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Abstract For direct, continuous, and sequential drug
and vaccine safety surveillance, the Maximized Sequen-

tial Probability Ratio Test (MaxSPRT) was developed
by the Centers for Disease Control and Prevention
(CDC) (Kulldorff et al, 2011). Its predictive value and

power to detect signals and the ability to monitor
adverse events continuously have made it an emerg-
ing technique for vaccine adverse event surveillance.
Moreover, being able to use a statistical method e.g.

MaxSPRT in the absence of dose distributed denomi-
nator is a practical advantage for spontaneous report-
ing systems to function as stand-alone signal detec-

tion systems. In this paper, we present a comprehen-
sive framework for implementing MaxSPRT for vac-
cine safety surveillance and Poisson data. We anal-

ysed the literature regarding MaxSPRT and sequen-
tial analysis. Our analysis revealed numerous varia-
tions of MaxSPRT, adapted to the specific require-
ments and objectives of the users. Variations are due

to differing types of data and purpose of use, includ-
ing whether used for epidemiological surveillance or for
regulatory monitoring. This paper provides a compre-
hensive guide for organisations contemplating the im-
plementation of MaxSPRT. It synthesises existing lit-
erature on MaxSPRT, identifies variations based on
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specific requirements, and describes an implementation
framework. We offer a detailed explanation of the steps

and challenges associated with the implementation of
MaxSPRT on the adverse event following immunisation
(AEFI) reporting database of Surveillance of Adverse

Events Following Vaccination in the Community, Vic-
toria, Australia (SAEFVIC), the largest jurisdictional
reporting service by volume in Australia. It also pro-

poses some techniques and measures to deal with the
challenges associated with the implementation process.

Keywords Continuous Surveillance, Adverse events,
Vaccine pharmacovigilance, Sequential Probability

Ratio, Signal detection, reporting delay, real-world
datasets

Key Points

MaxSPRT is a powerful method for ongoing vaccine
surveillance, offering flexibility to adapt to various situ-
ations and data limitations. However, this flexibility can
lead to challenges in implementation. Our paper simpli-
fies the MaxSPRT method with clear explanations and
step-by-step guidance, addressing potential issues and
proposing solutions to improve its use in monitoring
vaccine and drug safety.

1 Introduction

Vaccines keep us safe against harmful diseases by in-

creasing the natural defense of our body and inducing
immunity to various infections (Murphy et al, 2023).
Every licensed vaccine goes through rigorous testing
over numerous trial phases before being approved for
use by regulators. Nonetheless, adverse events following
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2 METHODS

immunisation could occur, although they are typically
modest and transient, like a painful arm or a low-grade
fever. Though relatively rare, more severe side effects
may occur. Following approval, vaccine safety surveil-
lance services continue to scan and analyse data from
a variety of sources for any signs that a vaccine might
have unexpected harmful consequences on health, or
an increase in incidence or severity of known reactions,
known as post-licensure surveillance.

In order to perform post-licensure vaccine safety sig-
nal detection, researchers propose diverse approaches
that involve various statistical methods, techniques,
and measures in original, modified, or combined forms.
Research and vaccine surveillance groups may also im-
pose necessary modifications to the approaches dur-
ing implementation, addressing their organisational
strengths and limitations, availability of data, and re-
sources.

Key statistical measures and techniques used in

post-licensure vaccine surveillance include Proportional
Reporting Ratio (PRR) (Clothier et al, 2019), Cumu-
lative Sum (CUSUM) (Mesfin et al, 2021), Report-
ing Odds Ratio (ROR) (Yoon et al, 2020), Empirical

Bayesian Geometric Mean (EBGM) (Lee et al, 2020),
Chi-Square, and MaxSPRT (Kulldorff et al, 2011)-a
specialised variation of Sequential Probability Ratio

Test (SPRT) (Wald, 1992) proposed by Wald.

An important aspect of vaccine surveillance is con-
tinuous monitoring of adverse events that vaccinees

may experience as vaccines are administered, through
a continuous sequential analysis that detects a sig-
nal when adverse events exceed the probability that

they occur by chance (Kulldorff et al, 2011). Sequen-
tial Probability Ratio Test (SPRT) (Wald, 1992) was
proposed by Wald to detect adverse events through hy-
pothesis testing. It is used to determine the most likely
hypothesis among a set of hypotheses and is appro-
priate for sequentially independent and identically dis-
tributed (iid) data, which implies that the data comes
from the same distribution. SPRT was then refined for
vaccine surveillance, and we refer to this as Classical
SPRT (cSPRT) in this paper. cSPRT is used for surveil-
lance to test if the null hypothesis (no vaccine safety
signal or the vaccine is safe), is more likely than the
alternative hypothesis (there is a vaccine safety signal).
However, cSPRT is highly sensitive to the relative risk

chosen in the alternative hypothesis construction, which
makes it difficult to use for ongoing, routine surveil-
lance.

Consequently, Kulldorff et al. proposed the use of a
maximised sequential probability ratio test (MaxSPRT)
(Kulldorff et al, 2011) based on a composite alterna-

tive hypothesis, which works across a range of relative

risks. However, the various, specific objectives and data
sources of vaccine surveillance groups have added to
the complexity of implementing them using the differ-
ent measures and parameters required for MaxSPRT
analysis. This subsequently resulted in various imple-
mentations of MaxSPRT by other researchers in the
community.

To our knowledge, there is currently no literature
describing the variations of MaxSPRT implementation,
detailed and step-wise calculations, along with when to
use them based on vaccine surveillance objectives, and
data sources and types.

2 Methods

This section describes the evolution of SPRT and
MaxSPRT as reported in the literature. It forms the
foundation for the framework proposed in this paper
for the implementation of MaxSPRT technique varia-

tions for vaccine safety.
In both Wald’s SPRT and cSPRT (Wald, 1992), and

Kulldorff’s MaxSPRT (Kulldorff et al, 2011), the num-

ber of adverse events is considered to be random, while
the cumulative person-time or the cumulative number
of vaccinations, if the follow-up time per vaccination is
uniform, is considered to be fixed. The predicted num-

ber of adverse events under the null hypothesis is then
considered to be a known function of the total person-
time and certain possible confounding variables like age,

sex, and location.
Based on the dependence and sufficiency of the

comparator data MaxSPRT can be divided into two

groups, (i) Conditional MaxSPRT and (ii) uncondi-
tional MaxSPRT. When the background information
is insufficient and conditional on an event, Kulldorff
developed conditional MaxSPRT (cMaxSPRT) (Center
for Biologics Evaluation and Research, 2021), where it
factors in the number of adverse events in the histori-
cal data and the surveillance population and computes
the cumulative person-time it took to observe so many
events as the random variable.

The unconditional MaxSPRT can be further subdi-
vided based on the properties of the dataset into two
types (Kulldorff et al, 2011; Center for Biologics Eval-
uation and Research, 2021; Li and Kulldorff, 2010): (i)
pMaxSPRT for Poisson distribution data where values

are real numbers, comparator data are not conditional
on any event and sufficient background information is
available; and (ii) bMaxSPRT for data with a binomial
distribution where the SPRT analysis is conducted for
each event being observed that is binary for each event.

The trend of variations continues for some fur-
ther factors and parameters. These make the calcula-
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SPRT

Classical SPRT MaxSPRT

pMaxSPRT bMaxSPRTcMaxSPRT

Comparators are not conditional on an 
event and sufficient background info

Comparators are conditional on an 
event or insufficient background info

Age Grouping Risk-window slicingComparator Rate Lstiwa Delay adjustmentTest margin

Historical rate of incidence Treatment seeking trend Exposed Person-Time Historical PST Contemporary PST

Cohort based Case based

Fig. 1 Different variations of MaxSPRT

tion of MaxSPRT quite challenging due to numerous
variations. The parameters, hyperparameters, and con-
ditions that need to be considered while calculating
MaxSPRT are: (i) the grouping of the reports based

on age; (ii) the decision to use any comparator rate,
sources of comparator rate, the process of calculating
the comparator rate; (iii) the length of the risk win-

dow and the decision to slice or not slice risk windows;
(iv) the decision to use the length of exposure, written
as “lstiwa” in the figure (Figure 1) and later denoted as
lstiwa in the rest of the paper, as a proxy to the cal-

culation of exposed person time, and the variations in
calculating the exposed person-time; (v) the choice of
using a test margin in the calculation; and (vi) the de-

cision to use a delay adjustment, as well as the ways to
calculate the delay adjustment.

Each combination of the aforementioned factors
makes a different variation of MaxSPRT, therefore, the
factors and hyperparameters are introduced briefly as
follows and described in greater detail with relevant
technical information below.

– Age grouping: Sometimes, we can stratify the
whole MaxSPRT analysis based on age groups. In
such cases, all the calculations are performed at a
more granular level and all the hyperparameters,
such as the historical comparator rate, are taken
based on age grouping. For example, age strata can

be 5-year or 10-year age groups, or bespoke grouping
according to vaccine schedule. More small-ranged

grouping can also be performed to address the risk

of different AESIs for different age ranges. More-
over, unlike the static binning detailed above, a dy-
namic binning approach of risk and AEFI-based age

grouping is also possible where all groups may not
have the same interval. This could provide an op-
tion of sequential analysis. This kind of analysis has
not been tried yet in the literature, to the best of

our knowledge.
– Comparator group: One of the hyperparameters,

which is also known as the historical comparator
group. This is required as a reference value in calcu-
lating the likelihood of an event. This value some-
times needs scaling down based on the length of the

observed period. There are several ways of calculat-
ing this rate, and the information available at the
time of analysis also plays an important role. In the
case where more than one option is available, the
most relevant and reasonable one needs to be used.
Two such potential options, as per (Kulldorff et al,
2011), are:

– Retrospective rate of incidence: This approach
calculates the rate of incidence of the same AEFI
in previous years. This rate can be calculated
from the historical data, reflecting the ratio of
reports in the previous years.

