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ABSTRACT 

Causal estimands of infectious disease interventions—direct, indirect, overall, and total effects—

are conventionally defined as differences in individual risk under hypothetical treatment conditions. 

During the coronavirus disease (COVID-19) pandemic, researchers implicitly targeted analogous 

estimands at the population level by comparing count outcomes (e.g., vaccine-averted deaths) to 

quantify public health impact of non-pharmaceutical interventions or vaccination campaigns. 

However, these population-level analogs of conventional estimands have not been rigorously 

defined. Using potential outcome notation, we introduce a population-level analog of the overall 

effect and partitioned it into components involving individual-level direct and indirect effects. We 

further identify conditions under which a population-level analog of direct effect (frequently 

estimated with empirical data in cases-averted or avertible analyses), can be a useful lower bound 

of overall effect (arguably the most relevant effect for policy-making and retrospective policy 

evaluation) at the population level. To illustrate, we describe a susceptible-infected-recovered-

death model stratified by vaccination status. When transmission and fatality parameters do not 

vary and vaccine efficacies do not wane over time, cases averted via direct effect among vaccinated 

individuals (or cases avertible via direct effect among unvaccinated individuals) is shown to be a 

lower bound of population-level overall effect—that is, vaccine-averted (or avertible) cases. 

However, when vaccine efficacies wane, this relation may not hold for avertible cases; when 

transmission or fatality parameters increase over time, it may not hold for either analysis. By 

classifying population-level estimands and establishing their relations, this study improves 

conduct and interpretation of research evaluating impact of infectious disease interventions. 

RUNNING HEAD: Effect estimands for infectious disease count outcomes 

KEYWORDS: direct effect, overall effect, vaccine-averted deaths, vaccine-preventable deaths  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.24.24310946doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.24.24310946
http://creativecommons.org/licenses/by-nc/4.0/


 3 

1. INTRODUCTION 

The effects of an infectious disease intervention, such as vaccination, are quantified in terms of 

direct, indirect, overall, and total effects—each defined as a contrast between potential outcomes 

at the individual level.1 These estimands consider the individual risk of developing an infectious 

disease outcome as a function of the individual treatment status and the treatment status of the rest 

of the group to which the individual belongs.2 Throughout the coronavirus disease (COVID-19) 

pandemic, researchers have often targeted the analogs of these estimands at the population level 

(i.e., estimands defined for count outcomes such as the number of infections, hospitalizations, and 

deaths in a group of individuals, instead of risk in each individual) to investigate the public health 

impact of interventions such as vaccination. For example, researchers have estimated the COVID-

19 deaths (or infections) averted by vaccination campaigns in the United States,3,4 Israel,5,6 Chile,7 

Brazil,8 and Japan.9 Similarly, other studies including ours10 have attempted to estimate vaccine-

avertible—that is, how many deaths could have been averted by vaccination, but were not because 

of a failure to vaccinate a proportion of the population.10,11 (Note that in our study,10 large 

uncertainties exist regarding the exact number of preventable deaths). However, to the best of our 

knowledge, these population-level estimands have not been rigorously defined in a causal 

inference framework. Consequently, different studies have measured different kinds of vaccine-

averted deaths. Some studies estimated the total deaths averted in a whole country by simulating 

the epidemic trajectory of an entire country under the counterfactual of no vaccination and 

compared it with the estimated deaths under the observed vaccination campaign;3,12 other studies 

estimated vaccine-averted deaths via the direct effect among the vaccinated individuals by taking 

the difference in death rates between the vaccinated and unvaccinated groups and multiplying the 

difference with the number of vaccinated individuals with no previous documented infections.6–8 
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Although both types of studies aimed to quantify “vaccine-averted deaths,” they targeted different 

estimands, but the existing conceptual framework was not designed to distinguish between these 

different population-level estimands. 

      This study defines and classifies the population-level analogs of causal estimands for infectious 

disease interventions using potential outcome notation, such that researchers can use and 

distinguish the estimands to evaluate public health impact of infectious disease interventions. 

Based on an infectious disease transmission model, we identify the conditions under which direct 

effect (easiest and most frequently estimated among all types of effects) is a lower bound of overall 

effect (arguably the most relevant effect for policy-making and retrospective policy evaluation) at 

the population level.13,14  

2. INDIVIDUAL-LEVEL DIRECT, INDIRECT, OVERALL, AND TOTAL EFFECTS 

      Hudgens and Halloran2 previously defined causal estimands for individual-level direct, 

indirect, overall, and total effects. We follow their setup and notation but add an additional index 

𝑡 to outcomes to represent cumulative incidence up to time 𝑡. Consider a two-stage randomized 

experiment in which there are 𝑚 groups indexed by 𝑖 = 1,… ,𝑚, such that each group consists of 

𝑁 individuals indexed by 𝑗 = 1,… ,𝑁. Partial interference is assumed: Individuals make contacts 

(leading to interference) within the same group, but individuals in different groups make no 

contacts. For ease of exposition, assume interest lies in quantifying the effect of vaccination which 

is a one-time event before the start of an outbreak. Let 𝐴!" = 1 if individual 𝑗 in each group 𝑖 is 

vaccinated and 𝐴!" = 0  otherwise. Let 𝑨𝒊 = (𝐴!$, 𝐴!%, … , 𝐴!&)  and 𝑨𝒊,(𝒋 =

(𝐴!$, 𝐴!%, … , 𝐴!"($, 𝐴!"*$, … , 𝐴!&), hereafter referred to as allocation programs.14 Let 𝐚𝒊 and 𝐚𝒊,(𝒋 

denote possible realizations of 𝑨𝒊 and 𝑨𝒊,(𝒋, respectively. Let 𝒜(𝑁) denote the set of all possible 

