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Abstract 17 

The rising prevalence of Type 2 Diabetes (T2D) presents a critical global health 18 
challenge. Effective risk assessment and prevention strategies not only improve 19 
patient quality of life but also alleviate national healthcare expenditures. The 20 
integration of medical imaging and genetic data from extensive biobanks, driven by 21 
artificial intelligence (AI), is revolutionizing precision and smart health initiatives. 22 

In this study, we applied these principles to T2D by analyzing medical images 23 
(abdominal ultrasonography and bone density scans) alongside whole-genome single 24 
nucleotide variations in 17,785 Han Chinese participants from the Taiwan Biobank. 25 
Rigorous data cleaning and preprocessing procedures were applied. Imaging analysis 26 
utilized densely connected convolutional neural networks, augmented by graph 27 
neural networks to account for intra-individual image dependencies, while genetic 28 
analysis employed Bayesian statistical learning to derive polygenic risk scores (PRS). 29 
These modalities were integrated through eXtreme Gradient Boosting (XGBoost), 30 
yielding several key findings. 31 

First, pixel-based image analysis outperformed feature-centric image analysis in 32 
accuracy, automation, and cost efficiency. Second, multi-modality analysis 33 
significantly enhanced predictive accuracy compared to single-modality approaches. 34 
Third, this comprehensive approach, combining medical imaging, genetic, and 35 
demographic data, represents a promising frontier for fusion modeling, integrating AI 36 
and statistical learning techniques in disease risk assessment. Our model achieved an 37 
Area under the Receiver Operating Characteristic Curve (AUC) of 0.944, with an 38 
accuracy of 0.875, sensitivity of 0.882, specificity of 0.875, and a Youden index of 39 
0.754. Additionally, the analysis revealed significant positive correlations between 40 
the multi-image risk score (MRS) and T2D, as well as between the PRS and T2D, 41 
identifying high-risk subgroups within the cohort. 42 

This study pioneers the integration of multimodal imaging pixels and genome-43 
wide genetic variation data for precise T2D risk assessment, advancing the 44 
understanding of precision and smart health. 45 
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Introduction 47 

Medical imaging has emerged as an indispensable auxiliary instrument for facilitating 48 
clinical diagnostics, playing a crucial role in various applications, such as breast 49 
cancer diagnosis using mammography (MMG) 1, fatty liver diagnosis through 50 
abdominal (ABD) ultrasonography 2, stroke diagnosis utilizing magnetic resonance 51 
imaging (MRI) and computed tomography (CT) 3, and carotid artery stenosis 52 
screening using carotid artery ultrasonography (CAU) 4. 53 

Recently, artificial intelligence (AI) has revolutionized imaging analysis and its 54 
applications 5, 6. AI diagnostic models trained by deep learning neural networks, such 55 
as convolutional neural network (CNN) 7 and generative adversarial network (GAN) 8, 56 
based on different imaging-modality data, provide an automated and cost-benefit 57 
way to assist medical doctors in disease diagnosis and lesion detection. AI deep 58 
learning models have been developed for automated medical diagnostics for smart 59 
health, including fatty liver diagnosis based on ABD images 9, 10, 11, thyroid nodule 60 
detection based on thyroid ultrasound (TU) images 12, breast cancer diagnosis using 61 
MMG images13, diabetic retinopathy diagnosis using color fundus (CF) images 14, 15, 62 
atrial fibrillation and normal sinus rhythm detection using electrocardiogram (ECG) 63 
images 16, and osteoporosis diagnosis using bone mineral density radiography (BMD) 64 
images 17, 18.  65 

In clinical practice, Imaging-Derived Features (IDFs) are obtained either through 66 
imaging technology utilizing automated measurement algorithms or through the 67 
expertise of medical technologists who strategically enhance medical imaging with 68 
manual or semi-manual annotations. These IDFs are crucial in helping medical 69 
doctors optimize disease diagnosis and select the Region of Interest (ROI). Influential 70 
IDFs can link medical imaging and diseases, constituting the primary imaging 71 
biomarkers for disease diagnosis and classification.  72 

“Feature-Centric Analysis (FECA)” and “Pixel-Based Analysis (PIXA)” present two 73 
major imaging data analytical approaches. They employ distinct data and 74 
methodologies for disease diagnosis, presenting two contrasting approaches, each 75 
with its advantages and limitations. FECA leverages the IDFs derived from medical 76 
doctors’ annotations and observations, incorporating expert insights from medical 77 
technologists to enhance diagnostic accuracy. However, this approach significantly 78 
escalates the workload and cost of extracting annotations from medical images. 79 
Additionally, incorporating numerous IDFs may complicate data and variable 80 
collection, diminishing clinical applicability.  81 

In contrast, PIXA eliminates the need for manual imaging labeling, offering an 82 
automated, low-labor, and cost-effective analysis. This approach is particularly 83 
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beneficial for large-scale data processing. However, due to certain technical 84 
constraints, PIXA may overlook clinical expertise and contextual understanding19. This 85 
raises a practical question regarding the information richness and clinical plausibility 86 
of the two strategies in precision medicine: Can medical imaging inherently provide 87 
all requisite information, eliminating the need for human annotation by domain 88 
experts? In other words, is a hybrid approach, where data-driven methods are used 89 
initially and expert consultation is sought for final decision-making, recommended? 90 
Or does the knowledge of medical experts significantly contribute insights beyond 91 
medical imaging for disease diagnostics and classification, necessitating their 92 
inclusion at an early stage? 93 

In addition to comparing PIXA vs. FECA, this study also compared multi-modality 94 
analysis (MUMA) vs. single-modality analysis (SIMA) in disease risk evaluation. 95 
MUMA allows for a more comprehensive assessment of the studied subject by 96 
integrating structural, functional, anatomical, and molecular information from 97 
multiple imaging modalities with increased sensitivity and specificity in disease 98 
diagnosis, classification, and subtyping, such as MRI and PET imaging, were 99 
combined to the classification of Alzheimer’s disease 20, 21. Integration of medical 100 
imaging and clinical features for breast cancer classification and subtyping 22, 23 and 101 
lung cancer classification and subtyping 24. Integrating these modalities provides a 102 
more holistic understanding of the etiology of the studied diseases under 103 
investigation. However, this approach may increase technical complexity, 104 
computational demand, and data acquisition cost compared to SIMA.  105 