– Treatment-seeking trend: In this approach, the
rate is calculated from General Practitioners’
(GP) which is a term used in Australia that
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3 RESULTS

refers to primary care in general, clinics’, and
hospitals’ data and health records by finding the
trend of treatment-seeking behaviour for a par-
ticular AEFI.

– Risk-window slicing: In MaxSPRT, while calcu-
lating various metrics, we can take the elapsed time
of an observation period into consideration. This
helps mitigate the gap of overestimating the risk or
control period of a vaccine. It also allows slicing the
risk window into smaller periods so that an observa-
tion period that is shorter than the risk window can
scale down the required metrics as per the length of
the observation period. In the sliced version, we fur-
ther stratify the data, especially reports for different
intervals of the risk window. This provides a more
granular level of calculation and tuning. In (Greene
et al, 2011), authors show the efficacy of using a
sliced risk window.

– lstiwa calculation: the measure required to esti-
mate the expected number of events if the dose dis-
tribution information is unknown or insufficient.

– Exposed person-time: The Centers for Disease
Control and Prevention, USA (CDC) in (Cen-
ter for Biologics Evaluation and Research, 2021)

proposed a technique and a formula to calculate
the length of exposure in a person-time unit by
capturing the trend of overlapping exposed time

for the vaccinees within the risk window.
– Other alternative estimations: If the CDC’s ap-

proach can be replaced by some more reasonable
approach that can capture the length of expo-

sure more realistically and effectively.
– Test margin: This is an optional hyperparame-

ter that can be used to fine-tune the estimated

expected number of events. For each AESI within
each database, the test margins are defined based
on comparator rates derived from historical data of
the outcome, adjusted for the length of the risk win-
dow and a target number of doses required to cause
harm. This specification aims to enhance the operat-
ing characteristics of the pMaxSPRT and improve
the quality of information available for regulatory
decision-making. To perform a one-sided test where
the null hypothesis states that the rate of AESI in
the vaccinated group is not higher than the histor-
ical comparator rate by a specific test margin (m),
where m is a non-negative value stated as a percent
of the comparator rate.

Hence, the choice of using it or not using it makes
another fold of variations in MaxSPRT calculation,
and of course, needs an assessment to determine
which one is a better choice: using it or not using it.

Moreover, in the case of using it, finding the optimal
value of the test margin is also a challenge.

– Delay adjustment: AESIs are not reported in
real-time for various reasons. In sequential and con-
tinuous surveillance, this factor must be addressed
in any version of MaxSPRT to adjust the observed
number of events within the observation period.
This adjustment to the observed number of events
is required to help MaxSPRT find appropriate val-
ues for CVs to decide on the likelihood of signals in
the study.
There are several ways of calculating and adjusting
the delay especially estimating the delay from ret-
rospective analysis. Based on the availability of the
data or reports in previous years for the same AEFI
and for the same vaccines, we have divided the ways
into two high-level classes.
– Historical p(s, t): If the analyser has access into

the reports for the AEFI and the vaccine under
consideration, then CDC’s approach (Center for
Biologics Evaluation and Research, 2021) as ex-

plained in later sections (Section 3.2.3) can be
followed to calculate p(s, t) for dealing with de-
lay adjustment.

– Concurrent p(s, t): Where the analyser does not

have historical information on the trend of delays
in reporting, such as in the case of a new AEFI
or a new vaccine, the delay adjustment must be

done by some predictive or approximation ap-
proach using the so far obtained concurrent data.
We also explain this and propose a method to
deal with this situation in Section 3.2.3.

3 Results

After analysing the relevant literature, we developed a
taxonomy of variations of MaxSPRT as shown in Fig-
ure 1.

The structure and organisation of the taxonomy
depict the factors that establish the SPRT subtypes
and implementation variations in a hierarchical man-
ner. The variation starts with the availability of baseline
information required to do the computation for surveil-
lance. In some systems and situations, the expected
number of events comes with associated uncertainty.

There are various reasons behind the uncertainty that
can add additional challenges to surveillance. To deal
with uncertainty in the projected expected number of
events, a conditional maximised sequential probability
ratio test (cMaxSPRT) (Li and Kulldorff, 2010) was
proposed by Li et. al., with a known baseline risk func-

tion no longer needed. Instead, it considers the unpre-
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3 RESULTS 3.1 Properties of the Dataset

Table 1 Notations

Terms Notations

Study week s

Any week within the study period t

Exposure weeks w

Time to onset TTO

Slices in Risk window δ

Expected number of events µs

Observed number of events Ys

Historical comparator rate θ

Per day comparator incidence rate of age-group a θa
Proportion of data complete p(s, t)

Observed exposed person-time Lstiwa

Log-likelihood Ratio LLR

dictability that comes from both the surveillance pop-
ulation and historical data.

To aid readability and implementation, we list the
terminologies used in the literature to construct the
narrative of the paper clearly. Table 1 enlists the terms,

their notations, and symbols that are commonly used
throughout the paper. We refer to Appendix A for the
definitions, examples, and explanations of the terms.

3.1 Properties of the Dataset

SAEFVIC (a Surveillance of Adverse Events Following
Vaccination in the Community data) (Clothier et al,
2017) is a set of timely passive surveillance data con-
sisting of AEFI reports submitted by vaccinees, their

relatives, GPs, nurses, or other healthcare profession-
als. It aligns to minimum data for AEFI surveillance
as per WHO (Organization et al, 2014). Each row of

the data contains a report converted to a transactional
database format where each report is identified by a
unique identifier named V accinee ID. Corresponding
to each unique identifier, there are the age and sex in-
formation of the vaccinee, the time stamps of the dose
administration, reporting time (when was it posted),
and report submission. It also contains the time to on-
set expressed in the number of days for the adverse
event followed by the description of the event, reaction
sign/symptom or clinical term of the event name, and
vaccine brand as well as the dose received. There are
other data that are neither relevant nor required for
MaxSPRT analysis, and we filtered them in the pre-
processing step.

Like other real-world datasets, our data have miss-
ing values too. This needs special attention before
the data can be used for analysis. Data are collected
through an online interactive form that is used by end-
users (reporters). Hence, it is prone to errors like human
errors that include misspellings and typographical er-

rors. This implies that we need to use some mechanism
to deal with unclean data.

Table 2 shows the headers of a sample, a synthetic
dataset developed from real-world data after altering
it so that MaxSPRT analysis can detect a signal for
demonstration purposes. We used this sample data for
the analysis with selected columns, the corresponding
data types, and the domains of the columns.

3.2 Steps and processes of implementation

Here we explain step by step the calculation of each
measure, factor, and parameter required to calculate
LLR (Log-likelihood Ratio) which is used to detect a
signal in MaxSPRT analysis. Throughout the paper, as
a running worked example to demonstrate the calcula-
tions, we have chosen a sample SAEFVIC dataset for a
particular vaccine and “Abdominal pain” as an AEFI.

Refer to Appendix B (Implementation) for full de-

tails of each step, particularly during a MaxSPRT im-
plementation in the SAEFVIC setting.

3.2.1 Computing Cumulative Observed Number of

events

We have taken all the reports into account after pre-
processing (refer to Appendix B.1, Preprocessing) the

data. For each week 1 ≤ t ≤ s, and each age group a,
we counted the number of reports, say Y(t,a). Summing
all the counts for all age groups for a particular week,

t, gives the number of observed events for the week.
We added a column Ya for each age group a’s report
count and two more columns to the data, one for keep-
ing track of the weekly observed report count Yt and

the other one for keeping the cumulative counts of ob-
served reports from week 1 up to a corresponding week
t, Y1,t.

As an illustration, Table 3 shows the weekly count of
observed events with a breakdown based on age strata.
The last column shows the cumulative count of events.

3.2.2 Length of exposure calculation

The length of exposure is used to estimate the expected
number of events in some variations of MaxSPRT anal-
yses. This is roughly the cumulative count of exposed
time per vaccinee after a dose is administered and until
the reaction is set on them in the person-time unit. Def-
inition 7 (Appendix A, Terminology) expresses a way
of capturing the overall length of exposure for all vacci-
nee under consideration for a MaxSPRT analysis when
dose administration information is not available at all,
or at least not during the analysis in real-time.
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3.2 Steps and processes of implementation 3 RESULTS

Table 2 SAEFVIC data set used in this paper with their attributes, types, and domains of the attributes, with pseudo sample
data.

Attributes VacID Vaccine Name Age Sex Time of Vaccination TTO Reporting Time Submission Time Reactions

Types String String Number Binary Time stamp Number Time Stamp Time Stamp String

Domains Report ID Name Years M/F

Time
Format:

dd/mm/yyyy HH:MM:SS
Days

Time
Format:

dd/mm/yyyy HH:MM:SS

Time
Format:

dd/mm/yyyy HH:MM:SS

Set of names
Comma Separated

Semantics Unique Identifier
Name of the
vaccine brand

Age of the

Vaccinee at
vaccination

Gender

of the
Vaccinee

Time of dose
administration

Time to

On setting
the AEFI

When the AEFI
was reported

When the report was
recorded in SAEFVIC

The Adverse Event

Table 3 Demonstration of computing observed report count for MaxSPRT analysis for Abdominal Pain

Computing Observed Report count for MaxSPRT analysis for Abdominal Pain

#Week
Report count
of age 0-9

Report count
of age 10-19

Report count
of age 20-29

Report count
of age 30-39

Report count
of age 40-49

Report count
of age 50-59

Report count
of age 60-69

Report count
of age 70-79

Report count
of age 80+

Weekly
Total
Report

Cumulative
Report

Count, Yt

1 0 0 2 2 3 2 0 0 0 9 9

2 0 0 4 2 3 3 2 1 0 15 24

3 0 0 7 12 7 3 2 1 1 33 57

4 0 0 8 13 11 8 5 5 1 51 168

5 0 0 17 16 18 14 7 5 1 78 246

6 0 0 0 1 0 4 6 6 2 19 265

7 0 0 0 2 1 7 6 7 1 24 289

8 0 0 1 1 1 10 14 3 1 31 320

9 0 0 0 1 0 20 18 2 0 41 361

10 0 0 0 0 1 4 1 2 0 8 369

Table 4 Demonstration of computing lstiwa for MaxSPRT analysis for Abdominal Pain

