensitivity analysis by varying the chronic disease cutoff, using the ≥ 60th, ≥ 70th, 

≥80th, and ≥ 90th percentiles (Supplementary Figure 8). Clustering the results from aPEER and 

elastic net results mostly showed acetaldehyde, formaldehyde, and methanol grouping together at 

the ≥ 70th percentile cutoff, while less consistent results were noted with random forest 

regression, suggesting that aPEER and elastic net may be methodologically similar.  

We compared the findings from aPEER with Moran’s I and LISA, and found that neither of 

these methods identified statistically significant geographical patterns in pollution or selected 

diseases (Supplementary Figure 9 and 10), indicating that aPEER may be more robust when 

detecting geospatial patterns in pollution data. We also examined if the disease-pollution 

relationships identified by aPEER were confounded by population levels, but no significant 

relationships were noted with selected diseases and pollutants (Supplementary Figure 11). 

Additionally, we examined if aPEER was identifying the similarities between disease and 

pollution distributions, but no distributional similarities were apparent (Supplementary Figure 

12). The pollutants identified by aPEER as important (hubs) were not identified in the original 

baseline elastic net model, highlighting the limitations of the baseline model.  

Discussion 
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In this investigation, it was possible to identify novel geospatial disease-pollution relationships 

using the aPEER algorithm between 12 chronic disease indicators and 186 pollutants, 

particularly between hypertension, diabetes, stroke mortality, and stroke and the pollutants 

acetaldehyde, formaldehyde, and methanol (Figure 5). The associations between acetaldehyde, 

formaldehyde, and methanol and cardiometabolic diseases identified through correlation 

matrices (Figure 2) and network analysis (Figure 3) was confirmed by elastic net and random 

forest regression (Figure 4), while statistically significant geographical distributions of diseases 

were not noted using conventional methods such as Moran's I, LISA, or benchmark univariate / 

elastic net regression models. These associations were also persistent even when we performed a 

sensitivity analysis varying the cutoffs from the 60th-90th percentile, with consistent clustering 

of acetaldehyde, formaldehyde, and methanol prominently noted at the 70th percentile in the 

aPEER and elastic net regression analysis (Supplementary Figure 8), suggesting that at and 

above this threshold pollutants begin to play a significant role in disease prevalence for several 

cardiometabolic conditions. To our knowledge, this is the first time that air pollutants were found 

to be better at predicting cardiometabolic disease than conventional models based on healthcare 

system measures and the SDOH. The fact that aPEER generated a region from the exposome 

(especially acetaldehyde, formaldehyde, and methanol) that strongly resembled both the Stroke 

Belt and Diabetes Belts provides strong evidence for a potential linkage between stroke 

mortality, hypertension, diabetes, stroke and other cardiometabolic conditions and these 

pollutants. From the results of this study, three main conclusions can be drawn. 

Firstly, aPEER identified a region in the southeast United States defined by hub pollutants which 

is roughly correlated with both the Stroke Belt and Diabetes Belts (Figure 5A), and was highly 

associated with stroke, COPD, diabetes, hypertension, and stroke mortality. Partial explanations 

for regional variations in chronic diseases focus on risk factors, comorbidities, lifestyle, and 

SDOH factors together with the impacts of structural and environmental racism 1,29,30. As well, 

aPEER identified regions on the west coast that had high rates of stroke mortality, which are not 

identified using the conventional Stroke Belt definition. Air pollution measures such as diesel 

particulate matter and PM2.5 are known to contribute to inflammation and stroke, and this may 

be one of the major pathways through which air pollution results in an increase in stroke rates 31–

34. Many of the air pollutants identified by aPEER, particularly acetaldehyde, formaldehyde, and 

methanol, have known links to chronic diseases. For instance, formaldehyde has been associated 

with stroke mortality 35, and hypertension 35,36, but there have been fewer studies characterizing 

these relationships in the United States. It is possible that these pollutants directly contribute to 

the pathogenesis of cardiometabolic diseases. Another pathway may be indirect, where air 

pollutants contribute to risk factors for stroke and diabetes 37–41. More recently, an investigation 

found an association between organic aerosols and the Stroke Belt 42, and recapitulated very 

similar results to those found in this investigation. Importantly, in contrast to the observational 

associations observed by Pye et al. 42, our analysis uniquely demonstrated that it is possible to 

assemble the Stroke Belt from hub pollutants (Figure 5B), and that these pollutants perform 

nearly the same or better than established preventive services and SDOH reference models.  
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The ability of aPEER to produce explainable, human-interpretable maps from simple pollution 

combinations partly addresses the explainable artificial intelligence (XAI) 43 problem of other 

machine learning techniques such as elastic net regression and random forest regressions, which 

rely on “black-box” coefficient optimization and creation of abstract decision trees, respectively. 

