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Abstract 

Food and waterborne disease (FWD) surveillance requires Whole-Genome Sequencing 

(WGS)-based systems following a One Health approach. However, different laboratories 

employ different WGS pipelines in their routine surveillance activities, casting doubt on the 

comparability of their results and hindering optimal communication at intersectoral and 

international levels. Through a collaborative effort involving eleven European institutes across 

seven countries and spanning the food, animal and human health sectors, we aimed to assess 

the inter-laboratory comparability of WGS clustering results for four important foodborne 

pathogens: Listeria monocytogenes, Salmonella enterica, Escherichia coli and Campylobacter 

jejuni. Each participating institute (n=9) applied its surveillance pipeline over the same WGS 

datasets (>2000 isolates per species), and, for each pipeline, genetic clusters were identified 

at each possible allele/SNP distance threshold. Inter-pipeline clustering congruence was 

assessed by calculating a “Congruence Score” (relying on Adjusted Wallace and Adjusted 

Rand coefficients) across all resolution levels, followed by an in-depth comparative analysis 

of cluster composition at outbreak level. An additional cluster congruence assessment was 

performed between WGS and traditional typing, which, depending on the species, included 

Sequence Type (ST), Clonal Complex (CC) and/or serotype. Our results revealed a general 

high concordance between allele-based pipelines at all resolution levels for all species, except 

for C. jejuni, where the different resolution power of available allele-based schemas led to 

marked discrepancies. Still, this study identified non-negligible differences in allele-based 

pipeline performance for outbreak cluster detection, suggesting that a threshold flexibilization 

is important for the detection of similar outbreak signals by different laboratories. These 

results, together with the observation that different STs, CCs and serotypes exhibit remarkably 

different genetic diversity, should inform future threshold selections for outbreak case 

definitions. In conclusion, this study provides valuable insights into the comparability of 

pipelines commonly used for routine genomics surveillance, and reinforces the need, while 

demonstrating the feasibility, of conducting continuous and comprehensive WGS pipeline 

comparability assessments. Ultimately, it opens good perspectives for a smoother 

international and intersectoral cooperation and communication towards a sustainable and 

efficient One Health FWD surveillance. 

 

Key-words: Listeria monocytogenes, Salmonella enterica, Escherichia coli, Campylobacter 

jejuni, foodborne zoonoses, One Health, genomics surveillance, cluster congruence, pipeline 

comparability 
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Introduction 

Food and waterborne diseases (FWDs) affect 600 million people every year worldwide and 

represent an important burden for human and animal health 1. Therefore, FWDs prevention 

and control is of high importance, requiring adequate surveillance systems able to track the 

circulation of pathogens, detect and investigate potential outbreaks, and monitor their clinical 

and epidemiological relevant features 2,3. Such systems must recognize the interconnection 

between people, animals, plants, and their shared environment, following a One Health 

approach 2,4,5. 

 

International agencies, such as the World Health Organization (WHO), the World Organization 

of Animal Health (WOHA), the European Center for Disease Prevention and Control (ECDC) 

and the European Food Safety Authority (EFSA), strongly promote the integration of Whole-

Genome Sequencing (WGS) data as an essential component of surveillance systems 6–15. 

Therefore, a significant effort is in place to develop and refine surveillance-oriented 

bioinformatics solutions for the assessment of samples’ genomic relatedness and outbreak 

cluster identification. These include automated command-line pipelines, such as SnapperDB 

16, chewieSnake 17 or WGSBAC 18,19, user-friendly platforms, like INNUENDO 20, 

BigsDB/PubMLST 21, IRIDA 22, PathoGenWatch 23, COHESIVE 24,25 or Enterobase 26, and also 

commercial software, as Bionumerics or Ridom SeqSphere+ 8,27. Although these solutions 

cover the basic steps of a WGS data analysis pipeline (and some species-specific 

requirements), each of them has its own specificities and particularities 8. 

 

From a technical perspective, genomic pipelines can be roughly divided into allele- and SNP-

based pipelines, where genomic relatedness is either assessed based on the alleles present 

at a given set of loci (schema), or on the comparison of their single nucleotide polymorphisms 

(SNPs). Allele-based (also known as gene-by-gene) pipelines may rely on a core-genome 

Multilocus Sequence Type (cgMLST) approach, in which the schema corresponds to a pre-

defined group of loci expected to be present in most of the species’ isolates, or, alternatively, 

in a whole-genome Multilocus Sequence Type (wgMLST) approach, in which the schema 

includes both the core and accessory loci, possibly providing a higher resolution power 27,28. 

On the other hand, SNP-based pipelines commonly rely on the alignment of sequencing reads 

to a closely related reference genome, but k-mer- and assembly-based alignments are also 

available as alternatives to detect SNPs 27,29. In the specific case of foodborne bacterial 

pathogens, although SNP-based pipelines can be used as a first-line approach to detect 

potential outbreak-related clusters, they are more often used for fine-tuned analyses with a 

small set of samples at high-resolution levels in order to confirm their genomic proximity as 
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inferred by an cg/wgMLST approach 16,27–30. Indeed, nowadays, allele-based pipelines are 

promoted internationally as the first-line approach for monitoring pathogen populations and 

detection of clusters of samples related to potential outbreaks 6–8,27,31, being the most 

commonly used at European level, as demonstrated by recent ECDC “External Quality 

Assessments” (EQAs) 32–34. 

 

European laboratories have been following independent paths towards the implementation of 

FWD genomic surveillance frameworks, often being at different stages of this technological 

transition and ending up with different bioinformatic solutions for outbreak cluster detection 

2,32–35. This heterogeneity raises concerns regarding inter-laboratorial communication of 

surveillance results, with special relevance during multi-country outbreak investigations where 

WGS-based criteria for case definition is often similar regardless of the pipeline 36–39. Although 

previous studies have found some comparability in the clustering results at outbreak level 

obtained by different pipelines 40–42, and public health authorities routinely launch international 

EQAs 43,44, there is still a need for large-scale studies providing in-depth knowledge about the 

congruence of the routinely applied WGS strategies. Such studies would be aligned with 

international agencies guidelines, which warn of the need to ensure the harmonization and 

comparability of outputs resulting from different methods 5,13,14. 