Computing lstiwa for MaxSPRT analysis for Abdominal Pain

#Week
lstiwa

(0-9)
lstiwa

(10-19)
lstiwa

(20-29)
lstiwa

(30-39)
lstiwa

(40-49)
lstiwa

(50-59)
lstiwa

(60-69)
lstiwa

(70-79)
lstiwa

(80+)
Weekly
lstiwa

1 0 0 2 2 5 1 0 0 0 10

2 0 0 18 5 13 9 2 0 0 47

3 0 0 24 18 37 10 8 4 3 104

4 0 0 51 57 51 38 14 28 15 254

5 0 0 76 79 84 52 23 25 7 346

6 0 0 10 12 22 7 17 26 2 96

7 0 0 0 3 6 11 30 14 1 65

8 0 0 6 7 0 33 24 16 1 87

9 0 0 7 8 1 91 53 12 0 172

10 0 0 7 7 4 41 13 10 0 82

3.2.3 Proportion of data complete calculation

AESIs are not reported in real-time for various rea-
sons. Even after being reported, AEFI recording may
also be delayed. This phenomenon is known as obser-
vation delay. Due to such delays, at the time of anal-
ysis, the amount of the observed data for a particular
study week is likely to be less than the actual amount.
This leads to an overestimation of the expected number
of events, which imposes a potential risk of missing a
signal. To address the issue, MaxSPRT has a feature
of approximation and this is known as calculating the
proportion of data complete (the ratio of the observed
and expected amount of data). We defined the term in

Definition 14.

As we discussed in Appendix A, CDC defined
p(s, t) in (Center for Biologics Evaluation and Re-
search, 2021). However, the process of calculation or

estimation of the term p(i) was not clearly stated, and
neither was it illustrated clearly in the paper. Although

it looks quite straightforward to calculate this value
from the ratios of reports obtained and expected, when
we tried to apply the method we ended up with several

possible ways of calculating the value. This adds more
factors and hence variations of MaxSPRT calculation.

We also propose a new but similar way of calculating
the proportion of data complete. We describe an equa-
tion to estimate the proportion of data complete that
can be used to adjust the factor of delays in reporting
incidents in Section 3.2.7 using concurrent data.

3.2.4 Computing comparator rate, θ

There are several ways of calculating this rate and two
of the plausible ways are described in Appendix A. In

our current implementation, we calculated this value
retrospectively from the previous years’ data (Andrews
et al, 2023). We have utilised our available data from
previous years of the same reaction for calculating the
background rates and used the formula mentioned in
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3 RESULTS 3.2 Steps and processes of implementation

Definition 11 and Definition 12. These background rates
were extracted and analysed by our epidemiology team.

3.2.5 Test Margin, M

To the best of our knowledge, this is a value first used
by CDC (Center for Biologics Evaluation and Research,
2021) for MaxSPRT analysis. It is particularly used
to fine-tune the estimation of the expected number of
events µ and used to emphasise a particular AEFI and
vaccine/drug pair. Although, in our implementation, we
facilitate specifying this value, by default we have used
1.0 for M . In particular, this can be a value close to 1
such as 1.01.

3.2.6 Estimating the Expected number of events

The expected number of events is the number of events
expected to be observed without rejecting the null hy-
pothesis. Calculating this number is not straightfor-
ward. It depends on the available information. There

is a significant difference in calculating or estimating
this value based on the available information. An ap-
proach to estimate this measure is proposed in (Center

for Biologics Evaluation and Research, 2021) and de-
fined in Definition 8 as “Approximate Expected number
of events” in Appendix A.

In passive surveillance or reposting systems, such

as SAEFVIC, we do not have dose administration in-
formation in real time. In such systems, only the nu-
merator, and the report count are available. Therefore,

in this paper and in our current implementation, we
focused on lstiwa (observed exposed person-time, see
Appendix A, Terminology) based estimation of the de-

nominator. Once all the required metrics for calculat-
ing the expected number of events (µs) are found, we
compute the expected count using Definition 8 (Ap-
pendix A, Terminology). While processing the data,
another column is added to it to keep the weekly cu-
mulative expected number of event counts that is going
to be utilised later to compute LLR.

3.2.7 Calculation of Data Complete

We propose a new but similar way of calculating the
proportion of data complete. We describe an equation
to estimate the proportion of data complete that can
be used to adjust the factor of delays in reporting in-
cidents. We specified the way of calculating the ratio.
The denominator of the ratio calculation is subject to
the choice of dataset and timeline we choose.

p(s, t) =
s

∑

i=t

p(i)

where, p(i) = ct(i)
ct

, and ct is the total number of
reports for week t, ct(i) is the total number of reports
for week t at week i.

In several variations of MaxSPRT, using this fac-
tor is optional, such as in (Greene et al, 2011). In case
we decide to use this factor, the calculation of the pro-
portion of observed data can be performed in two ways.
Firstly, similar to the existing works (Center for Biolog-
ics Evaluation and Research, 2021; Greene et al, 2011),
we can use historical data for the same AEFI and the
same vaccine or similar vaccine. Secondly, where no his-
torical data is available, a special approach should be
adopted to calculate the p(i) using the concurrent data
by estimating the proportion of later weeks of exposure
from the earlier weeks of exposure.

In order to estimate the proportion of data com-
plete from concurrent data, we can use the trend of
delays in reporting for the weeks up to the study week.
As an illustration of the reporting delay distribution,
see Table 5. This distribution is for a MaxSPRT anal-
ysis on week 10 observed in an analysis performed to
check for a safety signal for Abdominal pain. Note that

the count of reports for each week with corresponding
report submission weeks. The table contains the distri-
bution of AEFI reporting with certain delays. As an

example, it is expected that there will be 6 reports for
week 3 and those were reported in weeks 3, 5, 6, and 7.
Similarly, 25 reports of weeks 4, and 5 were reported in
week 4, 10 on week 5, 5 on week 6, 2 on week 7, and 1

on each of week 9, 10, and after 10 weeks.

Refer to Appendix D to check the detailed calcula-
tion of the ratio to get p(s, t). This metric is used in
the MaxSPRT analysis and demo calculations.

3.2.8 Calculating LLR and detecting signals

We used cumulative expected number of events, µs (a

snapshot of calculation of all components/measures of
µ is shown in Table 6) and Ys up to week s, to calcu-
late the LLR using the formula in Definition 17. Either,
the LLR or Ys is used to detect signals by comparing
against the critical value, CV . Note, there are two types
of critical values: (i) based on LLR of the correspond-
ing week’s cumulative expected number of events, we
denote it as CVLLRµs

and (ii) based on Y , the corre-
sponding week’s observed event count, we denote it as
CVYs . In other words, say in week t, if LLRt ≥ CVLLRµt

or Yt ≥ CVYt , then there is a signal.

At this stage, let’s demonstrate the detection of the
presence of any signal in a dataset. As shown in Ta-
ble 7, the cumulative Yt and LLRt for study week,
t = 9 of the data is, respectively, 301 and 5.34 where
CVLLRµ9

= 4.11 for µ9 = 247.8 (obtained from (Kull-
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Table 5 Demonstration of Reporting delay distribution & computing p(s, t) for Abdominal Pain

Reporting delay distribution & computing p(s, t) for Abdominal Pain

AEFI

Occuring
Week

Reported on
Week 3

Reported on
Week 4

Reported on
Week 5

Reported on
Week 6

Reported on
Week 7

Reported on
Week 8

Reported on
Week 9

Reported on
Week 10

Reported after
Week 10

Total
Reports

Total Reports

up to
week s [s=10]

3 1 0 2 2 1 0 0 0 0 6 6

4 5 10 5 2 0 1 1 1 25 24

5 11 33 10 2 2 0 10 68 58

6 23 27 9 1 2 10 72 62

7 31 38 9 0 10 88 78

8 7 10 2 2 21 19

9 3 6 16 25 9

10 9 18 27 9

Table 6 Computing required parameter values for
MaxSPRT analysis for Abdominal Pain using the formula in
Definition 8

#Week lstiwa Θ lstiwa ×Θ p(s, t) µt Cumu. µt

1 10

0.235

2.35 0.9 2.12 2.12

2 47 11.05 1 11.05 13.17
3 104 24.44 0.95 23.22 36.39
4 254 59.69 0.93 55.51 91.9

5 346 81.31 0.93 75.62 167.52
6 96 22.56 0.9 20.30 187.82
7 65 15.28 0.75 11.46 199.28
8 87 20.45 0.89 18.20 217.48

9 172 40.42 0.75 30.32 247.8
10 82 19.27 0.25 4.82 252.6

Table 7 Demonstration of signal detection through
MaxSPRT analysis for Abdominal Pain (null hypothesis, H0

= no signal and when H0 is rejected, there is a signal)

Week#, t Test# µt Yt Cumu. µt Cumu. Yt RRt LLRt CV Reject H0?

1 1 2.12 9 2.12 9 4.25 6.13 10 No

2 2 11.05 15 13.17 24 1.82 3.57 27 No

3 3 23.22 33 36.39 57 1.57 4.97 58 No

4 4 55.51 51 91.9 108 1.18 1.33 124 No

5 5 75.62 78 167.52 186 1.11 0.98 209 No

6 6 20.3 19 187.82 205 1.09 0.76 233 No

7 7 11.46 24 199.28 229 1.15 2.11 247 No

8 8 18.2 31 217.48 260 1.2 3.91 267 No

9 9 30.32 41 247.8 301 1.21 5.34 301 Yes

10 10 4.82 8 252.6 309 1.22 NA NA NA

Fig. 2 Visualising signal detection using MaxSPRT

dorff et al, 2011, Table 1) and not shown in Table 7) and
CVY9 = 301 (obtained from Poisson MaxSPRT analysis

using R Sequential package (Silva and Kulldorff, 2024)
with a sample size = 500, total α = 0.05 with 10 install-

ments for 10 tests, each test having α = 0.005, ρ = 0.5,
the minimum number of events = 1). Hence, MaxSPRT
indicates a signal in the week, t = 9, with a 98% likeli-
hood that the vaccine is causing abdominal pain.