In the large correlation matrix of clustered maps there are several unique maps with distinct 

geographical distributions, and aPEER could be used to better understand how climate change, 

pollution, and features such as geographical elevation (which may be associated with some of the 

clusters) are correlated with disease distribution. aPEER can be used as a tool to rapidly explore 

geospatial ecological correlations and generate hypotheses in epidemiological studies involving 

high dimensional data. 

Secondly, previous investigations have identified PM2.5 44,45, ozone 46, and selenium 

(deficiency) 1 (and have ruled out mercury 47) as being associated with increased Stroke Belt 

stroke rates, but few significant environmental predictions or associations have been otherwise 

noted. Additionally, previous studies focused on SDOH/equity factors (and in particular the 

African American population) and the possible cultural and genetic causes 48 of increased stroke 
2,29; by contrast, this investigation identified modifiable environmental factors that comprise the 

exposome, in particular air pollution, that might further explain this risk. Our results may 

indicate that issues such as environmental racism and exposure to specific compounds should be 

prioritized for investigation and intervention not only for stroke mortality, but also for general 

life expectancy and other chronic diseases with high AUCs (see Supplementary Figure 4A and 

4B).  

Thirdly, this investigation highlights the role of unsupervised machine learning in analyzing 

geographical information and finding associations between different indicators. By combining 

dimensionality reduction, clustering, and regression analysis for validation, it was possible to 

detect associations between pollution indicators and chronic diseases that would not normally be 

detectable. For instance, using an elastic net regression model to predict chronic disease rates 

from 186 different pollutants identified different pollutants compared to aPEER (except for 

stroke mortality, where formaldehyde and methanol were found to be significant). This 

observation may partly explain why pollution indicators have not been extensively studied 

previously for different chronic diseases. For example, Ji et al. used a combination of machine 

learning and multilevel modeling to analyze environmental and SDOH associations with stroke, 

and identified ozone as having a strong association. While the relationship with ozone was 

replicated in our analysis, it did not appear to be the strongest relationship 46. This difference in 

outcome may be partly due to the data employed by Ji et al., a study that used CDC 500 Cities 

data, which is a subset of the CDC PLACES data used here.  

Discovering relationships between multiple diseases and the exposome was not possible using 

conventional methods such as baseline elastic net regression, LISA, or Moran’s I, highlighting 

aPEER’s utility as a novel geospatial analysis tool. aPEER is not limited to pollution or stroke 
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data, and can be extended to include other exposomic or geospatial data, and the association of 

those data with the geographical distribution of other chronic diseases. In addition, aPEER 

produces clearly demarcated cluster boundaries, which reduces the need for arbitrary thresholds 

that sometimes are used to identify geographical regions. Hence, aPEER could be used as a 

general epidemiological tool to investigate the geographical relationships between different 

geospatial measurements (such as pollution and disease rates) at different geographical 

resolutions (such as counties, census-tracts, zip codes, census blocks, and precincts). This 

method could be further enhanced through the incorporation of satellite imagery to understand 

better how the built environment could enhance the prediction of disease rates; in this vein, we 

are investigating whether different correlations (such as an area-weighted Jaccard correlation 

coefficient or tetrachoric correlation) and different clustering methods (such as generating 

pairwise disease maps and using 1-dimensional clustering algorithms) would yield better results. 

Limitations of this investigation include the ecological nature of the data and relationships 

examined: although different geographical resolutions were used and were found to be 

concordant, these relationships should be confirmed using individual-level diagnosis of different 

chronic diseases and exposures to air pollution and other pollution indicators. Additionally, this 

modeling work was completed in the United States, and generalizability to other countries is yet 

to be determined.  