2&  vaccine allocations for a group of size 𝑁 , for which 𝐚𝒊 ∈ 𝒜(𝑁). Let 𝑌!"(𝑡, 𝐚𝒊) denote the 
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potential binary outcome for individual 𝑗 in group 𝑖 at time 𝑡 with allocation program 𝐚𝒊 and let 

𝑌!"(𝑡, 𝐚𝒊,(𝒋, 𝑎) denote the potential binary outcome at time 𝑡 when individual 𝑗 has vaccination 

status 𝑎 and the rest of group 𝑖 has vaccination status 𝐚𝒊,(𝒋. Hudgens and Halloran2 define the 

marginal individual average potential outcome as 

𝑌5!"(𝑡; 𝛼) ≡ 9 𝑌!"(𝑡, 𝐚! = 𝐬)Pr
+
(𝑨𝒊 = 𝐬)

𝐬∈𝒜(&)

, 

and the individual average potential outcome2 as:  

𝑌5!"(𝑡, 𝑎; 𝛼) ≡ ∑ 𝑌!">𝑡, 𝐚𝒊,(𝒋 = 𝒔, 𝑎!" = 𝑎@ Pr
+
>𝑨𝒊,(𝒋 = 𝒔|𝐴!" = 𝑎@𝒔∈𝒜(&($) . 

where Pr
!
(⋅)  is the probability distribution of vaccine allocation program 𝑨𝒊  with parameter 𝛼 ∈ [0,1] 

representing the proportion vaccinated within group 𝑖 (Note here we use type A parameterization, which 

gives same effect definitions as type B parameterization suggested by VanderWeele and Tchetgen 

Tchetgen14 when 𝑁 is large).  Hudgens and Halloran2 further define group average potential outcomes 

𝑌1#(𝑡; 𝛼) ≡ ∑ 𝑌1#$(𝑡; 𝛼)%
$&' /𝑁  and 𝑌1#(𝑡, 𝑎; 𝛼) ≡ ∑ 𝑌7𝑖𝑗(𝑡, 𝑎; 𝛼)/𝑁𝑁

𝑗=1  by averaging over individuals 

within groups. Assume that the 𝑚  groups are independently drawn from an infinite 

superpopulation of groups and let 𝜋+(𝑡) = 𝐸+{𝑌5!(𝑡; 𝛼)}  denote the probability of having 

developed the outcome by time 𝑡 under the counterfactual setting where the proportion vaccinated 

is 𝛼  in the superpopulation of groups.15 Similarly, let 𝜋7,+(𝑡) = 𝐸+{𝑌5!(𝑡, 𝑎; 𝛼)}  denote the 

probability of having developed the outcome by time 𝑡 when an individual has vaccination status 

𝑎 and the group has a fixed proportion 𝛼 of vaccinated individuals. We now define population 

average individual direct, indirect, total, and overall effects2 in the superpopulation (Note despite 

“population average” nomenclature, which is retain from Hudgens and Halloran2, in our setup 

these are still individual level effects because they are risks for typical individuals in the 

superpopulation rather than counts). 
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Individual-level Direct Effect (IDE) 

𝐼𝐷𝐸(𝑡, 𝛼) = 𝜋8,+(𝑡) − 𝜋$,+(𝑡)						(1) 

      The individual-level direct effect2 compares the probability of having developed the outcome 

by time 𝑡 when an individual is unvaccinated versus when vaccinated, holding fixed the proportion 

vaccinated (𝛼).  

Individual-level Indirect Effects (IIEs) 

𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$) = 𝜋8,+!(𝑡) − 𝜋8,+"(𝑡)					(2) 

      The individual-level indirect effect2 compares the probability of having developed the outcome 

by time 𝑡 for an unvaccinated individual in a group with 𝛼8 proportion vaccinated versus with 𝛼$ 

proportion vaccinated. This effect, defined by Hudgens and Halloran2, is hereafter referred to as 

the individual-level indirect effect for the unvaccinated. Indirect effect can be analogously defined 

when an individual is vaccinated as follows:15 

𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) = 𝜋$,+!(𝑡) − 𝜋$,+"(𝑡)					(3) 

which is hereafter referred to as the individual-level indirect effect for the vaccinated.  

Individual-level Overall Effect (IOE) 

𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$) = 𝜋+!(𝑡) − 𝜋+"(𝑡)					(4) 

      The individual-level overall effect2 compares the probability of having developed the outcome 

by time 𝑡  for a typical individual in a group with 𝛼8  proportion vaccinated versus with 𝛼$ 

proportion vaccinated. 