 

In the frame of the BeONE project of the “One Health European Joint Programme” (OHEJP), 

eleven Institutes across Europe, spanning different sectors, cooperated to advance in the field 

of FWD surveillance 45. This project aimed to contribute to the capacity of European 

laboratories to routinely integrate genomic and epidemiological data, and facilitate data 

sharing and comparability among EU countries, international organizations, and/or other 

stakeholders involved in FWD prevention and control. In the present study, we (the BeONE 

consortium) assessed the congruence and comparability of the clustering results obtained 

through the various WGS bioinformatics pipelines used by the consortium partners for 

genomics surveillance of four important foodborne bacterial pathogens (Listeria 

monocytogenes, Salmonella enterica, Escherichia coli and Campylobacter jejuni). This is a 

crucial step to promote efficient communication at international and intersectoral levels 

towards the establishment of a fully integrative One Health genomic surveillance framework, 

according to the best practices and recommendations 5,13,14,46.   
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Results 

1. Study design and strategy for congruence analysis 

Multiple European laboratories, from different countries and sectors, employed, whenever 

possible, their different bioinformatics pipelines for genomic surveillance of foodborne 

bacterial pathogens (Figure 1) on four WGS datasets of L. monocytogenes (n = 3300 isolates 

47,48), S. enterica (n = 2974 isolates 49,50), E. coli (n = 2307 isolates 51,52), and C. jejuni (n = 

3686 isolates 53,54) (Additional file 1, details in the Methods section). After Quality Control (QC), 

allele-based pipelines ran with the whole datasets, while SNP-based independently ran with 

sub-datasets of the top represented Sequence Types (STs) or serotypes of each species 

(Table 1 and Additional file 1) to better mimic their common application in the discrimination 

of closely related strains (e.g. same ST or outbreak-related strains). This collaborative effort 

covered a broad variety of “pipelines” (hereinafter used as a proxy for the combination of 

software pipeline and schema/reference), including the most commonly used cg/wgMLST  

schemas, allele/SNP-callers and clustering methods (Table 1).  

 

In order to assess pipeline clustering congruence and comparability, it was essential to obtain 

clustering information at all possible distance thresholds for each pipeline (both allele- and 

SNP-based pipelines). Given the heterogeneity of “end-point” pipeline outputs, this 

harmonization was achieved by ReporTree 55, which also allowed the application of the  

clustering methods used by the original laboratory, either single-linkage hierarchical clustering 

(HC) or Minimum-Spanning Tree (MST) generation through MSTreeV2 model of GrapeTree 

(GT) 56 (Table 1, details in the Methods section). In addition, whenever an allele matrix was 

provided, clustering was performed with both algorithms, reinforcing the power and magnitude 

of the comparison (Table 1). We took advantage of this vast amount of data to conduct four 

relevant complementary analyses: 

i. Evaluation of allele-based clustering and comparison of stability regions. This 

preliminary evaluation targeted the pipelines running the whole dataset (i.e. allele-based 

pipelines) and aimed at providing a global perspective on the resolution power of each pipeline 

and identifying ranges of allelic distance (AD) thresholds associated with cluster stability, i.e., 

subsequent thresholds in which clustering remains similar (potentially relevant for 

nomenclature design). For this, we assessed the number and composition of clusters obtained 

at progressively increasing distance thresholds and determined the neighborhood Adjusted 

Wallace coefficient (nAWC), which varies from 0 (no congruence) to 1 (absolute congruence), 

at consecutive thresholds (“n + 1” → “n”), based on a previously described approach 57–59.  

ii. Evaluation of allele-based clustering congruence with traditional typing data. 

This assessment targeted the pipelines running the whole dataset (i.e. allele-based pipelines) 
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and aimed at identifying the threshold levels (and stability regions) with the highest 

congruence with traditional typing (ST, Clonal Complex [CC] or serotype) and, when possible, 

with WGS-derived pathogen main lineages. To this end, for each comparison, we calculated 

the AWC between each threshold of the allele-based typing and these classifications, as a 

measure of the probability that two samples that cluster together using one method (at a given 

threshold level) also belong to the same lineage, ST, CC or serotype 58. This was conducted 

between all possible threshold levels in both directions (method A → method B and method B 

→ method A). In addition, for each comparison, we also calculated the Adjusted Rand (AR) 

coefficient as a measure of the overall agreement between the typing methods 58. The three 

values calculated for each comparison were then combined into a “Congruence Score” (CS) 

(CS  = AWCA → B + AWCB → A + AR), which varies from 0 (no congruence) to 3 (absolute 

congruence). By providing a more intuitive interpretation of WGS-based typing outputs, this 

evaluation is expected to show how the cg/wgMLST clustering relates with historical typing 

data, thus facilitating the adoption of WGS-based surveillance by laboratories starting this 

technological transition. 

iii. Evaluation of cluster congruence between different pipelines at all threshold 

levels. This evaluation was conducted for the whole dataset (involving the pairwise 

comparison of all allele-based pipelines) and for the sub-datasets of the top represented STs 

or serotypes of each species (involving the pairwise comparison of both allele- and SNP-based 

pipelines). We aimed to determine: i) the threshold levels with the highest concordance 

between the different pipelines (i.e., threshold levels/regions with similar clustering); ii) 

whether the same clustering results are obtained at similar threshold levels for both pipelines; 

and, iii) the existence of regions of stability common to all pipelines. For each pairwise pipeline 

comparison, we assessed the above-mentioned coefficients and CS through the comparison 

of all thresholds from the lowest to the highest resolution, and identified the thresholds with 

highest concordance between two pipelines (“corresponding points”). These comparisons 

provide key information to facilitate international data sharing and cooperation, and to smooth 

future workflow upgrades (either to accommodate technological advances or upcoming 

international recommendations). 

 iv. Evaluation of pipeline performance in identifying potential outbreak-related 

clusters. This analysis aimed at assessing congruence and threshold variability to detect the 

same potential outbreak-related clusters. For this, we identified the genetic clusters at potential 

outbreak-level using each allele-based pipeline and, subsequently, assessed the thresholds 

at which the same cluster composition was (if it was) found by the other ones. By targeting the 

main focus of routine surveillance (detection and survey of clusters of potential public health 
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interest), this output and associated tools are expected to facilitate and increase confidence 

in the direct communication between laboratories during a real-life outbreak scenario. 
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2. Listeria monocytogenes 

Listeria monocytogenes dataset (Figure 2A) was analyzed with five allele-based and three 

SNP-based pipelines (Table 1 and Tables S1.1 and S1.2 in Additional file 2).  

 

2.1 Evaluation of allele-based clustering and comparison of stability regions 

Following QC of the initial 3300 L. monocytogenes isolates (Additional file 1), all pipelines 

retained >99% of the samples, with the exception of Bionumerics, which only retained ~95% 

(Table S1.1 in Additional file 2). Despite the intrinsic differences between the pipelines, they 

generally provided very similar clustering patterns in terms of number of partitions across all 

possible distance thresholds (Figure 2B). Independently of the schema (Moura 60 or Ruppitsch 

61) and clustering algorithm (GT or HC), the pipelines consistently revealed low stability (i.e., 

cluster composition considerably changes in proximal distance thresholds) in the highest 

resolution region (spanning the “outbreak level”), and two main “plateau” regions of high 

stability (i.e., yielding similar cluster number and composition across a given threshold range), 

likely reflecting the pathogen population structure and dataset diversity (Figure 2C). 