In summary, using aPEER, a novel machine learning algorithm designed to investigate spatial 

relationships between pollutants and stroke, we identified key pollutants associated with multiple 

chronic diseases, such as stroke, hypertension, and diabetes, and life expectancy. For the first 

time, it was possible to identify pollutants that predicted the geospatial distribution of chronic 

diseases with higher accuracy than conventional preventive and SDOH factors, highlighting the 

importance of the exposome in the pathogenesis of multiple chronic diseases, and the role that 

modifiable environmental exposures play in disease.   
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Figure 1. The 6-Step aPEER workflow. Step 1: Generate reference maps of chronic disease 

prevalence and stroke mortality (≥70th percentile). Step 2: Clusters derived from principal 

component analysis (PCA) and k-means clustering of 186 pollutants projected on a US map. Step 

3: Compare disease and pollution maps using Jaccard correlation coefficient (J). Step 4: Network 

analysis used to prioritize strongest relationships and identify key disease-related pollutants. Step 

5: Findings benchmarked by examining how closely geographical distribution of key pollutants 

resembles disease maps. Prediction of disease prevalence by pollutants compared to known 

predictors like risk factors and SDOH. Step 6: Examine relationships among disease-pollution 

hubs using hierarchical clustering analysis. 
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  Mean Std. Deviation 60% ile N 70% ile N 80% ile N 90% ile N 

EPA EJSCREEN Demographics (%)         

Minority 23.75 20.22 22.84 1257 30.91 943 40.256 629 54.78 315 

Low Income 35.58 9.97 37.65 1257 40.84 943 43.833 629 48.30 315 

Less than HS Education 13.14 6.32 13.50 1257 15.58 943 18.161 629 21.37 315 

Linguistic Isolation 1.88 3.20 1.21 1257 1.70 943 2.558 629 4.59 315 

Under 5 yrs 5.82 1.26 5.99 1257 6.27 943 6.590 629 7.12 315 

Over 64 yrs 18.79 4.66 19.44 1257 20.54 943 22.017 629 24.71 315 

Unemployed 5.36 2.73 5.57 1257 6.19 943 7.036 629 8.43 315 

                      

EPA EJSCREEN Pollution Measures                   

Lead Paint 0.29 0.15 0.31 1257 0.37 943 0.43 629 0.50 315 

Diesel Particulate Matter 0.11 0.08 0.11 1257 0.13 943 0.15 629 0.20 315 

Air Toxic Cancer Risk 21.23 11.21 23.49 1257 30.00 958 30.00 788 30.00 315 

Air Toxic Respiratory Index 0.27 0.15 0.30 1440 0.33 943 0.40 666 0.43 315 

Traffic Proximity 38.26 157.16 0.00 3141 0.00 3141 13.44 629 103.57 315 

Wastewater discharge 0.08 1.35 0.00 3141 0.00 3141 0.00 3141 0.00 315 

Superfund Proximity 0.06 0.10 0.03 1257 0.04 943 0.08 629 0.16 315 

RMP Facility Proximity 0.52 0.55 0.48 1257 0.65 943 0.89 629 1.30 315 

Hazardous Waste Proximity 0.44 1.00 0.26 1257 0.40 943 0.61 629 1.05 315 

Ozone 38.32 12.68 42.02 1257 43.24 943 44.39 629 47.67 315 

Particulate Matter 2.5 7.13 2.57 8.18 1257 8.58 943 8.91 629 9.30 315 

Underground Storage Tanks 1.52 2.04 1.30 1257 1.78 943 2.38 629 3.38 315 

                      

CDC PLACES Health Measures (%)                   