The convergence of medical imaging and genetic data within large-scale 106 
biobanks, driven by artificial intelligence and data sciences, marks a transformative 107 
paradigm shift in precision health for T2D. Our previous research aimed to 108 
consolidate IDFs from four distinct medical imaging modalities—abdominal 109 
ultrasonography (ABD), carotid artery ultrasonography (CAU), bone density scan 110 
(BMD), and electrocardiography (ECG)—alongside genome-wide single-nucleotide-111 
polymorphism (SNP) data to assess T2D risk 25. This innovative analysis resulted in a 112 
high-accuracy risk evaluation model, polygenic risk score (PRS), and multi-imaging 113 
risk score (MRS), facilitating the identification of high-risk subgroups. Moreover, the 114 
model recommended eight crucial risk factors, including family history, age, fatty 115 
liver, spine thickness, PRS, end-diastolic velocity in the right common carotid artery, 116 
RR interval, and end-diastolic velocity in the left common carotid artery. The result 117 
highlights the importance of genetics and medical imaging in a precision medicine 118 
revolution. 119 

Building on the previous work 25 based on a FECA, the current study 120 
concentrates explicitly on PIXA of ABD and BMD images alongside whole-genome 121 
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SNPs for 17,785 Han Chinese participants from the Taiwan Biobank for T2D risk 122 
evaluation. The Taiwan Biobank, a national data repository from a Han Chinese 123 
population in Taiwan, aims to recruit 200 thousand participants with comprehensive 124 
data, including medical imaging, whole-genome genotyping, questionnaires, and lab 125 
tests 26. Given the predominant focus of many biobanks on European populations, 126 
the Taiwan Biobank stands out as a valuable resource for exploring medical imaging, 127 
genetic data, and precision medicine in East Asian populations 27. 128 

This study uses CNN-based deep-learning models to analyze raw pixel data to 129 
generate a convolutional activation representation. Concurrently, using Bayesian 130 
statistical learning models, we analyze genome-wide SNP data to derive a PRS. 131 
Subsequently, the eXtreme Gradient Boosting (XGBoost) machine learning approach 132 
28 integrates the imaging activation vector, genetic PRS, and demographic variables as 133 
classification and disease risk evaluation predictors. In imaging analysis, we also 134 
employ a graph neural network (GNN) to account for correlations among images 135 
within an individual and to integrate these multiple images into a unified 136 
representation. These advancements in PIXA and MUMA, coupled with genetic and 137 
demographic variable integration, present a promising avenue for developing fusion 138 
models encompassing deep learning, machine learning, and statistical learning in 139 
artificial intelligence and data sciences dedicated to disease risk evaluation. This 140 
contributes significantly to enhancing our understanding of precision health for T2D. 141 
 142 

Study participants and materials 143 

Participants 144 
The study included 17,785 Han Chinese participants from the Taiwan Biobank, each 145 
of whom possessed both genetic and medical imaging data; the medical imaging 146 
included abdominal (ABD) imaging data (multiple-organ images) and bone mineral 147 
density (BMD) imaging data (spine, left hip, and right hip images). A participant was 148 
classified as a Type 2 Diabetes (T2D) case if they self-reported T2D, and had 149 
hemoglobin A1C (HbA1c) levels ≥6.5% or fasting glucose (GLU-AC) levels ≥126. A 150 
control was a participant who self-reported non-T2D, with HbA1C levels ≤5.6% and 151 
GLU-AC levels <100. These criteria included 7,786 participants consisting of 1,118 152 
T2D cases and 6,668 non-T2D controls (Fig. 1A). 153 

Among 7,786 participants, the dataset of 7,342 participants was collected 154 
earlier and initially divided into a training + validation set and testing set, named 155 
“Testing Dataset 1,” at an 8:2 ratio. Subsequently, the training + validation set was 156 
further divided into a training dataset and a validation dataset, named “Validation 157 
Dataset,” using an 8:2 ratio. Furthermore, the training set was randomly partitioned 158 
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into two distinct subsets at a 5:5 ratio – the first subset, named “Training Dataset 1,” 159 
was utilized for training the feature extraction model, while the second subset, 160 
named “Training Dataset 2,” was employed to establish the classification model 161 
independently. Finally, an additional 444 participants were recruited later, thus 162 
regarded as a new cohort for the independent “Testing Dataset 2” (Fig. 1B). 163 

 164 
Demographic variables 165 
Demographic variables were collected through questionnaires. The study 166 
incorporated age, sex, and family history of T2D, where the family history was 167 
quantified by the count of T2D cases among the father, mother, brother, and sister 168 
(ranging from 0 to 4). The epidemiological characteristics of these variables within 169 
the study population were detailed (Table S1). 170 

 171 
Image pixel files and image-derived features 172 
For ABD medical imaging, each sample comprised multiple images depicting various 173 
organs. The imaging data encompassed the raw image file (DICOM format) (Fig. S1) 174 
and 28 image-derived features (IDFs) (Table S1). All the 28 IDFs were obtained 175 
through medical experts’ assessment. For BMD medical imaging, each sample 176 
included a single image for each type of BMD medical image, explicitly focusing on 177 
the spine, left hip, and right hip (Fig. S1). The imaging data for BMD included the raw 178 
image file (DICOM format) (Fig. S1) and 79 IDFs (Table S1). BMD machines 179 
automatically generated all 79 IDFs. Further details about the medical imaging 180 
protocol can be found on the Taiwan Biobank website 181 
(https://www.biobank.org.tw/english.php). 182 
 183 
Single nucleotide polymorphisms and imputation 184 
All participants underwent genotyping at the National Center for Genomic Medicine 185 
at Academia Sinica using the Axiom TWB1.0 and TWB2.0 SNP arrays, comprising 653 186 
thousand and 750 thousand SNPs, respectively. Additional information on the SNP 187 
annotation is available on the Taiwan Biobank website 188 
(https://www.biobank.org.tw/about_value.php). 189 