 

2.2 Evaluation of allele-based clustering congruence with traditional typing 

Our results revealed a good correspondence between the first large plateau of stability of all 

allele-based pipelines and the L. monocytogenes ST classification (Figures 2C and 2D), with 

the highest congruence point being identified between 143 and 190 ADs (Table S1.1 in 

Additional file 2). The maximum CS was very high (~2.9) but not the maximum possible (3.0), 

indicating that some of the STs were divided into more than one phylogenetic branch at this 

level of resolution. Between 75% to 90% (depending on the pipeline) of the 106 STs with two 

or more samples had all samples grouped in the same cluster, and around half of these were 

fully isolated, i.e. they were not clustering with another ST. Less than 2% of the STs were split 

into three or more groups regardless of the pipeline. We then identified the lowest threshold 

level at which all samples of the same ST cluster together in each pipeline (Additional file 3). 

The majority of the STs congruently cluster below the highest congruence point (albeit at 

different scales), including prevalent and/or epidemiologically relevant STs, such as ST1, ST5 

, ST6, ST8 and ST121 (Figure 2D). This in-depth ST-specific analysis also suggested that 

some STs were consistently polyphyletic regardless of the pipeline, as it is the case of ST7 

and ST325 due to the presence of a few same-ST samples (one and four at the highest CS, 

respectively) clearly clustering apart (Figures 2A and 2E). 

 

Similar results were found when comparing the cgMLST clustering results with L. 

monocytogenes CC typing. In this case, the highest congruence point was identified between 
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388 and 508 ADs, with the maximum CS (>2.97) being even higher than the one obtained with 

the ST (Additional file 4 and Table S1 in Additional file 2). From the 70 CCs with at least two 

samples, between 60% to 83% (depending on the pipeline) had all samples grouped in the 

same cluster at the highest congruence point. On average, 89% of these CCs were fully 

clustered apart, with some of them, including the majority of the CCs with the higher amount 

of samples, forming a single cluster at thresholds lower than the highest congruence point in 

all pipelines (Figure S1.1 in Additional file 2). In contrast, a few CCs were consistently 

polyphyletic regardless of the pipeline (Figure S1.1 in Additional file 2), although with different 

signatures. For instance, while CC5 and CC2 had just a few divergent samples leading to the 

polyphyletic signature, CC4 and CC14 were divided into two main clusters that could only be 

merged at high threshold levels (considerably above the highest CS) (Figure S1.1 in Additional 

file 2). When comparing the clustering of each CC with the corresponding STs, we noted that 

CC8 clustered all its samples together at higher AD thresholds than the individual STs (Figure 

S1.1 in Additional file 2), particularly due to ST8 and ST16, which differ from each other by 

more than 200 ADs but reveal low intra-ST diversity.  

 

2.3 Evaluation of cluster congruence between different pipelines at all threshold levels 

Our in-depth pairwise congruence analysis showed a general high concordance between all 

allele-based pipelines (as exemplified for a pairwise comparison in Figures 3A and 3B, and 

detailed in Section 2 of Additional file 2). Indeed, the AD threshold points with highest 

concordance (assessed as CS ≥ 2.85) between every two pipelines (“corresponding points”) 

were observed across all levels of resolution and followed a linear trend (r2 ≥ 0.99) in all 

comparisons  (Figures 3C and 3D and Additional files 2, 5 and 6). The slight deviation from a 

y=x scenario (i.e. theoretical situation in which clustering at one level with a pipeline is 

concordant with the clustering at the exact same level in the other one) revealed differences 

in their discriminatory power (Figure 3D), which corroborated the need for a fine evaluation at 

“outbreak” level (Section 2.4). 

 

A similar pairwise comparison was performed between SNP-based pipelines for the top-

represented STs in the L. monocytogenes dataset (ST1, ST5, ST6, ST8 and ST121) with a 

focus on the clustering obtained at up to a 100 SNPs threshold (detailed in Sections 3 and 4 

of Additional file 2). We observed an overall concordant clustering regardless of the ST under 

analysis, as supported by a similar maximum number of possible distance thresholds and 

number of clusters throughout most levels of resolution (Additional file 2). In most 

comparisons, this high concordance is also illustrated by the nearly symmetric CS matrices 

with high scores mainly falling within the diagonal (Section 3 of Additional file 2 and Additional 
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file 6) and by a linear trend of the inter-pipeline corresponding points with a slope very close 

to 1 (Figure 3D). A notable exception included an intermediate level of resolution with low 

congruence between CSI Phylogeny and snippySnake/WGSBAC for ST6 and ST8, despite 

the good concordance at outbreak level (Section 3 in Additional file 2). 

 

On the contrary, when comparing allele- and SNP-based pipelines, in most situations, we 

observed (slightly) asymmetric matrices (see heatmaps in Section 4 of Additional file 2), with 

similar clustering (assessed as high CS) often obtained at higher SNP threshold levels than 

ADs. These results indicate that SNP-based pipelines, when using the same ST reference for 

read mapping (a strategy in place in some laboratories), tend to provide a higher discriminatory 

power than cgMLST pipelines, even though this might not be applicable for all STs. For 

instance, this asymmetric trend was not so evident for STs 6 and 8 (Section 4 in Additional file 

2), as similar cluster composition was observed at similar SNP and AD threshold levels. In 

general, we found a low number of corresponding points in the pairwise comparisons 

(assessed at up to 100 ADs/SNPs), which rarely (30/246) yielded a linear trend (i.e. with r2 ≥ 

0.99, Additional file 6), thus challenging the overall comparison of the discriminatory power 

through this approach (Figure 3D). Still, there was a high concordance at outbreak level in 

most situations, as seen in the heatmaps (Section 4 in Additional file 2), showing that a more 

detailed analysis for outbreak detection is more informative about pipeline performance when 

comparing allele- and SNP-based pipelines (see section 3.4).  

 

As a complementary exercise, a SNP-based pipeline (“CSI Phylogeny” 62) was also applied in 

a dataset combining the five STs assessed individually using the reference of ST6. As 

expected, the discriminatory power dropped, reaching a level even lower than the one 

provided by allele-based pipelines (Sections 3 and 4 of Additional file 2). This points out that 

read mapping against a single reference for multiple STs does not provide enough resolution 

for routine surveillance and outbreak investigation. 

 

2.4 Concordance for outbreak detection 

Allele-based approaches are the most commonly applied for L. monocytogenes outbreak 

detection, and the distance threshold corresponding to 7 ADs is conventionally used to 

determine potential outbreak-related samples 60,63. As such, we used this threshold to identify 

the potential outbreak-related clusters determined by each allele-based pipeline for the L. 

monocytogenes dataset. Each pipeline detected between 310 to 340 clusters at 7 ADs, from 

which ~94.2% had similar composition in at least two pipelines and 5.8% were exclusively 

detected by a single pipeline (Additional file 7). Only ~50% of the clusters detected by a given 
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pipeline was also detected with the exact same composition in all pipelines, but this value is 

highly influenced by the diversity of the studied pipelines and by the use of a static cut-off. For 

instance, this value would increase to ~72%, if the most discrepant pipeline was removed 

(MentaLiST), and to almost 90%, if only same-schema pipelines were compared (Additional 

file 7). 