Individual-level Total Effect (ITE) 

𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) = 𝜋8,+!(𝑡) − 𝜋$,+"(𝑡)					(5) 

      The individual-level total effect2 compares the probability of having developed the outcome 

by time 𝑡 when an individual is unvaccinated in a group with 𝛼8 proportion vaccinated versus 
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when the individual is vaccinated in a group with 𝛼$ proportion vaccinated. 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) can be 

decomposed into 𝐼𝐷𝐸(𝑡, 𝛼$) and 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$) by adding and subtracting the term 𝜋8,+"(𝑡):  

𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) = 𝜋8,+"(𝑡) − 𝜋$,+"(𝑡) + 𝜋8,+!(𝑡) − 𝜋8,+"(𝑡)

= 𝐼𝐷𝐸(𝑡, 𝛼$) + 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$).						(6.1) 

Alternatively, 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) can also be decomposed into 𝐼𝐷𝐸(𝑡, 𝛼8) and 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) by 

adding and subtracting the term 𝜋$,+!(𝑡):  

𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) = 𝜋8,+!(𝑡) − 𝜋$,+!(𝑡) + 𝜋$,+!(𝑡) − 𝜋$,+"(𝑡)

= 𝐼𝐷𝐸(𝑡, 𝛼8) + 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$).						(6.2) 

Individual-level Overall Effect Partitioning 

      Theorem 1 (individual-level overall effect partitioning). 

𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$) = 𝛼8 ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) + (𝛼$ − 𝛼8) ⋅ 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) + (1 − 𝛼$)

⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$).		 

Theorem 1 is proved in eAppendix 1 and graphically illustrated in Figure 1. Theorem 1 expresses 

𝐼𝑂𝐸(𝛼8, 𝛼$) as a weighted average of three effects: 1) 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$), 2) 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$), and 3) 

𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$). Intuitively, if individuals are classified by their vaccination status under a pair 

of counterfactuals wherein the group has 𝛼8  or 𝛼$  proportion vaccinated ( 𝛼$ > 𝛼8 ), then 

𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) is in operation for proportion 𝛼8 of individuals who are vaccinated under both 

counterfactuals; 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$)  is in operation for proportion 𝛼$ − 𝛼8  of individuals who are 

vaccinated under 𝛼$  but unvaccinated under 𝛼8 ; and 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)  is in operation for 

proportion 1 − 𝛼$ of individuals who are unvaccinated under both counterfactuals. Previously, 

Hudgens and Halloran2 showed that when 𝛼8 = 0 , 𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$)  is the weighted sum 𝛼$ ⋅

𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$) + (1 − 𝛼$) ⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$). In this study, the partitioning of 𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$) 

has been generalized to any 𝛼8 and 𝛼$ as in Theorem 1.  
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Figure 1. Graphical illustration on partitioning individual-level overall effect. Time notation 

(𝑡) is suppressed for the ease of exposition. The two rectangles represent a pair of counterfactuals 

wherein the group has 𝛼8  or 𝛼$  proportion vaccinated (𝛼$ > 𝛼8 ). Individuals fall into three 

categories based on their vaccination status under the counterfactuals: 1) the dotted region 

represents those who are unvaccinated under both counterfactuals (hereafter referred to as “never-

vaccinated”) and for whom 𝐼𝐼𝐸9:;7<(𝛼8, 𝛼$) is in operation; 2) the gridded region represents 

those who are unvaccinated under 𝛼8 but vaccinated under 𝛼$ and for whom 𝐼𝑇𝐸(𝛼8, 𝛼$) is in 

operation (hereafter referred to as “additionally-vaccinated”); and 3) the stripped region represents 

those who are vaccinated under both counterfactuals (hereafter referred to as “always-vaccinated”) 

and for whom 𝐼𝐼𝐸=7<(𝛼8, 𝛼$) is in operation. Theorem 1 shows that 𝐼𝑂𝐸(𝛼8, 𝛼$) is a weighted 

average of three effects: 1) 𝐼𝐼𝐸9:;7<(𝛼8, 𝛼$) , 2) 𝐼𝑇𝐸(𝛼8, 𝛼$) , and 3) 𝐼𝐼𝐸=7<(𝛼8, 𝛼$) , each 

weighted by the proportion of individuals for whom the effect is in operation respectively: 1) 1 −

𝛼$ for the never-vaccinated, 2) 𝛼$ − 𝛼8 for the additionally-vaccinated, and 3) 𝛼8 for the always-

vaccinated. 
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3. POPULATION-LEVEL DIRECT AND OVERALL EFFECTS  

Motivating Examples and Causal Questions 

      During the COVID-19 pandemic, determining the total number of infections (or deaths) 

averted by vaccination has been of great public health interest.3–9,12,16,17 Vaccine-averted infections 

(or deaths) is a population-level estimand based on the causal question: How many infections (or 

deaths) have been averted under the current proportion vaccinated ( 𝛼$ ) compared to the 

counterfactual in the absence of vaccination (𝛼8 = 0)?  

      Alternatively, researchers have also shown interests in estimating the vaccine-avertible deaths, 

that is those that could have been averted by vaccination but were not because of a failure to 

vaccinate.10,11 The causal question in this case is: How many infections (or deaths) could have 

been averted under full vaccination (𝛼% = 1), but were not averted given the current proportion 

vaccinated (𝛼$)?  

      In general, population-level estimands can be defined by comparing the number of infections 

(or deaths) in a typical group under the observed proportion vaccinated (𝛼$) versus when the group 

has a lower (denoted as 𝛼8, where 𝛼8 < 𝛼$) or higher proportion (denoted as 𝛼%, where 𝛼$ < 𝛼%) 

vaccinated.11 We term these as “population-level” estimands because previous literature has 

referred to vaccine-averted infections (or deaths) as a population(-level) impact9,16 or an estimand 

with population-level implications.5 Note that these estimands compare count outcomes that could 

be observed at the group (or cluster) level of a two-stage randomized experiment.2 

Population-level Overall Effects  

      The population-level overall effect (POE) directly answers the two aforementioned causal 

questions on vaccine-averted and vaccine-avertible cases. Therefore, effects of counterfactual 
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vaccination programs such as the vaccine averted and avertible cases above, are best captured by 

POE.  