Note in the above example, to perform MaxSPRT,
especially using the Sequential package of R language,
we need to provide some values as parameters: Sam-
ple size, Statistical significance (α) and alpha spending
plan, alpha spending function (ρ), statistical power, the

minimum number of events, the observed number of
events, and the expected number of events. Calculation
of the expected number of events is highlighted in the

paper. To aid the readers, we briefly introduced those
terms in Appendix E.

3.3 Challenges and Lessons Learnt

MaxSPRT was introduced to conduct continuous se-
quential analysis that detects potential signals when ad-
verse events exceed the probability that they occur by

chance, and allows for continuous monitoring of adverse
events that may occur in temporal association follow-
ing immunisation. However, Continuous surveillance for
signal detection through MaxSPRT is challenging. The
measure itself is quite complex and has been used and
implemented in various ways. The challenges can be
divided into three stages: 1. pre-implementation, 2. im-
plementation, and 3. post-implementation.

Before we started the implementation of MaxSPRT,
we faced a number of challenges. The first challenge

was establishing a clear understanding of the procedure,
terms, and underlying mathematics due to its many
variations. The variations depend on the availability,
nature, and properties of the data in hand. In addition,
there is no hard and fast rule or specified model for the
implementation. Organisations have different capabili-
ties and limitations that direct implementers towards
different variations, as explained in Section 1.

The challenges we faced during implementation
were mainly due to the lack of information in the litera-
ture. Most papers described the analysis process from a

high level, with limited detailed information about the
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implementation. Although some papers such as (Cen-
ter for Biologics Evaluation and Research, 2021; Mesfin
et al, 2019) explain in more detail, they are not fully
reproducible. As an example, the definition of p(s, t) is
insufficiently defined to reliably reproduce (as discussed
in Section 3.2.3). The data source and technique to cal-
culate the “proportion of data complete” that captures
and addresses the observation delay in reporting reac-
tions add several variations in MaxSPRT, and dealing
with the calculation of this term was challenging.

Calculating the expected number of events was the
most onerous. Its significance in the whole surveillance
process increases the difficulty because any significant
mistake or error in the calculation of this term will mis-
lead the surveillance. It has several components such as
p(s, t), lstiwa, θ and each adds different variations (dis-
cussed in Section 1 and Section 3.4), especially when we
do not have any prior information about the admissi-
bility and correctness of the approaches and heuristics

we have adopted.

Deciding whether to use age stratification or not,
and if used, choosing between static grouping or dy-
namic binning technique adds to the challenge. More-

over, in the case of static grouping, deciding which
grouping would give us optimal and more indicative re-
sults is not known and is subject to empirical analysis.
In the case of either type of grouping, calculating the

background rates for each age group also adds another
layer of difficulty.

Interestingly, the data source and technique to cal-
culate the background rates add some variations and
thus additional challenges are introduced. Data prop-

erties and characteristics such as the distribution of
the data also increase complexity in the implementa-
tion. One of the significant inherent challenges in any

process involving data is missing values. In the case
of MaxSPRT analysis, missing information in the data
needs special consideration. We handled the missing
data with great care, explained in Appendix B.1.

We also had to deal with some challenges regarding
the selection of the development and implementation
tool and setting up the environment. We explained the
issue in detail with our workaround in Appendix B.3.

Moreover, it is also challenging to validate or as-
sess if the implementation of MaxSPRT was correctly
performed; to the best of our knowledge, there is no
common and publicly available data to be used as a
benchmark and standard outcome to compare the re-
sults due to the privacy, security, and ethics policies of
the data used in the literature. Choosing and using the
right version of MaxSPRT adds to the complexity. To
deal with all of these challenges, we implemented the

framework in a way that allows the end user to exhibit

different variations of MaxSPRT for analysis using some
arguments, and adjustment or changes to their values.
We listed the available variations in Section 3.4.

Database

Take Input 
Data

Start

Window 
slicing?

Yes
r/d: slice risk 

window r into d 
different portions

No

Delay 
adjuustment?

Yes

p: calculate 
proportion of data 

complete from 
Hisrorical dataNo

Mu: calculate 
expected number 

of events

Historical or 
Concurrent?

Historical

Concurrent

p: calculate 
proportion of data 

complete from 
Concurrent data

Has 
Comparator 

rate?
Yes

Historical Rate 
or Treatment Seeking 

Behavior

No

Historical Rate

Theta:  get the 
historical rate

Theta:  get the 
treatment 

seeking rate

Treatment 
Seeking

Age 
grouping?

Theta_a: 
perform 

age 
grouping

No

Yes

Age 
grouping?

l_stiwa : calculate 
exposed 

person-time

l_stiw : calculate 
exposed 

person-time

Yes

No

Test 
margin?

Yes

M: get the 
test Margin

No

Y: Calculate 
Observed 
Number of 

Events

Calculate LLR LLR >= CV Yes Signal

Fig. 3 Flowchart of MaxSPRT

3.4 Incorporating variations

MaxSPRT exhibits numerous variations that we ex-
plained in Section 1. In this section, we explain what
variations are allowed in our current implementation.
From the beginning, our focus was to make the imple-
mentation as flexible as possible so that the end user
could utilise different variations of MaxSPRT by tuning
the values of the relevant parameters.

The main goal of this research was to provide sup-
port for vaccine safety analysis even in case sufficient
baseline information is not handy. For this purpose, we

follow the calculation of the expected number of events
proposed by CDC (Center for Biologics Evaluation and
Research, 2021). Their calculation of the expected num-
ber of events is termed in this paper as Approximate
Expected Number of Events as defined in Definition 8
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3.5 Flowchart 4 DISCUSSION

(Appendix A, Terminology). The equation in the def-
inition takes into account several parameters, such as
lstiwa, p(s, t), α, andM . Each of these parameters intro-
duces different variations of MaxSPRT, as discussed in
previous sections (such as Sections 1 and Appendix B),
at least because of different approaches available and
adapted by various research groups in their implemen-
tations of the parameters and MaxSPRT. Moreover, if
we follow the approach of (Greene et al, 2011), we can
add more variations. From our point of view, the fol-
lowing variations can be applied, and we provide the
flexibility to use all the variations in our current imple-
mentation.

1. µs =

s

∑

t=1

nt

∑

i=1

Ti

∑

w=0

A

∑

a=1

lstiwa × θa × P (s, t)

2. µs =

s

∑

t=1

nt

∑

i=1

Ti

∑

w=0

lstiw × θ × P (s, t)

3. µs =

s

∑

t=1

nt

∑

i=1

Ti

∑

w=0

A

∑

a=1

lstiwa × θa

4. µs =

s

∑

t=1

nt

∑

i=1

Ti

∑

w=0

lstiw × θ

Note that in Option 1, we have not used the test
margin unlike CDC’s original calculation (Center for
Biologics Evaluation and Research, 2021). We can also

vary the calculation by not using any age stratification
for θ and thus for other parameters, as we did in Op-
tion 2 and Option 4. We also omitted the use of p(s, t)

in Option 3 and Option 4. More such variations could
be introduced by taking the combination of all four pa-
rameters used in Definition 8 (Appendix A, Terminol-

ogy).

In our future work, we plan to investigate the per-
formance of our MaxSPRT implementation and com-
pare it with other statistical measures for vaccine safety
surveillance. There we plan to incorporate these varia-
tions in the performance analysis and describe our find-
ings in detail following (Greene et al, 2011).

3.5 Flowchart

Figure 3, shows a flow diagram of the MaxSPRT anal-
ysis. It describes the steps from taking input through

to signal detection, including possible decision points
to get a variation of MaxSPRT utilising the available
information and selecting from possible options. Note
that our current implementation is focused on the vari-
ations of MaxSPRT where baseline information is not
known or insufficient. The diagram, however, shows a
general flow of processes for most of the possible imple-
mentations and variations, including sufficient baseline
information known.

4 Discussion

In the previous sections, we introduced the variations of
MaxSPRT, the reasons and the factors behind the vari-
ations, the challenges associated with particular varia-
tions, and how to deal with them. We also explain how
we implemented it with maximum flexibility to offer
as many variations as possible while minimising edit-
ing to underlying code. Our current implementation,
however, does not include as yet all possible variations
of MaxSPRT, however, our Object-Oriented code can
be easily extended with new variations, functionalities,
and parameters without breaking any working code or
module. This extensibility offers the opportunity to add
new variations and devise more effective and adaptable
signal detection.

Some additional potential variations that can be
added are as follows:

1. Based on different ways of calculating the propor-
tion of data complete, as shown in Table 5, there

are five variations using the data available to us.
More variations can be added based on the nature,
characteristics, source, and purpose of the data.

2. Another prime source of variation in MaxSPRT is
obtained through the proportion of data complete
calculation based on the data source. Our options
are using either concurrent data or historical data.

We have added both in our current implementation.
3. Based on the calculation of length of exposure. Cur-

rently, we use observed exposed person time. This

exposed person-time can be calculated in a differ-
ent and perhaps a more reasonable way that adds
more effectiveness in the calculation of the length of
exposure and thus expected number of events.

4. CDC has not used risk window slicing in (Center
for Biologics Evaluation and Research, 2021) but
Greene et al. used risk window slicing in (Greene

et al, 2011). Hence, the risk window slicing can add
another variation in MaxSPRT analysis to the con-
ditional MaxSPRT.