 

As these results are impacted by the use of a static threshold, we identified the minimum 

threshold (ADs or SNPs) at which each 7 AD cluster would be detected by the other pipelines 

(see the Methods section for details) (Additional file 8). This analysis yielded 316 clusters that, 

once detected at 7 ADs by at least one pipeline, were detected by all pipelines regardless of 

the threshold (Additional file 8). As expected, most of these clusters were detected at ≤ 7 ADs 

in all pipelines, or at higher threshold levels close to 7 ADs (Figure 4A). The difference between 

the AD thresholds required by the different allele-based pipelines to detect each “outbreak-

level” cluster had a median of 2 ADs (1 AD, if MentaLiST is excluded), with a minimum of 0 

and maximum of 24 ADs (Figure 4B). Without MentaLiST, the pairwise comparisons of the 

remaining pipelines showed that the overlap of clusters detected at 7 ADs with the exact same 

composition was 84.5%, on average, a value that increased to 93.0%, when applying a flexible 

threshold of up to 2 ADs above (Figures 4C and 4D and Additional file 9). The cluster 

congruence at this level of resolution is influenced by the cgMLST schema used, with pipelines 

using the same schema yielding more similar results (Figure 4C and 4D). This is showcased 

through the analysis of the threshold flexibilization (Figure 4B), in which the overlap increases 

to 95.2% and 97.5% when only Moura or Ruppitsch pipelines are compared (Figure 4B), 

respectively. In a case scenario where the recommended static thresholds for each schema 

would be applied, i.e. 7 ADs for Moura 60 and 10 ADs for Ruppitsch 61, the overlap of “outbreak 

signals'' between pipelines running different schemas would be considerably lower than the 

one obtained with a flexible approach. We also tested the application of a more stringent 

threshold (4 ADs) to identify isolates with more compelling evidence of being part of the same 

outbreak, followed by the application of a higher cut-off (7 ADs) for identifying probable cases, 

as previously proposed 63. This exercise showed that clusters defined at 4 ADs by a given 

pipeline are very often captured with the same composition by any other pipeline with a 

threshold of up to 7 ADs, with the exception of MentaLiST (Additional file 9). 

 

When looking at the genomic diversity (SNPs/ADs) within the cgMLST “outbreak clusters” (7 

ADs), our results showed that the maximum allele/SNP distances increase with the size of the 

cluster and are larger when looking at SNPs (Figure 4E and 4F). These results are consistent 

with the previous observation that higher SNP thresholds (which increase alongside with AD 
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thresholds) are needed to identify cgMLST clusters with the exact same composition (Figure 

4G), while suggesting that, in general, SNP-based pipelines run per ST leverage good 

resolution to discriminate strains from the same outbreak. 
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3. Salmonella enterica 

Salmonella enterica dataset (Figure 5A) was analyzed with seven allele-based and four SNP-

based pipelines (Table 1 and Tables S1.1 and S1.2 in Additional file 10). 

 

3.1 Evaluation of allele-based clustering and comparison of stability regions 

Following QC of the initial 2974 S. enterica isolates (Additional file 1), a maximum of 2% of 

the isolates were filtered out by each pipeline (Table S1.1 in Additional file 10). Despite the 

intrinsic differences between the pipelines, they generally provided very similar clustering 

patterns in terms of number of clusters across all possible partitions, with the exception of 

MentaLiST (Figure 5B). Given the outlier behavior of MentaLiST that, as seen for L. 

monocytogenes, has a considerable negative impact in pipeline comparisons and 

interpretation of the results, we decided to remove this tool from all downstream analyses, 

including for E. coli and C. jejuni. 

 

Independently of the schema (Enterobase 64 or INNUENDO 20) and clustering algorithm (GT 

or HC), the pipelines consistently revealed low stability in the region of high resolution 

spanning the “outbreak level”, but several regions of high stability could be identified with good 

correspondence between pipelines, likely reflecting the pathogen population structure and 

dataset diversity (Figure 5C). The largest stability region (covering ~690 subsequent AD 

thresholds) was similar between pipelines, occurred between ~1000 and ~1700 ADs and 

corresponded to the largest stability region detected in a previous study 65. 

 

3.2 Assessment of allele-based clustering congruence with traditional typing 

Our results revealed a good correspondence between the largest stability region detected in 

all allele-based pipelines and S. enterica serotype classification (Figures 5C and 5D), with the 

highest congruence point being identified between 1261 and 1663 ADs (CS ~2.3) (Table S1.1 

in Additional file 10). From the 91 serotypes with at least two samples, between 44% to 68% 

are grouped in the same cluster at the highest congruence point. This observation is aligned 

with the results of a large study in which 70.1% of the analyzed serotypes mapped to a single 

cgMLST cluster in an equivalent stability region 65. Still, when focusing on those serotypes 

having a one-to-one cluster correspondence (i.e. the whole cluster corresponds to all samples 

of a serotype) in our study, this number decreased to about 30% of the serotypes, regardless 

of the pipeline. Remarkably, the one-to-one correspondence was detected for the majority of 

the most prevalent serotypes, although the lowest threshold needed to collapse all samples 

was quite diverse across serotypes (Figure 5D). Our analysis also revealed that between 8% 

to 25% of all serotypes are split into three or more clusters, suggesting the existence of 
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polyphyletic serotypes. Among these, we highlight the Thompson and Newport serotypes 

(Additional file 11), for which a threshold of more than 2400 ADs was required to collapse all 

the respective samples, which is in accordance with their previously reported multi-lineage 

nature  65–68. 

 

Regarding the congruence with the ST, the highest congruence point was identified between 

205 and 310 ADs (CS ~2.6), always falling within a pipeline stability region (Figure 5C, Table 

S1.1 in Additional file 10). From the 112 STs with more than two samples, depending on the 

pipeline, between 73% to 85% (82 to 95 STs) were grouped in a single cluster at the highest 

congruence point. On average, 59% of the STs exactly corresponded to a single cluster and 

a small proportion (between 4% and 9%) were split into three or more clusters. When looking 

at the earliest threshold to merge all samples of a given ST, some STs clustered considerably 

below the highest CS (e.g., ST34 and ST26) while others revealed high intra-ST heterogeneity 

(e.g., ST11 and ST15) (Additional file 12 and Figure S1.1 in Additional file 10). 