Sample and marker quality controls followed the procedures in our previous 190 
study25, 29. Pre-phasing imputation was performed for TWB1.0 and TWB2.0 191 
individually using SHAPEIT2 and IMPUTE2 (v2.3.1). The imputation process yields a 192 
probability distribution for each locus and each genotype of an individual. The PLINK 193 
command “--hard-call-threshold 0.1” was used to convert probabilities into actual 194 
genotypes, with interpretations made only when probabilities were greater than or 195 
equal to 0.9. If all three genotype probabilities fell below 0.9, the locus for that 196 
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individual was considered missing. TWB1.0 and TWB2.0 imputation data were 197 
merged, and loci with missing rates exceeding 5% and minor allele frequency (MAF) 198 
less than 0.01% were subsequently removed. Finally, 9,814,944 loci remained in the 199 
dataset. 200 
 201 

Methods 202 

Inclusion and ethics declarations 203 
The TWB obtained written informed consent from all participants. The TWB 204 
(TWBR10911-01 and TWBR11005-04) and the Institute Review Board at Academia 205 
Sinica (AS-IRB01-17049 and AS-IRB01-21009) approved our data application and use. 206 
 207 
Image quality control and pre-processing 208 
ABD images 209 
For ABD medical image quality control and pre-processing, we employed the 210 
following steps for image quality control sequentially (Fig. S2A): (1) Removal of 211 
images with inconsistent sizes compared to others (m = 522 images); (2) Exclusion of 212 
images without pixel content (m = 127 images); (3) Elimination of B-mode images 213 
with annotations (m = 65,718 images); (4) Removal of Doppler mode images (m = 214 
3,829 images); (5) Removal of entirely black images (m = 2 images); (6) Removal of 215 
images with multiple windows (m = 2,090 images); (7) Exclusion of images that are 216 
not ABD (m = 52 images). After applying these exclusion criteria, it remains m = 217 
547,162 images from n = 22,062 participants. Subsequently, we employed the 218 
following step for image pre-processing sequentially (Fig. S2A): (1) Conversion of RGB 219 
images into grayscale; (2) Cropping and selection of the Region of Interest (ROI) and 220 
exclusion of the surrounding text. After cropping the ABD medical images, the 221 
resulting image size was shortened from 614 x 816 pixels to 496 x 685 pixels (width x 222 
height) (Fig. S2A). 223 
 224 
BMD images 225 
For BMD medical image quality control and pre-processing, we employed the 226 
following steps for image quality control procedures sequentially (Fig. S2B): (1) 227 
Cropping and selecting the Region of Interest (ROI) and excluding the surrounding 228 
text. (2) Remove the existing contours or bounding box from the images (m = 229 
22,071). After applying these exclusion criteria, m = 21,725 spine images, 21,749 left 230 
hip images, and 21,749 right hip images remained. For spine images, we removed 231 
images with fewer than three vertebrae or image size height <163 pixels (Fig. S2B). 232 
Finally, the detail of BMD image size after pre-processing was shown, and a padding 233 
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method was used to ensure consistent image sizes across different images 234 
(Supplementary Text 1). 235 
 236 
Image activation vector extraction and classification for T2D 237 
Convolution-based DenseNet121 algorithm 30 was applied for activation vector 238 
extraction based on the first training data (i.e., Dataset 1 in Fig. 1B) and validation 239 
data (i.e., Dataset 3 in Fig. 1B). For ABD medical image, Average Activation Vector 240 
(AAV) or Graph Neural Networks (GNN) was applied for integrative activation vectors 241 
from the same sample’s several ABD medical images. XGBoost algorithm 28 was 242 
applied to classify T2D based on imaging activation vectors, genetic PRS, and 243 
demographic variables. Classification was trained and validated based on the second 244 
training data (i.e., Dataset 2 in Fig. 1B) and validation data (i.e., Dataset 3 in Fig. 1B). 245 
All classification models were tested based on the first testing data (i.e., Dataset 4 in 246 
Fig. 1B). The best model was further validated based on the second independent 247 
testing dataset (i.e., Dataset 5 in Fig. 1B). 248 

The DenseNet121 architecture was shown (Fig. 2A). The DenseNet121 models 249 
were trained with the following settings: image size (64 x 64, 224 x 224, 256 x 256), 250 
batch size (64, 128, 256), and pre-trained (w/ or w/o). All the DenseNet121 models 251 
were trained using an initial learning rate of 0.05 for 500 epochs. The best 252 
parameters set was used. 253 

The GNN architecture was shown (Fig. 2B). For GNN, we obtained localized node 254 
embedding using “GNNConv” 31 applied from PyTorch Geometric (PyG) 32 and used 255 
mean or weighted mean pooling for a graph readout before applying classifier. The 256 
GNN models were trained with the following parameters: edge weight calculated by 257 
Euclidean distance or cosine similarity, number of features after convolution (64 or 258 
1024), and graph readout according to node weight given equal weight (mean 259 
pooling) or weighted by number of edge node. The best distance cutoff between two 260 
nodes determines whether an edge exists between two nodes. All the GNN models 261 
are trained using an initial learning rate 0.05 for 500 epochs. The best parameters set 262 
was used. 263 

The XGBoost models 28 were trained with the following default parameter 264 
settings: maximum depth equal to 6, learning rate equal to 0.3, the value of the 265 
regularization parameter alpha (L1) was set to 0, and lambda (L2) was set as 1, the 266 
number of boosting stages was 100, and the early-stop parameter was set to 30. 267 
Parameter tuning was conducted to establish the best model (Supplemental Table 268 
S2). 269 

The model’s effectiveness was evaluated by computing the area under the 270 
receiver operating curve (AUC). The performance of the created models was 271 
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assessed using accuracy, sensitivity, specificity, and Youden index metrics. The 272 
optimal threshold value for the XGBoost model on the validation data was 273 
determined using the Youden index 33. 274 