      For 𝛼$ > 𝛼8, POE is defined as: 

𝑃𝑂𝐸(𝑡, 𝛼8, 𝛼$) = 𝑁 ⋅ 𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$).						(7.1) 

For 𝛼% > 𝛼$, POE is defined as: 

𝑃𝑂𝐸(𝑡, 𝛼$, 𝛼%) = 𝑁 ⋅ 𝐼𝑂𝐸(𝑡, 𝛼$, 𝛼%).						(7.2) 

Note that mathematical modelling studies implicitly refer to POE when estimating vaccine-averted 

deaths by simulating the epidemic trajectory under the counterfactual with a hypothetical 

proportion vaccinated (e.g., 𝛼8 = 0) and comparing it with the estimated number under the current 

vaccination campaign (𝛼$).3,4  

      Moreover, by Theorem 1 and substituting equation (6.1) into 𝐼𝑇𝐸(𝑡, 𝛼8, 𝛼$), equation (7.1) can 

be decomposed into: 

𝑃𝑂𝐸(𝑡, 𝛼8, 𝛼$) = 𝑁 ⋅ 𝐼𝑂𝐸(𝑡, 𝛼8, 𝛼$)

= 𝑁 ⋅ 𝛼8 ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) + 𝑁 ⋅ (𝛼$ − 𝛼8) ⋅ >𝐼𝐷𝐸(𝑡, 𝛼$) + 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)@

+ 𝑁 ⋅ (1 − 𝛼$) ⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)

= 𝑁 ⋅ 𝛼8 ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) + 𝑁 ⋅ (𝛼$ − 𝛼8) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$) + 𝑁 ⋅ (1 − 𝛼8)

⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)						(8.1) 

for 𝛼$ > 𝛼8 . The first term on the right-hand side of the last line of equation (8.1) scales 

𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$)  by number vaccinated under 𝛼8 . The second term scales 𝐼𝐷𝐸(𝑡, 𝛼$)  by the 

additional number vaccinated under 𝛼$ compared to 𝛼8. The third term scales 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$) 

by number unvaccinated under 𝛼8. Similarly, by decomposing equation (7.2) based on Theorem 1 

and then substituting equation (6.2) into 𝐼𝑇𝐸(𝑡, 𝛼$, 𝛼%), we have: 
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𝑃𝑂𝐸(𝑡, 𝛼$, 𝛼%) = 𝑁 ⋅ 𝐼𝑂𝐸(𝑡, 𝛼$, 𝛼%)

= 𝑁 ⋅ 𝛼% ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼$, 𝛼%) + 𝑁 ⋅ (𝛼% − 𝛼$) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$) + 𝑁 ⋅ (1 − 𝛼%)

⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼$, 𝛼%)						(8.2) 

for 𝛼% > 𝛼$. The first term on the right-hand side of equation (8.2) scales 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) by 

number vaccinated under 𝛼% . The second term scales 𝐼𝐷𝐸(𝑡, 𝛼$)  by the additional number 

vaccinated under 𝛼%  compared to 𝛼$ . The third term scales 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)  by number 

unvaccinated under 𝛼%. 

Population-level Direct Effects  

      Most empirical studies only have data to estimate 𝐼𝐷𝐸(𝑡, 𝛼$) based on a single group of 

individuals under the current proportion vaccinated (𝛼$), but no data from other group(s) under a 

lower (𝛼8) or higher proportion vaccinated (𝛼%); therefore, most empirical studies cannot estimate 

𝑃𝑂𝐸(𝑡, 𝛼8, 𝛼$) or 𝑃𝑂𝐸(𝑡, 𝛼$, 𝛼%), which are of interest to policy-making and retrospective policy 

evaluation.13  

      To generalize the individual-level direct effect for count outcomes, we look for a quantity that 

can be estimated using commonly available data and that is informative on population-level overall 

effect. A good candidate is 𝐼𝐷𝐸(𝑡, 𝛼$) that most empirical studies can estimate. Some studies have 

estimated deaths averted via direct effect among vaccinated individuals6–9 based on formulas 

similar to 𝑁 ⋅ (𝛼$ − 𝛼8) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$) by setting 𝛼8 = 0, while other studies have estimated deaths 

avertible via direct effect among unvaccinated individuals10,11 based on formulas similar to 𝑁 ⋅

(𝛼% − 𝛼$) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$)  by setting 𝛼%  to be greater than 𝛼$  (Note these studies have also 

considered increases in proportion vaccinated over time, such as occurred during a vaccination 

campaign,  which here we ignore for simplicity). 
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       Following the literature,6–11,16 let the population-level direct effect (PDE) for any 𝛼, 𝛼> ∈ [0,1] 

be: 

𝑃𝐷𝐸(𝑡, 𝛼, 𝛼′) = 𝑁 ⋅ |𝛼> − 𝛼| ⋅ 𝐼𝐷𝐸(𝑡, 𝛼>). 