5. A new thread to the variations can be weighted av-
erage of expected event counts calculated using the
formulas used in Definitions 8 (Appendix A, Termi-
nology). This is only possible when baseline data is

available. The efficacy of this idea needs extensive
attention in terms of theoretical development and
experimental analysis.

We also plan to extend our current implementation
in various dimensions, such as applicability in surveil-
lance and in other domains, to increase reusability, and
enhance capability; towards wider accessibility, perfor-
mance assessment and comparison, providing sound-

ness in signal detection, and adaptability. We can ex-
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5 CONCLUSIONS

tend our current implementation and the work on
MaxSPRT in the following ways:

– Applicability in surveillance: Integrate
MaxSPRT in a Bayesian Network (BN) (Koller and
Friedman, 2009; Jensen and Nielsen, 2007) model
that is being developed for signal detection within
our organisation. Our plan is to build a BN model
containing widely used statistical surveillance
techniques as integrated nodes. Finally, the BN is
expected to perform probabilistic inference (Sami-
ullah et al, 2023; Flores et al, 2004) and find signals
more effectively.

– Performance benchmarking: We plan to com-
pare the performance of different variations of
MaxSPRT and different statistical surveillance
methods and techniques, such as proportional re-
porting ratio (PRR) (Clothier et al, 2019), Empiri-
cal Bayes (Harpaz et al, 2013), CUSUM (Musonda
et al, 2008), for safety signal detection. This requires
some standards of comparison, and our initial plan

is to apply all the variations of MaxSPRT and all
other statistical methods under consideration on the
same data sample. We can then compare MaxSPRT
variations in their capacity to detect signals under

particular circumstances. Among the methods that
can detect signals, we can rank them based on the
time required to detect a signal. We can also check

if the generated signal is a false alarm or not, by
checking the results among the methods. This devel-
ops another way of evaluating the capability of the

methods in signal detection. We can then perform
the analysis of effectiveness among the methods by
calculating precision and recall.

– Providing wider accessibility: Difficulties faced
in MaxSPRT implementation can occur due to chal-
lenges associated with the range of potential varia-
tions; no definite answer to some critical issues; and

a relative lack of established literature. Another set
of challenges was the verification of the correctness
and soundness of the implementation. This moti-
vated us to write this paper and further plan to de-
velop an Application Programming Interface (API)
that can be used by researchers to detect signals us-
ing their data. Using an open-access API can also

assist in verifying implementation by comparing im-
plementation results with the output and scores gen-
erated by our API on the same data.

– Adaptability and extensibility: Our current im-
plementation is only for data with Poisson distribu-
tion. The next step in our research is to integrate
the facility to cope with the data having binomial
distribution.

5 Conclusions

MaxSPRT is a complex but powerful method for se-
quential and continuous surveillance. It provides flexi-
bility for implementing in different situations and con-
ducting surveillance with various data limitations. How-
ever, its flexibility comes with implementation and op-
erational trade-offs. The associated challenges can make
it difficult to implement in some contexts or organisa-
tions, which can prevent benefits from being realised.

In this paper, we explained the variations; factors
behind the variations; parameters associated with dif-
ferent variations; potential ways of calculating param-
eters; challenges in calculating parameters; and con-
sequences of using and not using various parameters.
We also provided a step-by-step implementation de-
scription; demonstrating the corresponding output of
each step. The step-by-step discussion also included
a detailed description of our data, handling and pre-

processing of the data, and our working environments.
This paper explained the MaxSPRT surveillance

method in a new, different, clear, and intuitive way aim-

ing to support its reproduction by providing mathemat-
ical and scientific notations and definitions of the rele-
vant terms that mitigate the gaps between concept and

reality. We included a flowchart of the overall imple-
mentation method for different variations of MaxSPRT;
and also added a hierarchy of the variations to demon-
strate the evolution of the methods.

Furthermore, we proposed new measures to assist
in the calculation of some parameters. In case there are
any special attributes or some missing attributes in our

data, we showed in a detailed manner how to deal with
the issues and proposed appropriate workarounds as a
guideline for reproduction.

We discussed further variations of MaxSPRT that

may better capture a signal and our plan to extend the
work, aiming to provide greater support to the vaccine
safety surveillance community and to the public health

surveillance community more broadly. We intend to fur-
ther the work with the empirical outcomes of the vari-
ations of MaxSPRT and other surveillance techniques.

Our paper provides a clear road map for future re-
searchers and pharmacovigilance practitioners to imple-
ment MaxSPRT not only for vaccine safety surveillance
but also for broader adverse drug event sequential anal-
ysis and safety monitoring.
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Appendix

A Terminology

Definition 1 Study Week: Let s be the week at which the
MaxSPRT analysis is being performed to find any potential
signal for an AEFI on a particular dataset. This week, s, is
known as study week.

Definition 2 Study period: Let s be the study week of
surveillance through MaxSPRT analysis. The time between
the beginning of an observation or surveillance and the study
week s is known as the study period, i.e., from the 1st week
to week s, and denoted as [1: s].

As an example, if an epidemiologist wants to perform a
MaxSPRT signal detection analysis for fever post-influenza
vaccination as an AEFI at week 10 of the observation period,
then s=10. In this case, the study period is Week 1 to 10.

Definition 3 Intermediate week: Let s be the study week
of surveillance through MaxSPRT analysis. Any week, rang-
ing from the start week (time/week of vaccine administration
starts) up to the study week s, is called an intermediate week
and denoted as t where 1 ≤ t ≤ s.

For MaxSPRT analysis, we need to calculate several val-
ues in a weekly fashion, from week 1 of the observation week
up to the observation/study week s. These weeks are known
as intermediate weeks and are denoted by t. So, t=1, 2, ..., s.

Definition 4 Exposed weeks: Let s be the study week
of a MaxSPRT analysis of a vaccine for an AEFI that has
a risk window of length RW days. Then, for any vacci-
nee who was administered a dose of the vaccine on week
t and having TTO days of time-to-onset is in the exposed
state for min(TTO,RW ) days starting from week t just af-
ter the day of the dose administration. The weeks from t to
t + ⌈min(TTO,RW )/7⌉ are known as exposed weeks for the
vaccinee and denoted as w.

In other words, exposed weeks of a vaccinee are the weeks
after a dose is administered to the person until the reac-
tion/AEFI is observed on them.

As an example, if someone gets a dose on week-2 of the
study period, and the risk window is 4 weeks or 28 days,
then 2nd week of the study period (t=2) is considered as the
administered week and denoted as w=0 at week t = 2, week
t = 3 is the 1st exposed week and denoted as w=1, and so
on. This continues up to w=4 during week t=6 of the study
period.

Definition 5 Time to onset: Let a vaccinee V be admin-
istered a dose on day d (calendar date D) of the week t and
a MaxSPRT analysis being performed in week s where t ≤ s.
If the AEFI is observed on that vaccinee in day d′ (calendar
date D′) of week t′ where t ≤ t′ ≤ s, then the time required
for the reaction to start/set is the difference between the two
days D and D′ is known as the time to onset and denoted as
TTO where TTO = interval(D′ −D).

TTO can be expressed in hours or in days in the SAE-
FVIC environment/system. As an example, if a vaccinee re-
ported that on the 15th day after the dose the AEFI occurred,
then TTO=15 days. This is rounded up to a day if TTO is
given in hours.

Definition 6 Risk Window: Let a vaccinee V be adminis-
tered a dose on day d of the week t. Say, the AEFI is observed
on that vaccinee on day d′ of week t′ where t ≤ t′ ≤ s and
TTO be the time-to-onset of the AEFI for the vaccinee V .
The maximum value of (TTO, RW ) for which the AEFI be
considered as an effect of the vaccine is known as the Risk
window and is denoted as RW .

In other words, the Risk window is the maximum number
of days/weeks a vaccinee is at risk of the AEFI after a dose. As
examples, some AESIs with relevant risk windows are shown
in the following Table 8.

Definition 7 Observed exposed person-time: Let s be
the study week of a MaxSPRT analysis and a vaccinee i of age
group a is administered a dose on week t and 1 ≤ t ≤ s. The
number of days of a week w (t ≤ t + w ≤ s) after vaccination
and until the reaction/AEFI is set on the vaccinee is known
as exposed person-time for the vaccinee i in wth week and
denoted as lstiwa.
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Table 8 Example of risk windows for potential AESIs (Cen-
ter for Biologics Evaluation and Research, 2021)

AEFI Risk Window

Guillain-Barré syndrome 1-42 days

Bell’s palsy 1-42 days

Anaphylaxis 0-1 day

Encephalomyelitis/Encephalitis 1-42 days

Narcolepsy 1-42 days

Appendicitis 1-42 days

Non-hemorrhagic stroke 1-28 days

Hemorrhagic stroke 1-28 days

Acute myocardial infarction 1-28 days

Myocarditis/Pericarditis 1-42 days

Deep vein thrombosis (DVT) 1-28 days

Pulmonary embolism (PE) 1-28 days

Disseminated intravascular coagulation (DIC) 1-28 days

Immune thrombocytopenia (ITP) 1-42 days

Transverse myelitis 1-42 days

Multisystem inflammatory syndrome 1-42 days

It is required for calculating the expected number of
events, µs, and represents the length of exposed time for a
vaccinee after a dose administration in a person-time unit.

Note, lstiwa has five terms incorporated in it, namely, s,
t, i, w, and a that corresponds to observation week s, dose
week t, ith vaccinee, wth exposed week and a age group in
which the vaccinee i belongs to. It is defined as the number of
exposed days or length of exposure of a person i of age group
a who got a dose on week t where tth week is a week within
the study week s. Note that for any vaccinee, w = 0 means
the week the vaccinee i was administered a dose and w = 1
means 1st exposure week of the person.

lstiwa ranges from 0 to 7. If the dose is administered on
the selected last day of a week t, lstiwa for the week t will
be 0 and denoted as lsti(w=0)a = 0. More specifically, if the

person was 7th in the list of people reporting for that week of
their AEFI and got the dose on the third week of the study
period of 10 weeks, then the length of exposure for the first
week of the person (or third week of the study for the person)
is 0 and denoted as l(s=10)(t=3)(i=7)(w=0)(a=50−59) = 0, where
the person is categorised in the age range between 50 and 59.
If the risk window of the AEFI is greater than or equal to 7
days, then for the same person the lstiwa for the next week
is l(s=10)(t=4)(i=7)(w=1)(a=50−59) = 7.