 

In this dataset, Enteritidis serotype is mainly composed of ST11 samples, and our results 

revealed a good concordance between the thresholds required to merge either Enteritidis or 

ST11 samples, with ST11 requiring a slightly higher threshold due to few samples not 

predicted as Enteritidis (Figure 5D and Figure S1.1 in Additional file 10). Regarding the 

samples classified in sílico as Typhimurium, they were segregated into three main STs (ST19, 

ST34 and ST36) with different levels of intra-ST diversity. This likely justifies why all 

Typhimurium samples were only collapsed in a single cluster at a high threshold (Figure 5D 

and Figure S1.1 in Additional file 10). Still, we cannot discard that this value is overestimated 

due to ST34 samples that were classified as Typhimurium instead of its most common 

classification within the Typhimurium monophasic variant 4,[5],12:i:- (here treated as an 

independent serogroup). Finally, Infantis serotype has a high diversity and a potential 

polyphyletic signature, which contrasts with its dominant ST (ST32). This is due to a few non-

ST32 Infantis samples present in this dataset (Figure 5D and Figure S1.1 in Additional file 10). 

 

3.3 Evaluation of cluster congruence between different pipelines at all threshold levels 

Our in-depth pairwise congruence analysis showed a general high concordance between all 

allele-based pipelines (as exemplified for a pairwise comparison in Figures 6A and 6B, and 

detailed in Section 2 of Additional file 10). Indeed, the AD threshold points with highest 

concordance (assumed as CS ≥ 2.85) between every two pipelines (“corresponding points”) 

were observed across all levels of resolution and followed a linear trend (r2 >= 0.99) in all 

comparisons (Figure 6C and 6D, Additional files 10, 13 and 14). Despite the good inter-
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pipeline concordance (even at low threshold levels), differences in the discriminatory power 

were still observed, as shown by deviations from a y=x scenario (Figure 6D). A fine-tuned 

analysis about pipeline performance and comparability at “outbreak” level is presented below 

(Section 3.4). 

 

Regarding the SNP-based pipelines, the analysis was conducted with a focus on the clustering 

obtained at up to a 100 SNPs threshold for the top-represented serotypes, namely Enteritidis, 

Typhimurium and Infantis, in all pipelines, except for SnapperDB, as the partner institute could 

only run it for Typhimurium and Infantis subdatasets. As SnippySnake and WGSBAC yielded 

matching partitions at all levels, only SnippySnake results are presented. SNP-based pipelines 

revealed considerable differences in the maximum number of thresholds (detailed in Sections 

3 and 4 of Additional file 10), which are more pronounced between SnapperDB and the other 

pipelines. SnapperDB excluded samples that, although being in sílico predicted as 

Typhimurium or Infantis, were phylogenetically distant from the remaining ones, reducing the 

number of informative sites in the core alignment and, consequently, leading to a lower 

maximum number of partitions for these serotypes in this pipeline but a higher resolution 

power. This variability in sample inclusion/exclusion challenged the assessment of the 

congruence at all levels between pipelines, as illustrated by the asymmetry of the heatmaps 

(Section 3 in Additional file 10). Still, most pairwise comparisons were informative, as revealed 

by the often observation of concordant clustering results, especially at lower threshold levels. 

 

When comparing allele- and SNP-based pipelines, we observed (slightly) asymmetric 

matrices (see heatmaps in Section 4 of Additional file 10), often deviating towards high SNP 

thresholds (i.e. high CSs are observed when the SNP threshold is higher than the 

corresponding AD threshold) (e.g. Figure S4.1.6 in Section 4 of Additional file 10). As such, 

the SNP-based pipelines, when using the same serotype reference for read mapping, tend to 

provide a higher discriminatory power than cg/wgMLST pipelines, even though this might not 

be applicable for all serotypes and pipelines. For instance, this trend was inverted for 

Enteritidis serotype when using SnippySnake pipeline (e.g. Figure S4.3.2 in Section 4 of 

Additional file 10). In general, we found a low number of corresponding points in the pairwise 

comparisons (assessed at up to 100 ADs/SNPs) and the few identified points did not follow a 

linear trend (i.e. with r2 ≥ 0.99, Additional file 14), thus hampering a broad assessment of the 

discriminatory power. Still, the observed concordance trends at outbreak level showed that a 

more detailed analysis for outbreak detection is more informative about pipeline performance 

when comparing allele- and SNP-based pipelines (as addressed in section 3.4).   
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3.4 Concordance for outbreak detection 

Allele-based approaches are the most commonly applied for S. enterica outbreak detection, 

but the method and distance threshold used to determine a possible outbreak-related cluster 

usually varies between laboratories and the inclusion criteria for outbreak is usually set during 

investigation. The INNUENDO project proposed a dynamic threshold of 0.43% of the cgMLST 

schema, corresponding to 14 ADs in the INNUENDO cgMLST schema, due to its good 

concordance with clusters of epidemiologically verified isolates 20. We used this 0.43% 

threshold (which translates into 14 ADs in all pipelines) to start exploring the pipeline 

congruence at potential outbreak level. 

 

Each pipeline detected between 216 to 254 clusters at 14 ADs, from which, on average, 95.9% 

had similar composition in at least two pipelines and 4.1% were exclusively detected by a 

single pipeline (Additional file 15). On average, 62.6% of the clusters detected by a given 

pipeline was also detected with the exact same composition by all remaining pipelines. 

However, this value is highly influenced by the diversity of the studied pipelines and by the 

use of a static cut-off. Indeed, this value would increase to almost 75% if only same-schema 

pipelines are compared (Additional file 15). We further evaluated the minimum threshold level 

(ADs or SNPs) at which each 14 AD cluster would be detected by the other pipelines. This 

analysis yielded a total of 255 clusters that, once detected at 14 ADs by at least one pipeline, 

were detected by all pipelines regardless of the threshold (Additional file 16). As expected, 

most of these clusters were detected at a threshold ≤ 14 ADs in all pipelines, or at higher 

threshold levels close to 14 ADs. At SNP level, two different profiles were observed (Figure 

7A). While SnippySnake showed a density profile similar to allele-based pipelines (i.e. a 

threshold of 14 SNPs would be enough to capture most of the clusters determined at 14 ADs), 

the other two SNP-based pipelines (SnapperDB and CSI Phylogeny) very often required 

higher SNP thresholds to merge isolates belonging to the same cluster (Figure 7A). The 

difference between the AD thresholds required by the different allele-based pipelines to detect 

each “outbreak-level” cluster had a median of 2 ADs, with a minimum of 0 and maximum of 

14 ADs. This trend is less influenced by the clustering algorithm rather than the cg/wgMLST 

schema, as a median of only 1 AD difference is observed when comparing same-schema 

pipelines (Figure 7B). Looking at pairwise comparisons between all pipelines, our results 

showed that the overlap of clusters detected at 14 ADs with the exact same composition was 

79.0%, on average, a value that increased to 89.8% when applying a flexible threshold of up 

to 2 ADs above (Figures 7C and 7D, Additional file 17). Importantly, the overall pairwise 

congruence only slightly decreased when testing thresholds with higher resolution, namely 
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85.0% for ≤ 10 ADs, as commonly defined 31,69, or 81.6% for ≤ 5 ADs, a strict threshold that 

has recently been used for case definition in multicountry outbreaks 70,71 (Additional file 17). 