Healthcare Access 16.14 6.55 16.1 1260 17.8 950 20 633 24.5 316 

*Arthritis 29.28 4.69 30.5 1257 31.7 962 33.2 635 35.2 321 

Binge Drinking 15.72 2.71 16.2 1295 17 961 18 629 19.3 324 

*Hypertension 36.91 6.47 38.1 1273 39.8 954 42.1 634 45 317 

BP Medication 76.83 7.32 78.7 1296 79.5 979 80.3 645 81.4 318 

*Cancer 7.55 1.16 7.8 1380 8.1 1024 8.5 631 9 328 

*Asthma 9.95 0.92 10.1 1337 10.4 983 10.7 679 11.2 318 

Cervical Cancer Screen 80.84 2.49 81.6 1279 82.2 987 82.9 656 83.9 318 

*Coronary Heart Disease 8.20 1.58 8.6 1328 9.1 945 9.5 656 10.1 346 

Annual Checkup 75.43 3.92 76.9 1257 77.7 951 78.6 634 79.8 328 

Cholesterol Screen 84.91 7.46 86.2 1300 86.8 981 87.6 667 88.7 325 

Colon Cancer Screen 70.34 4.62 71.9 1258 73.1 950 74.4 638 75.9 321 

*COPD 8.64 2.24 9 1309 9.6 989 10.4 664 11.6 331 

Core Male Prevention 42.36 5.14 43.4 1278 44.8 945 46.5 631 49 328 

Core Female Prevention 36.71 4.48 37.7 1261 38.9 945 40.4 633 42.5 315 

Smoking 18.92 3.97 19.7 1275 20.8 947 22 653 24 319 

Dental Services 59.70 7.52 62.6 1262 64.4 949 66.3 644 68.8 317 

*Depression 21.09 3.15 21.9 1270 22.8 951 23.9 635 25.4 324 

*Diabetes 12.73 2.62 13.1 1265 13.9 947 14.9 629 16.2 322 

Poor General Health 17.63 4.70 18.3 1257 20 945 21.8 629 24 315 

High Cholesterol 34.98 4.49 36.3 1268 37.2 956 38.2 630 39.5 322 

*Renal Disease 3.51 0.59 3.6 1399 3.8 972 4 667 4.3 338 

Limited Phys. Activity 27.02 5.32 28 1272 29.8 947 31.6 634 34 324 

Mammogram 70.52 3.95 71.7 1282 72.7 977 73.9 661 75.3 326 

Poor Mental Health 14.65 2.03 15.3 1285 15.8 996 16.4 658 17.2 327 

*Obesity 35.97 4.67 37.4 1271 38.4 972 39.6 650 41.2 325 

Poor Physical Health 12.05 2.38 12.5 1276 13.2 958 14 648 15.2 319 

Sleep 33.36 3.70 34.2 1291 35.2 971 36.5 635 38.2 318 

*Stroke 3.87 0.86 4 1290 4.2 1034 4.5 706 5 350 

Tooth Loss 13.18 3.80 13.6 1273 14.8 951 16.4 635 18.3 319 

                      

CDC Stroke Data (Rate)                     

*Stroke Mortality 39.32 8.85 40.6 1267 43.1 949 46 633 50.3 316 

 

Table 1. County-level descriptive statistics for chronic disease and healthcare, pollution 

indicators and demographic data for 3141 counties used in this study (N = number of counties 
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equal to or above a percentile cutoff; * = chronic diseases/indicators that are modeled in this 

study).  
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Figure 2. The Jaccard Indices (p << Bonferroni-adjusted threshold 0.001) between the top 10 

pollutants (ranked by Jaccard J) for (A) hypertension and (B) stroke mortality (map colors are 

arbitrary). 
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Figure 3. Pollution networks for (A) hypertension and (B) stroke mortality, with elastic net and random forest models predicting the 

geographical distribution of a given disease using pollution hubs compared to SDOH, prevention, and pollution (all pollution features) 

models. 
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Figure 4. A comparison of the pollutants identified as being highly predictive of hypertension and stroke mortality using aPEER 

(pollution hubs), elastic net (β coefficients), and random forest models (importance). Three pollutants (formaldehyde, methanol, and 

acetaldehyde) consistently appeared irrespective of the analysis method employed (highlighted in red).
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Figure 5. (A) The top 5 disease-pollution associations derived from assembled pollution maps 

(70th percentile) ranked by Jaccard correlation coefficients, and (B) clustered heatmap of aPEER 

pollution hubs, elastic net ꞵ coefficients, and random forest importance features showing 

methanol, formaldehyde, and acetaldehyde closely clustered together, and strongly associated 

with multiple cardiometabolic diseases (highlighted in red). 
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