Say, for a risk window of 14 days, if the dose was admin-
istered on day 2 of a week, then lsti(w=0)a = 5, lsti(w=1)a = 7
and lsti(w=2)a = 2. On the other hand, if the dose was admin-
istered on day 4 of a week, then lsti(w=0)a = 3, lsti(w=1)a = 7
and lsti(w=2)a = 4.

Definition 8 Approximate Expected number of
events: Following the definition of (Center for Biologics
Evaluation and Research, 2021), let s be the study week of
a MaxSPRT analysis and t be any intermediate week and
1 ≤ t ≤ s. The approximate number of events that are to
occur in a week t under the null hypothesis, is known as the
approximate expected number of events. It is denoted as µ′′s
and defined as:

µ′′s =
s

∑
t=1

nt

∑
i=1

Ti

∑
w=0

A

∑
a=1

lstiwa × θa × P (s, t) ×M

where,

– s is a number representing the week when the signal de-
tection analysis is being performed,

– t is a number within [1, s] denoting any particular week
from week 1 up to the study week,

– nt is the number of vaccinee got a dose on week t,
– i is any particular individual or vaccinee,
– Ti is the exposed weeks for vaccinee i ranging from [1,

RW ],
– RW is the risk window length, expressed in the number

of weeks,
– w is a value in the range [0, Ti] where t + w represents

a week under risk where w = 0 represents t + 0 week of
the surveillance which is the dose week of vaccinee i and
w = 1 is the t+ 1 week in the study and 1st exposed week
for the vaccinee,

– A is the set of age group strata,
– a is the strata of the vaccinee i,
– lstiwa is the observed exposed person-time, and
– θa is the per-day comparator rate of age group a.
– M is the test margin.

Let RW be the risk window for the AEFI under consider-
ation for MaxSPRT analysis. If the analysis being performed
is in δ slices, then all the calculations for MaxSPRT are per-
formed for each slice of the window. For some variations of
MaxSPRT, we can split the risk window into several parts.
Say, the risk window is 42 days, if δ = 6, then for each slice,
the number of days = 7.

Definition 9 Expected number of events: Let s be the
study week of a MaxSPRT analysis and t be any intermediate
week and 1 ≤ t ≤ s. The number of events that are likely to
occur in week t under the null hypothesis, is known as the
expected number of events and denoted as µs,t.

It is one of the two parameters required to calculate LLR.
Calculating µs,t is tricky and complicated. Estimating this
value requires approximation in person-time. There are dif-
ferent approaches that can be adopted based on available data
and information to estimate the value of µs,t.

Definition 10 Observed number of events: The num-
ber of events that occurred under the risk window in week t
and reported as well as observed by week s, is known as the
observed number of events and denoted as Ys,t.

This is another parameter for calculating LLR. It counts
the weekly events within the risk window and is reported and
observed by the study period.

Definition 11 Historical comparator rate: Let a
MaxSPRT analysis be performed for an AEFI due to a vac-
cine. Say, in previous y years, n people were observed to be
affected by the AEFI out of N people, then the historical
comparator rate is defined as the ratio of the observed num-
ber of affected people by the AEFI, i.e., n

N×y
and denoted as

θ.

It is the value in person-time unit required to calculate
the expected number of events, µs, representing the number
of people per year that suffer from an AEFI. It is calculated
retrospectively from the previous years’ data.

Definition 12 Per-day comparator rate: Let θ be the
historical comparator rate in previous y years obtained by
observing n people to be affected by the AEFI out of N peo-
ple, then the per-day comparator rate is defined as the ratio
of the observed number of affected people by the AEFI in a
day, i.e., n

N×y×365
and denoted as θ′.
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In the case of age grouping stratified MaxSPRT analysis,
the historical comparator rate and per-day comparator inci-
dence rate may also vary. In order to address that, these rates
for any age group a are denoted as θa and θ′a, respectively.
There are several ways of calculating the rate where two of
the plausible ways are:

– the rate of the AEFI within the general population
– healthcare-seeking behaviour for AEFI following vaccina-

tion

Definition 13 Observation delay: Let s be the study
week when a MaxSPRT analysis is being performed, V =
{v1, v2, ..., vn} be the set of vaccinees reporting the AEFI,
T = {t1, t2, ..., tn} and T ′ = {t′1, t′2, ..., t′n} be the set of corre-
sponding AEFI observation weeks and AEFI reporting weeks
of the vaccinees in V , respectively, where 1 ≤ ti ≤ t′i ≤ s,1 ≤
i ≤ n. Then the time elapsed between the dose administra-
tion and AEFI reporting is known as observation delay and
denoted as, δ = interval(T ′, T ).

AESIs may not be promptly reported in real time due to
various factors. Even when reported, there can be delays in
recording AEFI cases, a phenomenon referred to as observa-
tion delay. These delays result in a reduced amount of ob-
served data compared to the actual amount during analysis,
potentially leading to an underestimation of expected event
numbers and a risk of missing signals. To mitigate this issue,
cMaxSPRT incorporates an approximation technique involv-
ing the calculation of the proportion of complete data (the
ratio of observed to expected data). This concept is defined
in the following Definition 14.

Definition 14 Proportion of data complete: Let s be
the study week when a MaxSPRT analysis is being performed
and δ be the observation delay in the reports. Then, the pro-
portion of data complete at week s is the ratio of reports
of week 1 ≤ t ≤ s that are available by week s due to ob-
servational delay and total expected reports for week t. It is
denoted as p(s, t).

As an example, at week s=10, we observe 6 reports of
week t = 5, and it is expected that 10 reports to be noted
for week t = 5. That means, only 60% of week t=5 data or
report is available. This is denoted as p(10,5) = 0.6.

There are several ways or heuristics to calculate this
value. A retrospective analysis of historical data can be an
option to compute this metric.

At the time of analysis, we may not obtain all the reports
in time due to various reasons. Addressing this factor while
estimating the expected number of events is crucial. Other-
wise, we may overestimate the expected number of events. To
address this issue and adjust the expected number of events,
CDC (Center for Biologics Evaluation and Research, 2021)
proposed the following equation.

p(s, t) =
s−t

∑
i=0

p(i)

We explained the calculation techniques and challenges
of this metric in the paper in Section 3.2.3.

Definition 15 Cumulative expected number of
events: Let s be the study week when a MaxSPRT analysis
is being performed and µs,t be the expected number of
events (reports) to occur in weeks 1 ≤ t ≤ s. Then the
cumulative expected number of events is denoted by µs and
defined as:

µs =
s

∑
t=1

µs,t

Definition 16 Cumulative observed number of
events: Let s be the study week when a MaxSPRT analysis
is being performed and Ys,t be the observed number of
events (reports) occurring in weeks 1 ≤ t ≤ s. Then the
cumulative observed number of events is denoted by Ys and
defined as:

Ys =
s

∑
t=1

Ys,t

It represents the number of AESIs occurring within the
exposed risk window. It can be easily calculated by count-
ing the cumulative sum of AEFI counts occurring weekly
straightway. In order to find the number of observed events
up to week s, we have to simply accumulate the number of
events occurring weekly.

Definition 17 Log-likelihood ratio: Let s be the study
week of a MaxSPRT analysis where t be any intermediate
week and hence 1 ≤ t ≤ s. Also, let µt and Yt be the cumula-
tive approximate expected number of events and cumulative
observed number of events in the study, respectively, up to
week t. Now, according to (Kulldorff et al, 2011), the Log-
likelihood ratio of week t be denoted as LLRt and defined as
follows:

LLRt =
⎧⎪⎪⎨⎪⎪⎩

(µt − Yt) + µtlog (Yt

µt
) Yt ≥ µt

0 Yt < µt

Definition 18 Critical value: Let s be the study week of
a MaxSPRT analysis and LLRt be the Log-likelihood ratio
for any intermediate week 1 ≤ t ≤ s. According to (Kulldorff
et al, 2011), the value of LLRt (or µt if the analyser chooses
this over LLRt) that makes the alternative hypothesis true
is defined as a critical value and denoted as CV .

There are two ways of detecting a signal. Firstly, if the
cumulative number of events observed at any time is beyond
a prespecified number, then there is no need to perform any
MaxSPRT analysis and the null hypothesis can be rejected
straightaway. Otherwise, at any week t, if the LLRt (or µt)
is beyond the corresponding critical value CV expressed in
likelihood (or, expressed in event count), then there is a sig-
nal, that is, LLRt ≥ CVLLRt

, where CVLLRt
or µt ≥ CVµt

,
where CVLLRt

or CVµt
is the critical value for µt being the

cumulative expected number of events for week t.

Kulldorff et. al. (Kulldorff et al, 2011) proposed the tech-
nique, calculation, and uses of CV s for signal detection. They
also developed an R sequential package with all functional-
ity native to MaxSPRT calculation. If someone uses R, they
do not need to reinvent the wheel for computing CV and
other parameters required for MaxSPRT analysis. Moreover,
in their paper they have given CV s for up to 1000 expected
number of events, for the reason that if someone wants to use
a CV for signal detection, they do not need to compute CV s
again.