 

When looking at the genomic diversity (SNPs/ADs) within the cg/wgMLST clusters at 14 ADs, 

our results showed that allele-based pipelines behave similarly, with the maximum intra-cluster 

distance increasing with the size of the cluster, as expected (Figure 7E). Although this trend 

is also seen at SNP level, SnapperDB and CSI Phylogeny required higher SNP thresholds 

than SnippySnake to identify cgMLST clusters with the exact same composition (Figure 7A), 

and yielded a higher SNP diversity within the clusters (Figure 7F). The evaluation of intra-

cluster diversity across incremental distance thresholds also shows that SNP-based pipelines 

capture a higher diversity than allele-based pipelines. For example, 95% of the clusters 

detected at 5 ADs by at least one allele-based pipeline were composed by strains that diverge 

by no more than 11 alleles, a value that increases to 17 when assessed in terms of SNPs 

(Figure 7G). 

 

Finally, we conducted an additional exercise with the pipeline running an wgMLST schema 

(INNUENDO-like-INNUENDO99) to explore the potential gain in resolution to discriminate 

potential outbreak isolates (as assessed by cgMLST) when increasing the number of wgMLST 

loci under comparison, aligned with a previously explored rationale 20,55. Regardless of the 

clustering algorithm, this approach resulted in an average increase of 6 ADs in the maximum 

pairwise distances observed between the isolates of the same original cgMLST cluster 

(Additional file 18), demonstrating the clear increase in resolution provided by the dynamic 

extension of the cgMLST schema with wgMLST loci shared by the same-outbreak isolates.  
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4. Escherichia coli 

Escherichia coli dataset (Figure 8A) was analyzed with seven allele-based and two SNP-

based pipelines (Table 1 and Tables S1.1 and S1.2 in Additional file 19). 

 

4.1 Evaluation of allele-based clustering and comparison of stability regions 

Following QC of the initial 2307 E. coli isolates (Additional file 1), all pipelines retained more 

than 99% of the samples, with the exception of SeqSphere and Bionumerics, which only 

retained 89.99% and 46.25%, respectively (Table S1.1 in Additional file 19). As all pipelines 

used an inclusion criteria of at least 95% cgMLST loci called, this result was most likely linked 

to the allele caller than to the schema. Indeed, all pipelines relying on chewBBACA 72 retained 

>99% of the samples, even when using the same schema as SeqSphere and Bionumerics 

(the Enterobase schema 64). Given the very low number of samples that passed the QC of 

Bionumerics, this pipeline was excluded from the analysis of the E. coli dataset. Despite the 

intrinsic differences between the remaining pipelines, they generally provided very similar 

clustering patterns in terms of number of clusters across all possible thresholds, with the 

exception of SeqSphere (Figure 8B), which presented a deviating pattern possibly due to the 

removal of ~10% of the samples. 

 

Independently of the schema (Enterobase 64 or INNUENDO 20) and clustering algorithm (GT 

or HC), the pipelines consistently revealed low stability in the region of high resolution 

spanning the “outbreak level”. Beyond this region, multiple regions of high stability could be 

identified across all levels, including a first high resolution region (around 60 to 120 ADs), likely 

reflecting the dataset diversity, as discussed below (Figure 8C). 

 

4.2 Evaluation of allele-based clustering congruence with traditional typing and WGS-

derived pathogen main lineages 

This assessment is highly influenced by the often incompleteness in the inference of O and H 

antigens and, specially, by the dominance of serotype O157:H7 strains (almost all from ST11) 

in the dataset, which reflects the bias towards this pathogenic E. coli in public databases 

(Figure 8A). As consequence, for all pipelines, the highest congruence point was the same for 

serotype (CS ~2.7) and ST (CS ~2.9) (Table S1.1 in Additional file 19) and corresponded to 

the minimum threshold needed to collapse all O157:H7 and ST11 strains, ranging between 

545 and 738 ADs (Figure 8D). This point revealed a good correspondence with one of the 

largest stability regions (Figures 8C and 8D), but, due to the E. coli diversity bias, this result 

should be eyed with caution, if intended to inform nomenclature design.  
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Regarding the less abundant serotypes, we observed very different profiles, with those 

needing a higher threshold to collapse all samples being also the ones with the highest ST 

diversity. For instance, among the ones with ≥10 isolates, O145:H28 (including ST32 and 

ST137) was collapsed at around 350 ADs, while O8:H19 (including ST88, ST90, ST201 and 

ST3233) required around 2250 ADs to merge all same-serotype isolates (Figure 8D, Additional 

files 20 and 21). Also, the lack of one-to-one correspondence was also illustrated by the 

detection of some STs (e.g. ST88 and ST90) comprising isolates from different serotypes.  

 

Finally, we assessed the congruence between cg/wgMLST clustering and WGS-derived 

pathogen main lineages inferred through PopPUNK 73. For this E. coli dataset, PopPUNK 

clustering had a high congruence (CS >2.97) at allelic distance thresholds (723 to 1002 ADs) 

above the level with highest congruence with serotype and ST (Table S1.1 in Additional file 

19).  

 

4.3 Evaluation of cluster congruence between different pipelines at all threshold levels 

Our in-depth pairwise congruence analysis showed a high concordance between all allele-

based pipelines (as exemplified for a pairwise comparison in Figures 9A and 9B, and detailed 

in Section 2 of Additional file 19). Indeed, the AD threshold points with highest concordance 

(assumed as CS ≥ 2.85) between every two pipelines (“corresponding points”) were observed 

across all levels of resolution and followed a linear trend (r2 ≥ 0.99) in all comparisons (Figure 

9C, Additional file 19, 22 and 23). Despite the good inter-pipeline concordance (even at low 

threshold levels), differences in the discriminatory power were observed, as shown by 

deviations from a y=x scenario (Figure 9D). In particular, most differences were seen when 

SeqSphere was involved, as it revealed a higher resolution across all threshold levels. A fine-

tuned analysis about pipeline performance and comparability at “outbreak” level is presented 

below (Section 4.4). 