In particular, for 𝛼$ > 𝛼8, we have 

𝑃𝐷𝐸(𝑡, 𝛼8, 𝛼$) = 𝑁 ⋅ (𝛼$ − 𝛼8) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$)						(9.1) 

and for 𝛼% > 𝛼$, 

𝑃𝐷𝐸(𝑡, 𝛼%, 𝛼$) = 𝑁 ⋅ (𝛼% − 𝛼$) ⋅ 𝐼𝐷𝐸(𝑡, 𝛼$).						(9.2) 

Note that 𝑃𝐷𝐸(𝑡, 𝛼8, 𝛼$) or 𝑃𝐷𝐸(𝑡, 𝛼%, 𝛼$) is not a meaningful causal effect by itself because 

𝐼𝐷𝐸(𝑡, 𝛼$) is conditional on 𝛼$ only and does not account for the change in individual-level direct 

effect under the counterfactual when the proportion vaccinated is 𝛼8 or 𝛼% instead of 𝛼$. However, 

PDE can be a useful lower bound of POE because now equations (8.1) and (8.2) can be written as: 

𝑃𝑂𝐸(𝑡, 𝛼8, 𝛼$)

= 𝑁 ⋅ 𝛼8 ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼8, 𝛼$) + 𝑃𝐷𝐸(𝑡, 𝛼8, 𝛼$) + 𝑁 ⋅ (1 − 𝛼8)

⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼8, 𝛼$)						(10.1) 

for 𝛼$ > 𝛼8, and 

𝑃𝑂𝐸(𝑡, 𝛼$, 𝛼%)

= 𝑁 ⋅ 𝛼% ⋅ 𝐼𝐼𝐸=7<(𝑡, 𝛼$, 𝛼%) + 𝑃𝐷𝐸(𝑡, 𝛼%, 𝛼$) + 𝑁 ⋅ (1 − 𝛼%)

⋅ 𝐼𝐼𝐸9:;7<(𝑡, 𝛼$, 𝛼%)						(10.2) 

for 𝛼% > 𝛼$.  

Consider Claim 1:  

𝑃𝑂𝐸(𝑡, 𝛼8, 𝛼$) ≥ 𝑃𝐷𝐸(𝑡, 𝛼8, 𝛼$)							∀	𝛼$ > 𝛼8, 

and 

𝑃𝑂𝐸(𝑡, 𝛼$, 𝛼%) ≥ 𝑃𝐷𝐸(𝑡, 𝛼%, 𝛼$)							∀	𝛼% > 𝛼$. 
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      In words, Claim 1 asserts that PDE is a lower bound of POE. If Claim 1 is true, PDE, which 

can be estimated using commonly available data,6–11,16 is a useful lower bound of POE that is 

relevant for policy-making and retrospective policy evaluation requiring samples from a 

population of  groups as in group-randomized studies.2 Also consider two special cases of Claim 

1. 

      Claim 1a (vaccine-averted cases):  

𝑃𝑂𝐸(𝑡, 0, 𝛼$) ≥ 𝑃𝐷𝐸(𝑡, 0, 𝛼$) 

      In words, Claim 1a asserts that for 𝛼$ > 𝛼8 = 0, cases averted via direct effect of current 

vaccination among the vaccinated individuals 𝑃𝐷𝐸(𝑡, 0, 𝛼$) is a lower bound of total vaccine-

averted cases among both vaccinated and unvaccinated individuals 𝑃𝑂𝐸(𝑡, 0, 𝛼$).  

      Claim 1b (vaccine-avertible cases):  

𝑃𝑂𝐸(𝑡, 𝛼$, 0.9) ≥ 𝑃𝐷𝐸(𝑡, 0.9, 𝛼$) 

      In words, Claim 1b asserts that for 𝛼$ < 𝛼% = 0.9, cases avertible via direct effect of current 

vaccination among some unvaccinated individuals 𝑃𝐷𝐸(𝑡, 0.9, 𝛼$) is a lower bound of vaccine-

avertible cases among both vaccinated and unvaccinated individuals 𝑃𝑂𝐸(𝑡, 𝛼$, 0.9) comparing 

current proportion vaccinated (𝛼$) to a proportion of 𝛼% = 0.9. Note that we do not compare to 

full vaccination (𝛼% = 1) because full vaccination is not realistic when some individuals cannot 

be vaccinated due to contraindications. In the following sections, we use a susceptible-infected-

recovered-death (SIRD) model to verify the conditions under which the Claims may or may not 

hold.  

      Based on the effect partitioning results in 10.1 or 10.2, Claims 1a and 1b would be true if 

𝐼𝐼𝐸=7< and 𝐼𝐼𝐸9:;7< are non-negative. However, it is not immediately intuitive when we might 
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expect that to be the case. Therefore, in the next two sections we describe a transmission model 

that we use to check Claims 1a and 1b under various scenarios (Section 4), and then describe 

conditions under which the population direct effect is and is not a lower bound for the population 

overall effect, using both analytical and simulation-based approaches (Section 5). 