 275 
Multi-image Risk Score and Polygenic Risk Score  276 
Multi-image Risk Score (MRS) 277 
The computation of the MRS involved a sophisticated process. Initially, imaging pixels 278 
were utilized as input, and an activation vector was meticulously derived and 279 
consolidated through a series of operations, including convolution, pooling, 280 
transition, and dense block within the DenseNet121 architecture (refer to Fig. 2A for 281 
an illustration). Subsequently, this activation vector, also known as the feature vector, 282 
was constructed. The feature vector was the input variable for assessing the T2D 283 
disease status employing the XGBoost classifier28. Notably, the XGBoost feature 284 
importance algorithm was applied to identify crucial features, and the MRS was 285 
ultimately calculated as the likelihood of an individual being classified as a T2D case. 286 
 287 
Polygenic risk score (PRS)  288 
The PRS construction closely followed the methodology in our prior investigation 25. 289 
PRS-CSx 34 was employed, utilizing meta-GWAS summary statistics for T2D across 290 
diverse ancestral populations. Specifically, the data encompassed East Asian (EAS) 291 
populations (56,268 cases and 227,155 controls from the DIAGRAM Consortium 35), 292 
European (EUR) populations (80,154 cases and 853,816 controls from the DIAGRAM 293 
Consortium 35), and South Asian (SAS) populations (16,540 cases and 32,952 controls 294 
from the DIAGRAM Consortium 35). Additionally, Linkage Disequilibrium (LD) 295 
references from the 1000 Genomes Project 36 for each of the three populations (EAS, 296 
EUR, and SAS) were incorporated. Weights of 884,327, 880,098, and 900,047 SNPs 297 
for EAS, EUR, and SAS were applied to our genotype data to calculate the population-298 
specific PRS using the PLINK (--score command) tool. Subsequently, we combined the 299 
population-specific PRS with equal weights to derive the final PRS. The R language 300 
was utilized to standardize the PRS, setting the mean to 0 and the standard deviation 301 
to 1.  302 
 303 

Results 304 

All T2D risk evaluation models 305 
We constructed 12 T2D risk evaluation models (M1–M12 in Table 1) by various 306 
combinations of conditions, including imaging type (ABD and BMD), image analysis 307 
unit (sample-based and image-based), image analysis type (FECA vs. PIXA), and 308 
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analysis modality (MUMA vs. SIMA). 309 
 310 
Pixel-based analysis (PIXA) demonstrated competitiveness compared to feature-311 
centric analysis (FECA) 312 
We constructed T2D risk evaluation models utilizing raw pixel or IDF data of ABD and 313 
BMD medical imaging as predictors. In the case of ABD, compared to FECA (Model 314 

M1 in Table 1), PIXA (Model M2 in Table 1) outperformed across all performance 315 
metrics (Table 1 and Fig. 3A). In the case of BMD, compared to the FECA (Model M5 316 
in Table 1), PIXA (Model M6 in Table 1) demonstrated similar performance (see 317 
Table 1 and Fig. 3B). The results highlight that PIXA offered valuable information for 318 
T2D risk evaluation, even in the absence of consideration of clinical data from 319 
medical technologists. 320 
 321 
Multi-modality analysis (MUMA) outperformed single-modality analysis (SIMA) 322 
Combining ABD and BMD imaging 323 
A multi-modality PIXA, which concurrently analyzed the raw pixel data of both ABD 324 

and BMD imaging data (Model M11 in Table 1), consistently outperformed the 325 
individual-modality PIXA of ABD imaging (Model M3 in Table 1) and BMD imaging 326 
(Model M6 in Table 1) across majority of performance measures, particularly in AUC, 327 
ACC, SPEC, and Youden index (refer to Fig. 3C). The results underscore the enhanced 328 
performance of a MUMA compared to a SIMA, although caution is advised due to 329 
the associated higher data-collection cost in a MUMA. A similar finding applies to 330 

FECA: multi-modality FECA (Model M10 in Table 1) outperforms a single-modality 331 
FECA: ABD imaging (Model M1 in Table 1) and BMD imaging (Model M5 in Table 1) 332 
(Fig. S3). 333 
 334 
Combining spine, left hip, and right hip BMD imaging 335 

As to BMD imaging, which consists of the spine (Model M7 in Table 1), left hip 336 
(Model M8 in Table 1), and right hip (Model M9 in Table 1) medical imaging, the 337 
three individual PIXAs exhibited a close performance in T2D classification (Fig. 3D). A 338 

MUMA which integrated spine, left hip, and right hip medical imaging (Model M6 in 339 
Table 1) exhibited an improvement compared to the three individual SIMAs (Models 340 

M7–M9 in Table 1), particularly in increased AUC, SEN, and Youden index (Fig. 3D). 341 
The results once again illustrated a better performance for a MUMA compared to a 342 
SIMA. 343 
 344 
Robustness analysis 345 
Robustness analysis of DenseNet121 parameters suggests the constructed models 346 
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are robust  347 
Our robustness analysis for ABD imaging examined three image sizes (64×64, 348 
128×128, and 224×224), three batch sizes (64, 128, and 256), and usage of the pre-349 
trained model (yes or no) (Fig. 4A). All combinations of these settings demonstrated 350 
similar performance in terms of AUC. The model attaining the highest AUC of 0.800 is 351 
characterized by an image size of 224 x 224 pixels, batch size of 64, and no pre-352 
trained weights (Fig. 4A). These parameters were fixed in our subsequent analysis. 353 
Other parameters in DenseNet121 were set as default values. The final parameters 354 
were also applied to BMD imaging. 355 

 356 
Robustness analysis of Graph Neural Network parameters suggests the constructed 357 
models are robust  358 
GNN was applied to account for the intra-individual dependency of multiple images 359 
of ABD available for each individual. Our robustness analysis for GNN considered two 360 
edge weights WE (“Euclidean distance” and “Cosine similarity”), two node weights 361 
WN (“Equal-weight” and “Number of edges connected to a node”), and two numbers 362 
of features after the graphical convolution (64 or 1,024) (Fig. 4B). All combinations of 363 
these settings exhibited similar performance in AUC, suggesting that the constructed 364 
GNN models are robust. The model attaining the highest AUC of 0.887 is 365 
characterized by Euclidean-distance edge weight (WE = ED), 1,024 features after 366 
convolution (F = 1,204), and node weight proportional to the number of edge nodes 367 
(WN = nedge) (Fig. 4B). Existence of an edge/link between two nodes was determined 368 
by a threshold “ED”. The results show that the optimal ED cutoff, which attained the 369 
highest AUC of 0.887, was ED = 0.5 (Fig. S4).  370 
 371 
Robustness analysis suggests the sample-based method outperforms the image-372 
based method and accounting for within-sample correlation further improves 373 
performance  374 

The results suggest that the sample-based method (Models M2 and M3 in Table 1), 375 
which integrates multiple images of each individual, outperforms the image-based 376 

method (Model M4 in Table 1) (Fig. 4C). Furthermore, a sample-based method using 377 
GNN (i.e., the model with accounting for within-sample image correlation) (Model 378 