 

Regarding the SNP-based pipelines, the analysis was conducted with a focus on the clustering 

obtained at up to a 100 SNPs threshold for the O157:H7 serotype. In summary, CSI Phylogeny 

provided a higher resolution than SnippySnake (Section 3 of Additional file 19), but this 

observation should not be extrapolated without taking into consideration that the former 

excluded almost 20% of the sequences. When comparing allele- and SNP-based pipelines 

(see heatmaps in Section 4 of Additional file 19), we again observed a bias towards the higher 

resolution of CSI Phylogeny, while SnippySnake provided a similar resolution power as the 

allele-based pipelines. 
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4.4 Concordance for outbreak detection 

Allele-based approaches are the most commonly applied for E. coli outbreak detection, but 

the method and distance threshold used to determine a possible outbreak-related cluster 

usually varies between laboratories and the inclusion criteria for outbreak is usually set during 

investigation. The INNUENDO project proposed a dynamic threshold of 0.34% of the cgMLST 

schema, corresponding to 8 ADs in the INNUENDO cgMLST schema, due to its good 

concordance with clusters of epidemiologically verified isolates 20. We used this 0.34% 

threshold (which translates into 9 ADs in all pipelines) to start exploring the pipeline 

congruence at potential outbreak level. 

 

Each pipeline detected between 169 to 182 clusters at 9 ADs, from which, on average, 96.6% 

had similar composition in at least two pipelines and 3.2% were exclusively detected by a 

single pipeline (Additional file 24). On average, 70.4% of the clusters detected by a given 

pipeline were also detected with the exact same composition by all remaining pipelines. We 

further evaluated the minimum threshold level (ADs or SNPs) at which each 9 AD cluster 

would be detected by the other pipelines. This analysis yielded a total of 185 clusters that, 

once detected at 9 ADs threshold by at least one pipeline, were detected by all pipelines 

regardless of the threshold (Additional file 25), with SeqSphere and INNUENDO-like-

ENTEROBASE requiring slightly higher thresholds to yield the same clusters as the other 

pipelines. Regardless of this observation, most of the outbreak clusters were detected at a 

threshold ≤ 9 ADs in all allele-based pipelines, or at higher threshold levels close to 9 ADs 

(Figure 10A). At SNP level, the assessment was restricted to those “outbreak” clusters 

corresponding to O157:H7 (94 out of the 185 clusters) and to the SnippySnake pipeline, 

because of the CSI Phylogeny behavior noticed above. As anticipated above, SnippySnake 

revealed a density profile similar to allele-based pipelines (Figure 10A), thus demonstrating 

that core SNP and cg/wgMLST analyses have equivalent performance for O157:H7 outbreak 

detection, in line with a previous observation 74. The difference between the AD thresholds 

required by the different allele-based pipelines to detect each “outbreak-level” cluster had a 

median of 3 ADs, with a minimum of 0 and maximum of 15 ADs. This trend is less influenced 

by the clustering algorithm rather than the cg/wgMLST schema (Figure 10B). A slightly higher 

diversity was observed between those pipelines relying on the Enterobase schema (median 

of 2 ADs) than between the ones relying on INNUENDO (median of 1 AD), possibly due to the 

fact that the Enterobase schema was run with different allele callers (and also different 

versions of the same allele caller), while all pipelines relying on the INNUENDO schema used 

chewBBACA (the allele caller used for its refinement) 72,75. A side observation was that the 

direct use of chewBBACA on the Enterobase schema systematically led to around 2% of loci 
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not called in each sample, even though this did not substantially affect the congruence and 

outbreak detection performance (Additional file 19). Looking at pairwise comparisons between 

all pipelines, our results showed that the overlap of clusters detected at 9 ADs with the exact 

same composition was 83.7%, on average, a value that increased to 94.9% when applying a 

flexible threshold according to the median estimation above (i.e. 3 ADs above, Figures 10C 

and 10D, Additional file 26). This exercise further corroborated the outlier behavior of 

SeqSphere and INNUENDO-like-ENTEROBASE, which needed higher thresholds to yield the 

same clusters as the other pipelines (Figure 10C, Additional file 25 and Additional file 26). 

 

When looking at the genomic diversity (SNPs/ADs) within the cg/wgMLST “outbreak clusters” 

(9 ADs), the INNUENDO-like-ENTEROBASE consolidated its outlier behavior by capturing a 

higher genomic diversity within the clusters and showing higher intra-cluster maximum 

distances with incremental cluster sizes than the other pipelines (Figures 10E and 10F). The 

other outlier pipeline, SeqSphere, could not be used for this particular analysis, due to the 

unavailability of suitable pairwise distance input within the BeONE project. SnippySnake again 

provided similar clustering and outbreak resolution power as the allele-based pipelines (Figure 

10E). For example, 95% of the clusters detected at 5 ADs by at least one allele-based pipeline 

were composed by strains that diverge by no more than 9 alleles, a value that only slightly 

increased to 12 when assessed in terms of SNPs (Figure 10G). 

 

Finally, we conducted an additional exercise with the pipeline running an wgMLST schema 

(INNUENDO-like-INNUENDO99) to explore the potential gain in resolution to discriminate 

potential outbreak isolates (as assessed by cgMLST) when increasing the number of wgMLST 

loci under comparison, aligned with a previously explored rationale 20,55. Regardless of the 

clustering algorithm, this approach resulted in an average increase of 5 ADs in the maximum 

pairwise distances observed between the isolates of the same original cgMLST cluster 

(Additional file 27), demonstrating the clear increase in resolution provided by the dynamic 

extension of the cgMLST schema with wgMLST loci shared by the same-outbreak isolates. 
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5. Campylobacter jejuni 

Campylobacter jejuni dataset (Figure 11A) was analyzed with seven allele-based and one 

SNP-based pipeline (Table 1 and Tables S1.1 and S1.2 in Additional file 28). 

 

5.1 Evaluation of allele-based clustering and comparison of stability regions 

Following QC of the initial 3686 C. jejuni isolates (Additional file 1), the pipelines using the 

large and static cgMLST schema from PubMLST (1343 loci) 76 retained ~95% of the samples, 

while the ones with shorter cgMLST schemas retained ~98.5% (Table S1.1 in Additional file 

28). The later either perform cgMLST on a set of core loci dynamically extracted from an 

wgMLST schema (either 899/2754 core loci of the INNUENDO schema 20 or 860/1595 core 

loci of the Ridom schema 77) for this dataset, or run a short and static cgMLST (678/2754 core 

loci of the INNUENDO schema 20) (Table S1.1 in Additional file 28). These three pipeline 

groups, relying on different schema sizes, revealed distinct clustering patterns in terms of 

number of clusters across all possible thresholds (Figure 11B), with the pipelines using 

PubMLST schema displaying a higher resolution, i.e. a higher number of clusters for the same 

threshold. 

 

Independently of the schema and clustering algorithm (GT or HC), no pipeline revealed 

regions of high stability until 55 ADs, far above the common thresholds for outbreak detection. 