4. TRANSMISSION MODEL 

The SIRD Model with Vaccination at Baseline  

      To model the impact of vaccination on infection and death, a SIRD model is used to represent 

a well-mixed group in a two-stage randomized experiment assuming partial interference.2 The 

model consists of four states for a vaccinated or unvaccinated individual—susceptible, infectious, 

recovered, and death due to infection. We assume that the group has been randomly assigned with 

a vaccination policy wherein the proportion vaccinated is 𝛼, and individuals have been randomly 

assigned with vaccination status 𝑎 at baseline (	𝑎 = 1 for vaccinated and 𝑎 = 0 for unvaccinated; 

for equation [11], subscript 𝑣 denotes vaccinated and 𝑢 for unvaccinated). The vaccine is “leaky” 

in protecting against infection and infection-related death—that is, vaccinated individuals have the 

susceptibility reduced by a factor 𝜃  against infection (i.e., vaccine efficacy against infection 

[𝑉𝐸!:?@AB!C:] is (1 − 𝜃)%) and have the susceptibility reduced by another factor 𝜅 against death 

(i.e., vaccine efficacy against death given infection [𝑉𝐸D@7BE|!:?@AB!C:] is (1 − 𝜅)%). Individuals 

mix homogeneously, such that each vaccinated or unvaccinated susceptible individual is equally 

likely to be infected by any infectious individual. The transmission dynamics are:  
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𝑑𝑆G,+(𝑡)/𝑑𝑡 = −𝜆+(𝑡) ⋅ 𝑆G,+(𝑡)
𝑑𝑆;,+(𝑡)/𝑑𝑡 = −𝜃 ⋅ 𝜆+(𝑡) ⋅ 𝑆;,+(𝑡)

𝑑𝐼G,+(𝑡)/𝑑𝑡 = 𝜆+(𝑡) ⋅ 𝑆G,+(𝑡) − 𝛾 ⋅ 𝐼G,+(𝑡)
𝑑𝐼;,+(𝑡)/𝑑𝑡 = 𝜃 ⋅ 𝜆+(𝑡) ⋅ 𝑆;,+(𝑡) − 𝛾 ⋅ 𝐼;,+(𝑡)

𝑑𝑅G,+(𝑡)/𝑑𝑡 = (1 − 𝜇) ⋅ 𝛾 ⋅ 𝐼G,+(𝑡)
𝑑𝑅;,+(𝑡)/𝑑𝑡 = (1 − 𝜅 ⋅ 𝜇) ⋅ 𝛾 ⋅ 𝐼;,+(𝑡)

𝑑𝐷G,+(𝑡)/𝑑𝑡 = 𝜇 ⋅ 𝛾 ⋅ 𝐼G,+(𝑡)
𝑑𝐷;,+(𝑡)/𝑑𝑡 = 𝜅 ⋅ 𝜇 ⋅ 𝛾 ⋅ 𝐼;,+(𝑡) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(11) 

where 𝛾 =  recovery rate, 𝜆+(𝑡) = 𝛽 ⋅ H#,%(B)*H&,%(B)
&(B)

 is the hazard rate of infection, with 𝛽  the 

number of effective contacts made by a typical infectious individual per unit time, and 𝜇 =

	probability of death due to infection. In equation (11), 𝑆G,+(𝑡) and 𝑆;,+(𝑡) denote, respectively, 

the number of susceptible individuals who are unvaccinated and vaccinated, 𝐼G,+(𝑡) and 𝐼;,+(𝑡) for 

the infectious individuals, 𝑅G,+(𝑡) and 𝑅;,+(𝑡) for the recovered individuals who are no longer at 

risk, and 𝐷G,+(𝑡) and 𝐷;,+(𝑡) for those who died due to infection. 𝑁(𝑡) denotes the sum of all 

compartments at time 𝑡. eFigure 1 shows the model flowchart, and eTable 1 shows the parameter 

values used in simulation.  

Software 

      All model simulations and visualization are conducted using R 4.2.2 (R Foundation for 

Statistical Computing, Vienna, Austria).18 All models are implemented using R package odin.19 

Code is available at https://github.com/katjia/population_level_effects. 

5. WHEN IS POPULATION-LEVEL DIRECT EFFECT A LOWER BOUND OF 

POPULATION-LEVEL OVERALL EFFECT? 

Scenarios 

      We check the Claims under 5 scenarios (Table). Scenario 1 refers to the SIRD model in 

equation (11) with time-invariant parameters. eTable 1 lists the model parameters for which one 

or two parameter(s) varies under each Scenario separately: Scenario 2 increases the number of 
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effective contacts made by a typical infectious individual per day (𝛽) from 0.15 to 0.6 from Day 

300 onwards; Scenario 3 increases probability of death due to infection (𝜇) from 0.01 to 0.1 from 

Day 300 onwards;  Scenario 4 allows both 𝑉𝐸!:?@AB!C: and 𝑉𝐸D@7BE|!:?@AB!C: to wane linearly after 

Day 100 reaching 0% at Day 300; and Scenario 5 combines Scenarios 2 (increasing 𝛽) and 4 

(waning VEs).  

TABLE. Scenarios under which the Claims may or may not hold a 

Scenario Parameters Claim 1b Claim 

1ab 

Claim 

1bb 

Scenario 1 Time-invariant parameters  + + + 

Scenario 2 𝛽 increases from 0.15 to 0.6 from Day 300 onwards - - - 

Scenario 3 𝜇 increases from 0.01 to 0.1 from Day 300 onwards - - - 

Scenario 4 𝑉𝐸!:?@AB!C: and 𝑉𝐸D@7BE|!:?@AB!C: wane linearly after 

Day 100, reaching 0% at Day 300 

- + - 

Scenario 5 Scenarios 2 and 4 combined - - - 

𝛽 is the number of effective contacts made by a typical infectious individual per day; 𝜇 is the probability 

of death due to infection; 𝑉𝐸!:?@AB!C: is the vaccine efficacy against infection; 𝑉𝐸D@7BE|!:?@AB!C: is the 

vaccine efficacy against death given infection. 

a Positive sign (+) indicates that the Claim holds; negative sign (-) otherwise. 

b Claim 1 holds only if Claims 1a and 1b hold.  