M3 in Table 1) is slightly better than the sample-based method using a direct cross-379 
image average (i.e., without accounting for image correlation) (Model M2 in Table 1) 380 
(Fig. 4C).  381 
 382 
Robustness analysis of classifiers (XGBoost and MLP) have similar performance, 383 
suggesting the finding is robust 384 
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To examine the robustness of our findings concerning classifiers, in addition to the 385 
eXtreme Gradient Boosting (XGBoost) classifier, we also compared it with the multi-386 
layer perception (MLP) classifier based on the ABD imaging. The results show that 387 
XGBoost and MLP exhibited similar results in terms of AUC, ACC, SEN, SPEC, and 388 
Youden index (Fig. 4D), which were averaged across three PIXA variants – sample-389 

based PIXA with an average weight (Model M2 in Table 1), sample-based PIXA with a 390 
GNN weight (Model M3 in Table 1), and image-based PIXA (Model M4 in Table 1). 391 
The detailed results of the three models based on ABD (Fig. S5A) and BMD (Fig. S5B) 392 
are demonstrated.  393 
 394 
Clinical consideration 395 
Integrative model 396 
In addition to the imaging data, other crucial features for T2D diagnosis including 397 
genetic component (PRS) and demographic variables (sex, age, and family history of 398 
T2D) were also considered in the ABD genetic–imaging integrative analysis (Fig. 5A-1) 399 
and BMD genetic–imaging integrative analysis (Fig. 5A-2), and ABD+BMD integrative 400 
analysis (Fig. 5A-3); additional results for the spine, left hip, and right hip are 401 
presented (Figs. S6A-1 – S6A-3). Considering five performance metrics, the 402 
combination of imaging features, demographic factors, and genetic PRS performed 403 
the best. Imaging features performed exceptionally well, surpassing the performance 404 
of demographic characteristics and genetic PRS when considered individually, 405 
particularly in the ABD analysis. 406 
 407 
Best risk assessment model for T2D 408 

The best medical imaging model (M11 in Table 1) is a sample-based PIXA and 409 
MUMA, which combines ABD and BMD imaging (spine, left hip, and right hip 410 
imaging). On top of the medical imaging in this model, demographic variables (D) and 411 
genetic components (G) were further included. Finally, the best risk evaluation model 412 

is “𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐵𝐵𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐺𝐺 + 𝐴𝐴” (M12 in Table 1), attaining AUC = 0.944, ACC 413 
= 0.868, SEN = 0.889, SPE = 0.865, and Youden index = 0.754 in the first testing data 414 
based on a classification threshold 0.01. The model was further validated well in the 415 
second independent testing dataset with AUC = 0.954, ACC = 0.875, SEN = 0.882, SPE 416 
= 0.875, and Youden index = 0.757. The XGBoost model parameter tuning and 417 
performance evaluation for this model are shown (Supplementary Table S2). 418 
 419 
Multi-image risk score (MRS) 420 
ABD-based and BMD-based multi-image risk scores (MRSs) were calculated for each 421 
participant. The odds ratio of T2D and its corresponding confidence interval revealed 422 
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a positive correlation between MRS and T2D (Fig. 5B-1 for ABD and Fig. 5B-2 for 423 
BMD). This suggests that the risk of developing T2D increases with higher MRS values 424 
than the reference group: 40%–60% decile group of MRS. These findings could 425 
potentially lead to more effective treatments in the future. Similar results can also be 426 
found at the SIMA of the spine (Fig. S6B-1), left hip (Fig. S6B-2), and right hip (Fig. 427 
S6B-3).  428 
 429 
Identification of high-risk subgroups using MRSs 430 
Furthermore, we identified specific high-risk subgroups within the study population. 431 
In the analyses of ABD, BMD, and ABD+BMD, consistently high T2D risk (i.e., the ratio 432 
of the number of cases vs. controls) was observed within the high MRS group (90–433 
100% decile group) for both women and men aged older than 62 years with a family 434 
history of T2D, as follows: In the ABD analysis, T2D risks were 23 in the female group 435 
(Fig. 5C-1) and 8 in the male group. In the BMD analysis, T2D risks were 5 in the male 436 
group (Fig. 5C-2) and 4.4 in the female group. In the ABD+BMD analysis, T2D risks 437 
were 21 in the female group (Fig. 5C-3) and 8 in the male group. These T2D risks in 438 
the 90–100% MRS decile group were significantly higher than those in the lower-MRS 439 
groups. 440 
 441 

Discussion 442 

High-performance genetic-imaging integrated analysis of T2D risk evaluation and 443 
diagnosis 444 
In our previous work 25, which considered an AI-enhanced integration of genetic and 445 
medical imaging data for T2D risk assessment, a FECA analysis based on the IDFs of 446 
four medical images (ABD, BMD, CAU, and ECG) in the Taiwan Biobank achieved an 447 
AUC of 0.880, increasing to 0.945 after incorporating demographic (age and family 448 
history of T2D) and genetic information (PRS). The current study, focusing on two 449 
T2D-related medical images (ABD and BMD), demonstrates that PIXA outperforms 450 
FECA for T2D risk evaluation. Despite analyzing fewer types of images than our 451 
previous study 25, this investigation achieved an AUC of 0.902 based on ABD and 452 
BMD pixel data. The AUC further increased to 0.953 after incorporating demographic 453 
and genetic information. The result underscores the potential of an integrated multi-454 
modality study of genetic analysis and medical imaging PIXA for precision medicine.  455 

For precision medicine, genetic information (genome-wide SNPs) and medical 456 
imaging data (image-wide pixels) provide individualized information compared to 457 
traditional biochemistry and body measurement indices, such as HbA1c and fasting 458 
glucose have demonstrated limitations in disease risk prediction, as highlighted in 459 
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various studies 37, 38, 39, 40, 41, 42, 43, 44. These metrics often show limited sensitivity, 460 
especially in specific populations, and lack accuracy in predicting pre-diabetes and 461 
T2D. Genetic data offers stability for evaluating disease risk and diagnosis in 462 
precision medicine, while medical imaging data provides detailed multi-modality 463 
information for human organs, contributing to stable and insightful disease risk 464 
evaluation, diagnosis, and classification. 465 