In this paper, we offer a detailed explanation of the
steps and challenges associated with the implementation of
MaxSPRT on SAEFVIC’s reporting database. SAEFVIC is
the jurisdictional vaccine safety surveillance service of Victo-
ria, Australia. Its AEFI and AESI reporting database (Cloth-
ier et al, 2011) does not currently possess dose administra-
tion information. Dose administration data is collected from
the Australian Immunisation Register. At the time of writ-
ing, SAEFVIC only had access to COVID-19 vaccines, in
near real-time. Hence, the denominator of the MaxSPRT
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calculation - the expected number of events - requires es-
timation or conditioning to deal with its associated uncer-
tainty. Therefore, in our implementation, we use the concept
of cMaxSPRT, similar to the approach adopted by the US
CDC (Center for Biologics Evaluation and Research, 2021)
for surveillance of COVID-19 vaccine safety using insurance
claim data. In both cases, the denominator is not known in
real-time and at least not during the analysis. Being able to
use a statistical method e.g. MaxSPRT in the absence of dose
distributed denominator is therefore a practical advantage for
spontaneous reporting systems to function as stand-alone sig-
nal detection systems.

B Data Processing and Environment Setup
Implementation

In this section, we have explained the steps of implementation
in a particular surveillance setting (in our case SAEFVIC).

B.1 Preprocessing

SAEFVIC data are prepared prior to processing. The pre-
processing involves de-identification, noise handling, and
missing data management. We have used the features of the
MaxSPRT framework to deal with the pre-preprocessing chal-
lenges, especially, the missing data management. We allow
analysers to opt-in methods to fill in missing values with
some appropriate alternative values or simply discard the
rows/records with missing values.

To justify filling in missing values, which is questionable
from the point of view of epidemiology, this is logical from
a data analysis perspective in certain scenarios. As an ex-
ample, if we discard the records for some missing values in
gender but the gender-specific stratification is not required
in the calculation or analysis, then removing that record is
not worthwhile. Rather, discarding the value adds bias to the
numerator and denominator calculations. However, it is up
to the user of the framework to decide whether to use the
filling-in method or not.

We first de-identify the data to preserve the privacy of the
reporters and vaccinees. In the framework, we allow for the
de-identification of the data, which is quite straightforward,
by removing all demographics and identifiable information
about the vaccine and the reporter. The analyser can also
mention if any further information needs to be removed for
the de-identification other than the demographics. In the de-
identification process, we assign a unique identifier to each
report for record-keeping purposes. We keep the columns as
specified in Table 2.

Next, we dealt with noisy data. We treat noisy data in a
special manner by initially considering them as missing val-
ues. In this paper, noisy data are defined as values or inputs
susceptible to error due to human and system error. First,
we run a routine data cleaning for logic consistency, missing
values, and filtering process, where any value that is beyond
the range and domain of the corresponding data attribute is
identified as noisy data. We first replaced a noisy value with
missing values. Then treated them the same way as missing
values.

In the third preprocessing step, we dealt with missing val-
ues. A common practice of dealing with missing values in data
processing is to delete rows with noisy or missing values. How-
ever, in the case of vaccine safety surveillance, every report

is important, so it is necessary to manage, instead of remov-
ing, missing records. We needed to carefully deal with missing
records and use effective ways to fill them in. Of course, fill-in
methods sometimes affect some important properties of the
data such as mean, median, mode, standard deviation, and
variance of the data. Therefore, the choice of the right fill-in
method that has the least negative impact on the data is es-
sential. Nevertheless, we leave it to the analyser to use fill-in,
discard the record, or use any specific way of dealing with the
missing and noisy data. In case, the analyser chooses to fill
in missing values, then one of the following could be used: (i)
default value/s, (ii) data-type specific alternative value, (iii)
the analyser provided alternative values, or (iv) a method to
get appropriate alternative values provided by the analyser.

To the best of our knowledge, there is no best or sin-
gle approach to dealing with missing values. Hence, in our
framework, we allowed several methods to fill in missing val-
ues. An end user of the framework can opt into a specific
method through parameterisation if they want to override
the default one in their MaxSPRT analysis. Moreover, our
data processing unit is capable of accepting new methods of
filling in the missing values. The methods integrated into the
current implementation that are used to fill in missing values
in our data are actually the available methods in the Python
Pandas package for fill-in such as “replace” with mean, me-
dian, mode, or some specific value like zero; and “interpolate”
which also comes with a handful of options1.

To explain the preprocessing process on our data, the fol-
lowing steps are taken. As an example, for different columns,
we have used different default fill-in methods for illustration
purposes. For missing “Age” and “TTO” values, we used lin-
ear interpolation as default. For “Sex” attribute, the missing
values can be either replaced by randomly chosen value be-
tween “M” and “F” or as per the AESI we can decide if
bias for a particular “Sex” is to be considered. By bias, we
mean, some AESIs are more common or only for one sex (male
or female) in comparison to the other. For treating missing
values of “Time to vaccine”, “Reporting time” and “Sub-
mission time”, we converted the times to double precision
real numbers and then applied linear interpolation. However,
this part is quite tricky and crucial, as these values will be
used extensively in calculating most of the important terms in
MaxSPRT. Also, there is an inherent order of the three values
by definition, and the order is T ime to vaccine ⪯ Reporting
time ⪯ Submission time. Conducting the fill-in should not
violate this order constraint. There is another constraint on
“Time to vaccine”, “Reporting time”, and “TTO” that is
Reporting time − T ime to vaccine ≤ TTO. Therefore, the
interpolation of “Time to vaccine”, “Reporting time”, and
“TTO” should satisfy this constraint as well.

We transformed the three timestamp values while dealing
with missing values. In addition, we ran another iteration of
data transformation on our data before we started processing
them for analysis. The transformation includes a common
and unique format of timestamps for all three timestamps we
have used in our data, and TTO values are rounded up to the
nearest integer value.

To perform age-based and sex-based MaxSPRT analy-
sis, we use age and sex columns. However, age-based anal-
ysis requires binning (or grouping or stratification of ages).
We considered stratification as a preprocessing step. Here, we
added a column to the data, “Age-Strata” having nine dif-

1Interested readers are recommended to see Pan-
das manual or https://www.geeksforgeeks.org/

working-with-missing-data-in-pandas/.
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ferent strata, namely 0–9, 10–19, 20–29, 30–39, 40–49, 50–59,
60–69, 70–79, 80+. This grouping can be done on more gran-
ular levels and also in a dynamic way rather than the static
grouping as shown here. The alternative ways of age grouping
also added variations to the analysis, as we mentioned before.
Hence, we kept the scope to feed in new binning techniques
as well as new or different age strata in our system.

Finally, we discarded the reports where TTO is beyond
the risk window, and this is an important step. Note that
this is applicable if it is decided that the reactions that were
observed after the specified and well-defined risk window are
not considered in surveillance.

As a pre-processing step of the data, we assessed that the
values/rates need to be scaled by the length of risk window.
This is because these values are computed in terms of person-
time on a scale of 100,000 people per annum, and the risk
windows are expressed in days. As an example, if the rate is
5.0 for 100,000 people-year and the risk window is 40 days
long, scaling it down to 5×40

100000×365
or 5×40

365
for 100k people

is required to be used in MaxSPRT analysis.
Once the scaling is performed, we call them a per-day

comparator to estimate the expected number of events. This
is referred to as the expected rate of AEFI approximated for
the currently vaccinated population which is not known, at
least during the time of analysis.

We performed age-based stratification of the whole
MaxSPRT analysis. Hence, this parameter offers another
layer of computation where the rates vary for different age
groups. In the case of no age-based stratification, we assumed
a single and common rate for all age groups. This allows for
facilitating the use of age groups and avoiding the age groups
without any major reworking in the implementation, espe-
cially in the other modules of the implementation that are
developed to allow age grouping in mind. Note that in cases
of age grouping, all the calculations are performed at a more
granular level and all the parameters used, including this one,
are taken/calculated based on the age ranges of the groups.

Interestingly, in the case of some parameters that are not
available for age groups, we used the common and general
values for all ages. In our current implementation, we have
allowed both, adding age-based and general values for this
parameter. However, for brevity and simplicity, this paper
uses a single and general value for the parameter.

B.2 Processing of SAEFVIC Data

After the preprocessing of data, we started calculating the
metrics that are required to perform MaxSPRT analysis and
detect signals. The analysis is required to be performed in
a well-defined frame of weeks for the sake of tracking the
computation and facilitating weekly analysis. As a next step,
we need a set of continuous windows in the analysis, where
the data is divided into different windows of weeks based on
their occurrence dates. Our implementation does not rely on
any explicit length of the analysis or size of the data frame,
or count of windows in the data frame. Moreover, our current
implementation allows the analysers or epidemiologists to set
their preferred start date, end date, length of analysis or count
of windows in the frame.

In this task, the main challenge was to take the starting
date of the first week. Then the formation of the windows
was quite straightforward. The first window was formed by
adding 7 days to the start date of the analysis. This gives us
another date. Hence, our windows are defined by the start
and end date of the week (does not matter what day of the

week it is). Then, adding 1 to the last date of the first week
gives us the first date of the second week. We make a set
of windows each of 7 days or 1 week long by continuously
following the steps. A point worth noting is that the start
date of analysis is by default taken from the data by finding
the earliest vaccination date. This can also be replaced by the
earliest report date or report submission date. On the other
hand, the frame ends with a week having an end date that is
not later than six days from the latest date of reporting found
in the data. Hence, our implementation does not rely on any
explicit length of the analysis, the size of the data frame,
or the count of windows in the data frame. Moreover, our
current implementation allows analysts or epidemiologists to
set their preferred start date, end date, length of analysis, or
count of windows in the frame.

Finally, while computing various matrices like p(s, t),
lstiwa, Y , µ, and LLR, the data is further processed and
new columns are added to it as required. We described this
further processing and amendment of the columns to the data
later, in Appendix B.