 

Proof of Claim 1 at the end of outbreak under Scenario 1 

      For Scenario 1 (i.e., time-invariant parameters), we prove Claim 1 in eAppendix 3—that is, 

population-level direct effects are lower bounds of overall effects for any two proportions 

vaccinated—holds in the SIRD model at the end of outbreak (i.e., at 𝑡 →∞).  
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Simulations  

      For 𝑡 < ∞, we first verify Claims 1a and 1b (special cases of Claim 1) through simulation 

based on parameters specified in eTable 1 and initial conditions in eTable 2. We specify 𝛼8 = 0 

versus 𝛼$ = 0.7 in the pair of trajectories to verify Claim 1a and 𝛼$ = 0.7 versus 𝛼% = 0.9 to 

verify Claim 1b. If Claims 1a and 1b both hold for the specified parameters, Latin hypercube 

sampling is conducted to generate alternative sets of proportions vaccinated and model parameters 

to verify the full Claim 1. If only one of Claim 1a or 1b holds, Latin hypercube sampling is 

conducted to verify that the Claim holds under alternative proportion vaccinated and model 

parameters (e.g., trying alternative values for 𝛼$ while fixing 𝛼8 = 0 for Claim 1a).  

      Briefly, Claim 1 only holds under Scenario 1 (i.e., time-invariant parameters), but it does not 

hold under any other Scenarios. The Table summarizes the results. Figures 2 and 3 show 

trajectories of population-level effects throughout the epidemic to verify Claims 1a and 1b, 

respectively. Figures 2 and 3 show that Claims 1a and 1b hold under Scenario 1. Moreover, given 

alternative sets of proportions vaccinated and model parameters, Latin hypercube sampling 

verifies that Claim 1 holds under Scenario 1 (eAppendix 4). Under Scenario 2 where 𝛽 increases, 

Claims 1a and 1b do not hold: population-level direct effects are not lower bounds of overall effects 

(Figures 2 and 3) due to negative indirect effects (eFigures 3 to 5).  Under Scenario 3 where 𝜇 

increases, Claims 1a and 1b hold for infections but not deaths due to negative indirect effects for 

death (eFigures 3 to 5). Under Scenario 4 where VEs wane, only Claim 1a (vaccine-averted cases) 

holds (Figure 2). Given different values for 𝛼$ (while holding constant 𝛼8 = 0) and alternative 

sets of model parameters, Latin hypercube sampling verifies that Claim 1a holds under Scenario 4 

(eAppendix 4). However, Claim 1b (vaccine-avertible cases) does not hold (Figure 3) due to 
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negative indirect effects (eFigures 4 and 5). Finally, under Scenario 5 where 𝛽 increases and VEs 

wane, Claims 1a and 1b do not hold. 

 

FIGURE 2. Population-level direct and overall effects given 𝜶𝟎 = 𝟎 and 𝜶𝟏 = 𝟎. 𝟕 to verify 

Claim 1a. Scenario 1, all parameters are time-invariant; Scenario 2, the number of effective 
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contacts made by a typical infectious individual per day (𝛽) increases from 0.15 to 0.6 at Day 300; 

Scenario 3, probability of infection-related death (𝜇) increases from 0.01 to 0.1 at Day 300; 

Scenario 4, vaccine efficacies against infection and death start to wane linearly after Day 100 

reaching 0% at Day 300; and Scenario 5, the combination of Scenarios 2 and 4.  
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FIGURE 3. Population-level direct and overall effects given 𝜶𝟏 = 𝟎. 𝟕  and 𝜶𝟐 = 𝟎. 𝟗  to 

verify Claim 1b. Scenario 1, all parameters are time-invariant; Scenario 2, the number of effective 

contacts made by a typical infectious individual per day (𝛽) increases from 0.15 to 0.6 at Day 300; 

Scenario 3, probability of infection-related death (𝜇) increases from 0.01 to 0.1 at Day 300; 

Scenario 4, vaccine efficacies against infection and death start to wane linearly after Day 100 

reaching 0% at Day 300; and Scenario 5, the combination of Scenarios 2 and 4. 

6. DISCUSSION 

      Motivated by recent research on estimating deaths averted by COVID-19 vaccination, this 

study defines population-level analogs of direct and overall effect estimands for infectious disease 

interventions, thereby enabling researchers to distinguish these estimands when conducting and 

interpreting related studies. Like their well-known individual-level counterparts, the population-

level estimands in this study correspond to outcomes that could be observed in a two-stage 

randomized trial. However, the individual-level estimands correspond to differences in individual 

risk, whereas population-level estimands correspond to differences in counts for groups. We show 

the population-level direct effect can be a lower bound for population-level overall effect in a 

susceptible-infected-recovered-death model wherein transmission and fatality parameters do not 

vary and vaccine efficacies do not wane over time.  

      When indirect effects for the vaccinated and unvaccinated are both positive, the population-

level direct effect is a lower bound of population-level overall effect (equations 10.1 and 10.2). In 

general, the indirect effects  may be positive because vaccination reduces the infectious individuals 

at a given time, such that infection-naïve individuals are less likely to be infected.20 However, as 

we have shown in the current study, there are conditions under which population-level direct effect 
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is not guaranteed to be a lower bound of overall effect due to negative indirect effects (Scenarios 

2–5). 