 466 
Comparison of pixel-based analysis (PIXA) and feature-centric analysis (FECA) 467 
Our investigation reveals that PIXA demonstrates competitive and, in some cases, 468 
superior performance compared to FECA in T2D classification (Figs. 3A and 3B). In 469 
the specific case examined in this paper, two potential explanations warrant careful 470 
consideration. Firstly, it is plausible that IDFs did not entirely extract the complete 471 
information embedded within the raw pixel data. Specifically, only 28 IDFs are 472 
extracted in the case of ABD, and some of these features may lack direct association 473 
with T2D. Secondly, IDFs defined by medical technologists might be suboptimal. For 474 
instance, accurately labeling the exact fatty liver level (normal, mild, moderate, and 475 
severe) poses challenges, particularly for closely related levels at the borderline. 476 
Consequently, PIXA, without labor-intensive labeling and expensive annotation, 477 
offers precise feature quantification with artificial intelligence, providing a high-478 
performance solution for disease classification and risk assessment. This approach 479 
paves the way for effective and practical clinical applications. 480 
 481 
Comparison of MUMA and SIMA 482 
Our investigation reveals that a MUMA provides superior performance compared to 483 
a SIMA (Figs. 3C and 3D) if there is non-overlapping information in the images of 484 
different modalities. Our integrated analysis of ABD and BMD medical imaging 485 
outperforms individual analyses of ABD and BMD (Fig. 3C). The enhanced 486 
performance in the integrated analysis can be attributed to the non-overlapping 487 
contributions of ABD and BMD to T2D. Conversely, our integrated classification 488 
analysis of the spine, left hip, and right hip medical imaging performed similarly to 489 
the three individual analyses (Fig. 3D). This suggests that these imaging modalities 490 
provide highly correlated and redundant information for T2D despite representing 491 
different body sections. These observations underscore the importance of carefully 492 
selecting and integrating imaging modalities for disease classification and 493 
considering each modality’s unique contributions to enhance overall diagnostic 494 
accuracy. Our findings align with previous studies demonstrating the superiority of 495 
MUMA over SIMA in disease classification 45, 46, 47, 48.  496 
 497 
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Robustness analysis for FECA 498 
We conducted a robustness analysis for the FECA, considering various factors such as 499 
pre-trained models, image sizes, batch sizes, and classifiers. Firstly, employing a pre-500 
trained DenseNet121 model 49, 50, 51, 52 did not enhance performance (Fig. 4A), 501 
potentially due to differences in characteristics between ImageNet 53 and medical 502 
imaging data and the limited number of images in ImageNet. Secondly, variations in 503 
image sizes and batch sizes demonstrated minimal impact on AUCs (Fig. 4A). Thirdly, 504 
variations in edge weight methods – “Euclidean distance (DS)” and “Cosine similarity 505 
(CS),” node weight methods – “Equal weight (EW)” and “Unequal weight 506 
proportional to the number of nodes connected to”), and several nodes after 507 
convolution exhibited close AUCs (Fig. 4B). Thirdly, GNN which considers within-508 
individual image correlation performed slightly better than AVE which does not 509 
consider the correlation (Fig. 4C); however, the difference in performance is limited. 510 
Finally, the alternative classifier – multilayer perceptron (MLP), exhibited no 511 
significant difference in performance compared to XGBoost (Fig. 4D). This 512 
consistency across different classifiers underscores the robustness of our findings, 513 
enhancing the credibility and generalizability of our proposed approach for T2D risk 514 
evaluation and classification. 515 
 516 
Conclusion 517 
In conclusion, this study highlights the compelling findings that applying artificial 518 
intelligence, comprising deep learning and machine learning, to integrated genetic 519 
and medical imaging PIXA provides a fully automated, low-labor, cost-saving, and 520 
high-accuracy analysis. Incorporating multi-modality data, encompassing diverse-521 
dimensional information, significantly enhances the performance compared to 522 
single-modality data analysis. Notably, medical imaging PIXA emerges as a 523 
competitive and, in many instances, superior performer compared to FECA. 524 
Integrating genome-wide genetic data with multi-modality imaging marks a 525 
revolutionary advancement in precision medicine and smart health for T2D. These 526 
results provide crucial insights into the potential transformative impact of advanced 527 
analytical methodologies on the future of T2D diagnosis and personalized 528 
healthcare. 529 
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We provide code at the repository at 569 
https://github.com/yjhuang1119/Medical_Image_Risk_Assessment_Model for 570 
medical image classification and risk assessment using a combination of Densely 571 
Connected Convolutional Networks with 121 layers (DenseNet121) and eXtreme 572 
Gradient Boosting (XGBoost). The pipeline includes establishing a disease risk 573 
assessment model using DenseNet121, extracting feature maps, constructing a final 574 
disease risk assessment model using XGBoost, and performance evaluation. The code 575 
also computes performance metrics for model evaluation and feature importance 576 
scores for model explainability. A README is provided. 577 
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Figure legends  582 

Figure 1. Flowchart of the study. (A) Data extraction and classification model 583 
building. In this dataset, 21,927 individuals possess ABD and BMD medical imaging 584 
data, while 108,251 individuals have whole-genome genotyping and imputation data. 585 
Moreover, 17,785 individuals possess both medical imaging and genetic profile data. 586 
Finally, the final dataset comprises 7,786 individuals who meet the inclusion criteria 587 
based on self-reported T2D status, HbA1C, and fasting glucose, consisting of 1,118 588 
T2D cases and 6,668 normal controls. The complete dataset was initially divided into 589 
training + validation and testing sets at 8:2. Subsequently, the training + validation 590 
set was further separated into training and validation datasets with an 8:2 ratio. 591 
The training set was divided into two independent subsets at a 5:5 ratio to mitigate 592 
the winner’s curse problem; a two-stage procedure was employed for feature 593 
extraction and classification. In the first stage, which was dedicated to feature 594 
extraction, the first training data was used to establish a DenseNet121 model based 595 
on the initial training dataset (Training Dataset 1). Subsequently, a feature map 596 
vector was obtained. The second stage was focused on sample classification. Utilizing 597 
the data from the second training (Training Dataset 2) and validation datasets, a deep 598 
learning model for T2D classification was developed, and the results were further 599 
confirmed using the Testing Dataset 1. Ultimately, the best model’s validity was 600 
further confirmed using the second independent testing dataset (Testing Dataset 2) 601 
(n = 444). Regarding the deep learning classification model, three methods—602 
multilayer perceptron (MLP), graph neural network (GNN), and eXtreme Gradient 603 
Boosting (XGBoost)—were implemented. (B) Sample Size. Information on the total 604 
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sample size, number of cases, and number of controls is provided. 605 
 606 
Figure 2. Architecture diagrams. (A) Densely Connected Convolutional Neural 607 
Networks with 121 layers (DenseNet-121). (B) Graph Neural Network (GNN). 608 
 609 
Figure 3. Model Comparison. (A) Comparison of PIXA (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