B.3 Environment Setup and tools

Kulldorff et al (Center for Biologics Evaluation and Research,
2021) and Greene et al (Greene et al, 2011) recommended the
use of R programming language as there is a package called
“Sequential” in R developed especially for sequential analy-
sis and contains all the required functionalities for MaxSPRT
and other similar continuous and sequential analyses. How-
ever, our review of the literature and domain reveals that
the main dependency of MaxSPRT implementation on R is
to calculate critical values, CV for corresponding µ with a
proper α spending plan (Silva et al, 2019). This α spending
plan will tune the threshold of α value automatically based
on the situation to detect a signal as soon as possible with as
minimum type-1 error as possible. However, Kulldorff et al
describes in (Kulldorff et al, 2011) that if someone wants to
use the table of CV s for a specific α (note, the table contains
CV for three different values of α, namely, 0.01, 0.05, and
0.1) and for µ of up to 1000, they do not need to regenerate
the CV s.

We have used Python and various packages (e.g., Panda)
of Python that facilitate easy data handling and extensibility.
For better error handling, extensibility, and code reuse; and
to follow software engineering best practice and principles, we
adopted the Object-Oriented Programming style. This allows
new methods to be injected easily into the implementation.
As an example, “R” codes can be easily integrated by embed-
ding into the Python code segment. Hence, the “R” sequential
package and other required “R” codes to deal with CV cal-
culation and α spending plan can be added as an embedded
module in the python implementation of MaxSPRT. We have
integrated the “R”-scripting facility and embedded the “Se-
quential” package in our current implementation to provide
maximum facility to the analysers.

Our choice of Object-oriented programming style also
helps in implementing the different variations of MaxSPRT
by adding more than one method for the same measure/met-
ric like P (s, t), θ, and lstiwa. Therefore, in the later stage
especially during MaxSPRT analysis different variations of
MaxSPRT can be designed by just choosing parameter val-
ues and more variations can be added without breaking any
working and existing code/module.
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D VARIATIONS IN p(s, t) CALCULATION

Table 9 Demonstration of lstiwa calculation and exposed person-time

VID TTO
Week, t = 1 Week, t = 2 Week, t = 3

Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

V1 5 lsti(w=0)a = 5

V2 4 lsti(w=0)a = 4

V3 12 l = 1 lsti(w=1)a = 7 lsti(w=2)a = 4

V4 22 lsti(w=0)a = 3 lsti(w=1)a = 7 lsti(w=2)a = 4

V5 11 lsti(w=0)a = 2 lsti(w=1)a = 7 lsti(w=2)a = 2

V6 10 lsti(w=0)a = 4 lsti(w=1)a = 6

V7 6 l = 1 lsti(w=1)a = 5

V8 10 lsti(w=0)a = 4

Weekly Sum
lstiwa

11 30 25

Table 10 Demonstration of Different p(s, t) Calculations

For s = 10 Using Historical Data Using current data

Idea 1 Idea 2 Idea 3 Idea 4 Idea 5

t

Expected
Count

(ER)

Accumulated
Count

(AER)

Observed count
(OR)

[up to S]

Accumulated
count

(AOR)

p(i)

[proportion of data
arriving at week i]

p(s, t)

[sum of all p(i)

from current
to last week]

p(s, t)

[AOR / AER]

p(s, t)

[AER / Total ER]

p(i)

[proportion of data
arriving at week i]

p(s, t)

[sum of all p(i)

from current
to last week]

Hazel’s p(s, t)

expectation:

OR/ER
(1.B)

3 6 6 6 6 6/332 = 0.0181 1 6/6 = 1 6/332 = 0.02 6/265 = 0.02 1.00 6/6 = 1

4 25 31 24 30 25/332 = 0.075 0.98 30/31 =0.97 31/332 = 0.09 24/265 = 0.09 0.98 24/25 = 0.96

5 68 99 58 88 68/332 = 0.205 0.91 88/99 = 0.89 99/332 = 0.30 58/265 = 0.22 0.89 58/68 = 0.85

6 72 171 62 150 72/332 = 0.217 0.70 150/171 =0.88 171/332 = 0.52 62/265 = 0.23 0.67 62/72 = 0.86

7 88 259 78 228 88/332 = 0.265 0.49 228/259 = 0.88 259/332 = 0.78 78/265 = 0.29 0.43 78/88 = 0.89

8 21 280 19 247 21/332 = 0.063 0.22 247/280 = 0.88 280/332 = 0.84 19/265 = 0.07 0.14 19/21 = 0.91

9 25 305 9 256 25/332 = 0.075 0.16 256/305 = 0.84 305/332 = 0.92 9/265 = 0.03 0.07 9/25 = 0.36

10 27 332 9 265 27/332 = 0.081 0.08 265/332 = 0.8 332/332 = 1.00 9/265 = 0.03 0.03 9/27 = 0.33

Total 332 265

C Demonstration of lstiwa calculation

In Table 9, we provide a visual demonstration of the calcu-
lation of lstiwa and how it is calculated for each person. As
an example, vaccinee V1 got a dose on the 1st day of week-1.
Their TTO was 5 days. Hence, the person was exposed from
day 2 to day 6 of week-1. Hence, lstiwa of the person is de-
noted as lsti(w=0)a and calculated as 5. Also, vaccinee V5 got
a dose on the 5th day of week-1. Their TTO was 11 days.
Hence, the person was exposed from day 6 of week-1 to day 2
of week-3. Hence, the lstiwa of the person for weeks 1, 2, and
3 are denoted and calculated as lsti(w=0)a = 2, lsti(w=1)a = 7
and lsti(w=2)a = 2, respectively. At the end, the last row of
the table shows the weekly lstiwa.

Similar to the observed event count, we have added addi-
tional columns for lstiwa for each age group a, and for weekly
lstiwa by adding all age-group based lstiwa for a particular
week t. As an illustration, Table 4 shows the computed weekly
lstiwa and age-strata based administration of lstiwa.

D Variations in p(s, t) calculation
To calculate the ratio for calculating p(s, t), we need to know
the total number of reports for the week. In the literature, this
ratio is obtained from historical data. On the other hand, it
is quite challenging to get the ratio in case the denominator
is not known. Estimating the ratio without a proper or exact
denominator needs an approximation technique.

One of the approximation techniques would be to take the
total reports found so far as a denominator to compute the
ratio. However, this technique would not be sufficient to ap-
proximate the ratio properly. Because, as shown in Table 5, it

is quite possible that we have more information about earlier
weeks and less information regarding later weeks. However,
the ratio indicates a wrong proportion of data complete, that
is, more for later weeks and less for earlier weeks, unlike a
real scenario. In such cases, earlier week ratios will be more
accurate than the later weeks. We can estimate the ratios of
later weeks from the earlier weeks to deal with this challenge.

Our idea is to estimate a certain number of later weeks
from the remaining weeks’ p(s, t). As an example, we can
compute the last 50% of weeks’ p(s, t) from all previous
weeks’ p(s, t). There is scope to take lesser or greater than
50%. We propose the following equation to calculate the pro-
portion with a certain number of weeks’ p(s, t) to be esti-
mated.

p(s, t) = 1

⌈ s
d
⌉

⌈
s
d
⌉

∑
w=1

p(s, t −w)

Here we estimate the p(s, t) for week t by taking the av-
erage of the p(s, t′) where t′ is the first half of the study
weeks taking the division or partition number, d = 2. We can
substitute this equation with some other more appropriate
estimator, as well as we can tune the equation by changing
the values of d. As an example, if d = 3, the equation will take
the average of the 1st one-third weeks’ p(s, t).

Table 10 shows the possible ways of calculating p(s, t) for
the delay distribution of the reports shown in Table 5. All five
different approaches shown in the table for computing p(s, t)
do not comply with CDC’s conclusions that the earlier weeks
will have more data complete than the later weeks, but they
also have different logic and merits. To choose the best and
most effective one, further empirical assessment is required.
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E PARAMETERS FOR MAXSPRT ANALYSIS

E Parameters for MaxSPRT analysis

This section introduces some parameters required to perform
MaxSPRT analysis for continuous surveillance using Sequen-
tial package (Silva and Kulldorff, 2024). Most of these param-
eters are explained in the manual (Silva and Kulldorff, 2024)
with example scenarios and values. These parameters play a
very important role in the analysis.
Sample size: A non-zero upper limit of the expected
number of events under the null hypothesis is referred to
as Sample size. This value is needed to early terminate the
analysis when the observed number of events outnumbers
this value under the null hypothesis (i.e., the null hypothesis
is not rejected yet). There are various available methods
in the package to estimate an optimised sample size that
reduces the estimated time to signal as well as with different
values of type-I error, relative risk, and statistical significance.

Statistical significance level (α) and alpha spending
plan: Statistical significance assesses whether the observed
risk is not occurring due to random variation. The sig-
nificance level α focuses on controlling Type-I errors and
influences statistical significance in the analysis. MaxSPRT
allows the defining or controlling of the alpha spending
plan by the analyser. There are parameterisable methods to
conduct an analysis using MaxSPRT where a specific plan
to spend α, such as, uniform in every analysis period, or
conservative or generous at the beginning and changing expo-
nentially or logarithmically in spending α) can be executed.
As per the plan, a certain amount of alpha will be spent in
each analysis period (where period means weeks if the data
is stratified into weeks and analysed weekly). ρ is a posi-
tive number used for the power type alpha spending function.

Statistical Power: Statistical power measures the proba-
bility of identifying the risk if it is truly present. It focuses
on controlling Type-II errors and is influenced by sample
size and significance level.

Relative risk: The relative risk RR is the ratio of incidence
rate in exposed and unexposed populations. In other words,
this is the ratio of observed and expected rates of events. It
is required that RR > 1, because, with RR = 1 means there is
no difference between observed and expected incidences and
hence no risk due to the vaccine. The higher the value of RR
the more the risk is and the smaller will be the sample size
if statistical significance and alpha remain constant.

Minimum number of events: In vaccine safety surveil-
lance, normally a minimum number of events need to be
observed before rejecting the null hypothesis and marking
the vaccine unsafe. This minimum number of events must be
positive and should be 4 (Kulldorff and Silva, 2017).
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