      First, when the number of effective contacts made by a typical infectious individual per day 

(𝛽) increases over time (Scenario 2), overall effect on infection decreases (and can be negative) 

because at the early stage of outbreak, the less-vaccinated group has many infected and recovered 

with sterilizing immunity; while the more-vaccinated group has more susceptible (i.e., infection-

naïve) individuals who have escaped the earlier infections and will experience a higher force of 

infection at the later time (eFigure 6). 𝛽 is affected by probability of transmission per contact and 

number of contacts per day. Transmission probability depends on meteorological factors such as 

absolute humidity for the influenza A virus,21 behavioral factors such as usage of personal 

protective equipment,22 and biological factors such as changes in host immunity, and evolution of 

strains (a proper examination of the impact of co-circulating strains on the indirect effect requires 

modeling the cross immunity).23 The number of contacts can be affected by non-pharmaceutical 

interventions and seasonal variation in social contacts. 

      Second, when the probability of infection-related death (𝜇) increases over time (Scenario 3), 

overall effect on death decreases because the extensively vaccinated group(s) has more who escape 

the earlier infections and then experience the high fatality at the later stage of outbreak (eFigure 

6). It is plausible for lethality of pathogens to increase over time: Disease severity was found to 

increase in the autumn wave of the 1918 flu pandemic compared to the spring-summer wave of 

the same pathogen in that year. Some evidence from the A/H1N1 pandemic in 2009 also suggests 

that lethality of a subtype may increase in the second wave compared to the first wave.24 Increasing 

lethality implies that vaccination at the beginning of outbreak can lead to a negative overall effect 

by postponing cases. On the other hand, if the fatality rate increases with the infection peak due to 
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the sudden shortage of healthcare resources, the overall effect on death will be more positive 

because vaccines delay infection and flatten the epidemic curve. Likewise, if infection-fatality 

rates decline progressively due to improvements in care,25,26 then vaccination that delays the 

epidemic can have amplified positive overall effects. 

      Third, the overall effect of increased vaccination coverage decreases and may become negative 

when vaccine efficacies wane (Scenario 4). In particular, the vaccination proportion of 𝛼% = 0.9 

may result in more infections and deaths than the proportion of 𝛼$ = 0.7. eFigure 7 shows the 

epidemic curves given 𝛼$ = 0.7  and 𝛼% = 0.9  proportions vaccinated. When 𝛼$ = 0.7 , the 

epidemic peaks earlier and slows down due to the build-up of recovered individuals with sterilizing 

immunity; consequently, return of full susceptibility (i.e., loss of protection) among vaccinated 

individuals is too late to rescue the epidemic. However, when 𝛼% = 0.9, epidemic is delayed and 

a pool of individuals who are at risk of infection is built up, such that return of susceptibility among 

vaccinated individuals can rescue the epidemic. 

      The current study has some limitations. First, vaccination is assumed to be a one-time event at 

baseline before the start of outbreak, but in reality, vaccine rollout is continuous over time and 

may occur during outbreak. A formalization of the causal effects under a time-varying regime (e.g., 

by specifying a sequence of proportions vaccinated 𝜶 = (𝛼B" , 𝛼B' , … ) over time) will be left to 

future work. Second, to illustrate the counterexamples to the Claims, the current study uses a 

stylized model with multiple simplifications. For example, this model does not consider multiple 

risk groups, which may have had heterogenous susceptibility to adverse outcomes and 

heterogeneous mixing patterns, leading to a negative indirect effect for the unvaccinated such that 

the Claims do not hold. Vaccination for a subgroup could cause negative indirect effect in other 

subgroups by increasing risk for more severe complications. For example, empirical evidence 
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showed that low rubella vaccination coverage in children increased rubella incidence in the 15 

years or over and incidence of congenital rubella in newborns.27 Mathematical modelling 

suggested that infant vaccination against varicella could increase the rate of reactivation (i.e., 

zoster) in the entire population.28,29 The examples suggest that the potential for negative indirect 

effects may be greater when population subgroups differ in important properties, such as (in the 

rubella and varicella  examples) risk for adverse outcomes. 

      Another limitation of our model is that in the scenarios considered, changes in lethality and 

transmission were assumed to occur at a fixed time, whereas in reality they might well occur either 

in response to pathogen evolution30 or to behavioral changes that are affected by the epidemic 

trajectory. However, our goal was not to describe the details of a particular epidemic but to define 

qualitatively the requirements for which direct effects are lower bound on overall effects at the 

population level. Finally, we did not consider possible adverse events after vaccination, although 

adverse events have important policy implications. Our focus here is on defining estimands for the 

protective effect of interventions on averting disease outcomes. Future studies can extend the 

estimands to investigate adverse events due to interventions.  

     In conclusion, causal estimands for effects of infectious disease interventions are originally 

defined at the individual level in terms of differences in individual risk under different treatment 

conditions, but we defined analogs of these effects at the population level. The aforementioned 

classification of estimands improves the conduct and interpretation of studies in evaluating the 

public health impact of any infectious disease intervention including vaccination. We showed— 

by proof for the full epidemic and by simulation for time points in the midst of the epidemic—that 

when transmission and fatality parameters do not vary and vaccine efficacies do not wane over 

time, population-level direct effect among the vaccinated (or unvaccinated) individuals can be 
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interpreted as a lower bound of population-level overall effect quantifying vaccine-averted (or 

avertible) deaths among both vaccinated and unvaccinated individuals. 
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