𝑷𝑷𝑷𝑷𝑷𝑷 ) and FECA 610 
(𝑨𝑨𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑰𝑰) in ABD imaging analysis. PIXA exhibited superior performance in T2D risk 611 
evaluation compared to FEXA. (B) Comparison of PIXA (𝑨𝑨𝑩𝑩𝑨𝑨𝑪𝑪𝑪𝑪𝑩𝑩𝑨𝑨𝑷𝑷𝑪𝑪𝑨𝑨

𝑷𝑷𝑷𝑷𝑷𝑷 ) and FECA 612 
(𝑨𝑨𝑩𝑩𝑨𝑨𝑷𝑷𝑨𝑨𝑰𝑰) in BMD imaging analysis. PIXA and FECA exhibited similar performance in 613 
T2D risk evaluation. (C) Comparison of multi-modality analysis (MUMA) and single-614 
modality analysis (MUMA) in ABD and BMD imaging analysis. MUMA of ABD and 615 
BMD outperforms SIMA of ABD and SIMA of BMD. (D) Comparison of multi-modality 616 
analysis (MUMA) and single-modality analysis (MUMA) in different BMD images, 617 
including spine, left hip, and right hip. MUMA of the three types of BMD images 618 
outperforms SIMA of each of the three types of BMD images. 619 
 620 
Figure 4. Results of robustness analysis in ABD imaging. (A) The different parameter 621 
settings of the DenseNet121 model for the ABD imaging analysis. Testing AUC 622 
results indicate that the configuration with an image size of 224 x 224, a batch size 623 
64, and a pre-trained model set to False performed the best. (B) The different 624 
parameter settings of the GNN model for the ABD imaging analysis. 𝑊𝑊𝑒𝑒𝑒𝑒 refers to 625 
the weight of the edge used (Euclidean Distance - ED or Cosine Similarity - CS). 𝑊𝑊𝑛𝑛 626 
represents the weight of nodes, either equal weight or weighted by the number of 627 
edge nodes (𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). 𝐹𝐹 indicates the number of features after graph convolution. 628 
The testing AUC shows that the best performance is achieved with settings: 𝑊𝑊𝑒𝑒𝑒𝑒 = 629 
ED, 𝐹𝐹= 1024, and 𝑊𝑊𝑛𝑛 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (C) Comparative analysis between image-based 630 
analysis, sample-based analysis with average weights, and sample-based analysis 631 
with GNN weights in ABD imaging analysis. The sample-based analysis with GNN 632 
weights performs best. (D) Comparison of two classifiers, Multilayer Perceptron 633 
(MLP) and eXtreme Gradient Boosting (XGBoost). MLP and XGBoost exhibited 634 
similar performances in all measures: AUC, ACC, SEN, SPEC, and Youden index. 635 
 636 
Figure 5. Risk evaluation models for T2D. (A) Performance of various models 637 
accounting for genetic PRS (G), demographic variables (D) – age, sex, and T2D 638 
family history (D), and medical images of ABD (A-1), BMD (A-2), and ABD+BMD (A-639 
3). The model comprising G, D, and medical images performs the best in T2D risk 640 
evaluation. (B) Positive correlation between MRS and T2D odds ratio for ABD (B-1), 641 
BMD (B-2), and ABD+BMD (B-3). In each decile of MRS based on the image, the odds 642 
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ratio of T2D risk and its 95% confidence interval were calculated based on an 643 
unadjusted model (blue line) and model adjusted by age, sex, and T2D family history 644 
(red line), where the MRS group in 40%–60% is set as the reference group. (C) 645 
Identification of high-risk subgroup based on MRS of ABD (C-1), BMD (C-2) and 646 
ABD+BMD (C-3). For ABD imaging and ABD+BMD imaging, the high-risk group was 647 
females older than 62 with a T2D family history, and their MRS group was 90%–648 
100%. For BMD imaging, in addition to being identical to the group identified by 649 
ABD-based MRS, another high-risk group was men older than 62 with a family history 650 
of T2D. 651 
 652 
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Table 1. Models and performance 
 

No. Model description Image type Image 

analysis unit 

Image data 

analysis type 

Analysis 

modality  

AUC Accuracy Sensitivity Specificity Youden 

M1 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐼𝐼𝐼𝐼 ABD sample-based FECA SIMA 0.719 0.703 0.643 0.714 0.357 

M2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  ABD sample-based PIXA SIMA 0.881 0.847 0.746 0.864 0.610 

M3 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃  ABD sample-based PIXA SIMA 0.887 0.842 0.765 0.855 0.620 

M4 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐶𝐶𝐴𝐴𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  ABD image-based PIXA SIMA 0.808 0.735 0.728 0.736 0.464 

M5 𝐴𝐴𝐵𝐵𝐴𝐴𝑃𝑃𝐼𝐼𝐼𝐼 BMD sample-based FECA SIMA 0.847 0.763 0.783 0.759 0.542 

M6 𝐴𝐴𝐵𝐵𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  BMD sample-based PIXA MUMA 0.824 0.774 0.697 0.788 0.485 

M7 𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑃𝑃𝑃𝑃𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  BMD sample-based PIXA SIMA 0.765 0.725 0.653 0.737 0.390 

M8 𝐴𝐴𝐵𝐵𝐴𝐴𝐿𝐿.𝐻𝐻𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃  BMD sample-based PIXA SIMA 0.763 0.736 0.649 0.751 0.400 

M9 𝐴𝐴𝐵𝐵𝐴𝐴𝑅𝑅.𝐻𝐻𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃  BMD sample-based PIXA SIMA 0.757 0.786 0.528 0.828 0.356 

M10 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐼𝐼𝐼𝐼 + 𝐴𝐴𝐵𝐵𝐴𝐴𝑃𝑃𝐼𝐼𝐼𝐼 ABD+BMD sample-based FECA MUMA 0.871 0.830 0.745 0.845 0.590 

M11 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐵𝐵𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  ABD+BMD sample-based PIXA MUMA 0.904 0.880 0.706 0.910 0.616 

M12 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐵𝐵𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐺𝐺𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐺𝐺 + 𝐴𝐴 ABD+BMD sample-based PIXA MUMA 0.944 0.868 0.889 0.865 0.754 

Abbreviation list. ABD: abdominal ultrasonography; BMD: bone density scan; FECA: feature-centric analysis; PIXA: pixel-based analysis; SIMA: single-modality analysis; 

MUMA: multi-modality analysis; G: genetic predictor (PRS); D: demographic variables (age, sex, and family history of T2D). 
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Figure 1. Flowchart of the study. (A) Data extraction and classification model 
building. In this dataset, 21,927 individuals possess ABD and BMD medical imaging 
data, while 108,251 individuals have whole-genome genotyping and imputation data. 
Moreover, 17,785 individuals possess both medical imaging and genetic profile data. 
Finally, the final dataset comprises 7,786 individuals who meet the inclusion criteria 
based on self-reported T2D status, HbA1C, and fasting glucose, consisting of 1,118 
T2D cases and 6,668 normal controls. The complete dataset was initially divided into 
a training + validation set and a testing set at 8:2. Subsequently, the training + 
validation set was further separated into training and validation datasets with an 8:2 
ratio. The training set was divided into two independent subsets at a 5:5 ratio to 
mitigate the winner’s curse problem; a two-stage procedure was employed for 
feature extraction and classification. In the first stage, which was dedicated to 
feature extraction, the first training data was used to establish a DenseNet121 model 
based on the initial training dataset (Training Dataset 1). Subsequently, a feature map 
vector was obtained. The second stage was focused on sample classification. Utilizing 
the data from the second training (Training Dataset 2) and validation datasets, a deep 
learning model for T2D classification was developed, and the results were further 
confirmed using the Testing Dataset 1. Ultimately, the best model’s validity was 
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further confirmed using the second independent testing dataset (Testing Dataset 2) 
(n = 444). Regarding the deep learning classification model, three methods—
multilayer perceptron (MLP), graph neural network (GNN), and eXtreme Gradient 
Boosting (XGBoost)—were implemented. (B) Sample Size. Information on the total 
sample size, number of cases, and number of controls is provided. 
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Figure 2. Architecture diagrams. (A) Densely Connected Convolutional Neural 
Networks with 121 layers (DenseNet-121). (B) Graph Neural Network (GNN). 
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Figure 3. Model Comparison. (A) Comparison of PIXA (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

𝑷𝑷𝑷𝑷𝑷𝑷 ) and FECA 
(𝑨𝑨𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑰𝑰) in ABD imaging analysis. PIXA exhibited superior performance in T2D risk 
evaluation compared to FEXA. (B) Comparison of PIXA (𝑨𝑨𝑩𝑩𝑨𝑨𝑪𝑪𝑪𝑪𝑩𝑩𝑨𝑨𝑷𝑷𝑪𝑪𝑨𝑨

𝑷𝑷𝑷𝑷𝑷𝑷 ) and FECA 
(𝑨𝑨𝑩𝑩𝑨𝑨𝑷𝑷𝑨𝑨𝑰𝑰) in BMD imaging analysis. PIXA and FECA exhibited similar performance in 
T2D risk evaluation. (C) Comparison of multi-modality analysis (MUMA) and single-
modality analysis (MUMA) in ABD and BMD imaging analysis. MUMA of ABD and 
BMD outperforms SIMA of ABD and SIMA of BMD. (D) Comparison of multi-modality 
analysis (MUMA) and single-modality analysis (MUMA) in different BMD images, 
including spine, left hip, and right hip. MUMA of the three types of BMD images 
outperforms SIMA of each of the three types of BMD images. 
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Figure 4. Results of robustness analysis in ABD imaging. (A) The different parameter 
settings of the DenseNet121 model for the ABD imaging analysis. Testing AUC 
results indicate that the configuration with an image size of 224 x 224, a batch size 
64, and a pre-trained model set to False performed the best. (B) The different 
parameter settings of the GNN model for the ABD imaging analysis. 𝑊𝑊𝑒𝑒𝑒𝑒 refers to 
the weight of the edge used (Euclidean Distance - ED or Cosine Similarity - CS). 𝑊𝑊𝑛𝑛 
represents the weight of nodes, either equal weight or weighted by the number of 
edge nodes (𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). 𝐹𝐹 indicates the number of features after graph convolution. 
The testing AUC shows that the best performance is achieved with settings: 𝑊𝑊𝑒𝑒𝑒𝑒 = 
ED, 𝐹𝐹= 1024, and 𝑊𝑊𝑛𝑛 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (C) Comparative analysis between image-based 
analysis, sample-based analysis with average weights, and sample-based analysis 
with GNN weights in ABD imaging analysis. The sample-based analysis with GNN 
weights performs best. (D) Comparison of two classifiers, Multilayer Perceptron 
(MLP) and eXtreme Gradient Boosting (XGBoost). MLP and XGBoost exhibited 
similar performances in all measures: AUC, ACC, SEN, SPEC, and Youden index. 
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Figure 5. Risk evaluation models for T2D. (A) Performance of various models 
accounting for genetic PRS (G), demographic variables (D) – age, sex, and T2D 
family history (D), and medical images of ABD (A-1), BMD (A-2), and ABD+BMD (A-
3). The model comprising G, D, and medical images performs the best in T2D risk 
evaluation. (B) Positive correlation between MRS and T2D odds ratio for ABD (B-1), 
BMD (B-2), and ABD+BMD (B-3). In each decile of MRS based on the image, the odds 
ratio of T2D risk and its 95% confidence interval were calculated based on an 
unadjusted model (blue line) and model adjusted by age, sex, and T2D family history 
(red line), where the MRS group in 40%–60% is set as the reference group. (C) 
Identification of high-risk subgroup based on MRS of ABD (C-1), BMD (C-2), and 
ABD+BMD (C-3). For ABD imaging and ABD+BMD imaging, the high-risk group was 
females older than 62 with a T2D family history, and their MRS group was 90%–
100%. For BMD imaging, in addition to being identical to the group identified by 
ABD-based MRS, another high-risk group was men older than 62 with a family history 
of T2D.  
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