After this point, although multiple regions of high stability have been identified across all levels, 

they were quite small, hampering the identification of stability plateaus common to all pipelines 

(Figure 11C). This scenario contrasts with the other species analyzed in this study and likely 

reflects the high genetic diversity, extensive mosaicism and polyclonal population structure of 

C. jejuni 78–80. 

 

5.2 Evaluation of allele-based clustering congruence with traditional typing and WGS-

derived pathogen main lineages 

Regarding the cg/wgMLST clustering congruence with CC classification, the pipelines relying 

on PubMLST schema presented the highest congruence point between 644 and 839 ADs (CS 

~2.7), while this threshold ranged between 315 and 522 (CS ~2.7) for the pipelines with shorter 

schemas (Table S1.1 in Additional file 28). Still, the clustering of each pipeline at this point 

yielded a similar number of partitions, which varied between 161 and 229. When assessing 

the distribution of the 39 CCs across these partitions, only 25% had all the respective samples 

integrated in the same cluster. In another perspective, almost two thirds of the CCs have 

strains dispersed across three or more clusters at this level. Despite the fact that the likelihood 

of two samples of the same CC cluster together at this cgMLST level is still high (AWC > 0.8 
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for all pipelines), our results show that the CC classification only slightly mimics C. jejuni 

clustering at genome scale. Indeed, the thresholds needed to cluster all samples of the same 

CC are quite high across all pipelines, almost reaching the size of the respective cgMLST 

schema, as observed for most of the dominant CCs in this dataset (Figure 11D and Additional 

file 29). The comparison between cgMLST clustering and ST classification revealed a more 

informative scenario, as 78.2% of the 227 STs present in this dataset have all their samples 

grouped into a single cluster at the highest congruence point with cgMLST (Table S1.1 in 

Additional file 28), and only 4 to 7% of the STs were split into three or more clusters at this 

level. Moreover, it allowed the identification of STs with very different genetic heterogeneity in 

the dataset. For instance, when examining the most prevalent STs in the dataset (Figure 11D), 

some (e.g. ST45, ST48 and ST50) exhibited significant intra-ST diversity, which escalates with 

the cgMLST schema size (as seen in the CC evaluation). In contrast, others displayed less 

diversity, requiring similar threshold levels for merging all samples from the same ST, 

regardless of the pipeline used (Additional file 30 and Figure S1.1 in Additional file 28).  

 

Finally, we assessed the congruence between cg/wgMLST clustering and WGS-derived 

pathogen main lineages inferred through PopPUNK 73. For this C. jejuni dataset, PopPUNK 

clustering had the highest congruence with cg/wgMLST typing (CS ~2.6) at allelic distance 

thresholds consistently falling in between the points of highest congruence with ST and CC 

(Table S1.1 in Additional file 28). 

 

5.3 Evaluation of cluster congruence between different pipelines at all threshold levels 

Our in-depth pairwise congruence analysis showed a high concordance between all allele-

based pipelines (as exemplified for a pairwise comparison in Figures 11A and 11B, and 

detailed in Section 2 of Additional file 28). Indeed, the AD threshold points with highest 

concordance (assumed as CS ≥ 2.85) between every two pipelines (“corresponding points”) 

followed a linear trend (r2 ≥ 0.988) in all comparisons (Figure 11C, Additional file 28, 31 and 

32). Not unexpectedly, due to the differences in cgMLST schema size between pipelines, the 

discriminatory power was consistently higher in the PubMLST schema pipelines, as shown by 

deviations from a y=x scenario (Figure 6D). Moreover, the pairwise comparisons between 

these pipelines revealed many corresponding points even within the “outbreak region” 

(Additional file 31), which was not observed in the comparisons involving the pipelines with 

shorter schemas. A fine-tuned analysis about pipeline performance and comparability at 

“outbreak” level is presented below (Section 5.4). The pairwise comparisons between allele-

based pipelines and the available SNP-based pipeline (CSI Phylogeny) was conducted with a 

focus on the clustering obtained at up to a 100 SNPs threshold for the top represented STs, 
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namely ST21, ST50, ST45, ST48 and ST257. Our results showed that CSI Phylogeny with an 

ST-specific reference generally offered superior resolution compared to allele-based pipelines 

using short schemas, although less frequently than when comparing with those employing 

PubMLST schemas (Additional file 32). 

 

5.4 Concordance for outbreak detection 

Allele-based approaches are expected to become the standard method for C. jejuni outbreak 

detection, but this is not yet conducted routinely in most countries. Despite the existence of 

limited data about the cgMLST resolution levels with good epidemiological concordance, a 

threshold of 4 ADs has been often pointed out as a proxy for generating outbreaks signals 81, 

with proven application in real investigations 81,82. As such, in the present study, in order to 

start exploring the pipeline congruence at potential outbreak level, we applied a 4 AD threshold 

for all pipelines.  

 

Each pipeline detected between 271 to 388 clusters at 4 ADs, from which, on average, 97.1% 

had similar composition in at least two pipelines and 2.9% were exclusively detected by a 

single pipeline (Additional file 33). However, as anticipated above, due to the substantially 

different sizes of the studied cgMLST schemas, the clustering congruence at a 4 AD threshold 

was considerably higher between pipelines with similar schema sizes (Figures 13A and 13B). 

On average, only 36.6% of the clusters detected by a given pipeline were detected with the 

exact same composition in all pipelines, but this value considerably increased when this 

comparison is restricted to pipelines with similar cgMLST schema size (81.7% for pipelines 

running the PubMLST schema and 58.6% for the others) (Additional file 33). We subsequently 

sought to evaluate the minimum threshold level (ADs or SNPs) at which each 4 AD cluster 

would be detected by the other pipelines. This analysis yielded a total of 430 clusters that, 

once detected at 4 ADs threshold by at least one pipeline, were detected by all pipelines 

regardless of the threshold (Additional file 34). The cg/wgMLST pipelines with larger schema 

very often needed thresholds two or three times higher to provide the same clusters, which 

reflects their higher resolution power (Additional file 34). When looking at this threshold 

dispersion in terms of SNPs (with the CSI Phylogeny), most of the cgMLST clusters at 4 ADs 

were detected at a threshold ≤ 4 SNPs or at higher threshold levels close to 4 SNPs (Figure 

13A). The difference between the AD thresholds required by the different allele-based 

pipelines to detect each “outbreak-level” cluster had a median of 3 ADs, with a minimum of 0 

and maximum of 24 ADs. This trend is less influenced by the clustering algorithm than the 

cg/wgMLST schema, as a median of only 1 AD difference is observed when comparing 

pipelines running schemas with similar sizes (Figure 13B). Looking at pairwise comparisons 
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between all pipelines, our results showed that the overlap of clusters detected at 4 ADs with 

the exact same composition was, on average, 88.6% between pipelines using the PubMLST 

schema and 75.0% between the pipelines running the shorter schemas (Figure 13C and 

Additional file 35). Importantly, given the significant difference in resolution at outbreak level, 

one would need to decrease the threshold applied in the shorter schema pipelines to a 

threshold as low as 1 AD to have a proxy of the potential outbreak clusters obtained with the 

PubMLST schema at the commonly used 4 ADs threshold (Figure 13D and Additional file 35). 

This hampers the application of a single static threshold across different pipelines, highlighting 

the challenge of applying shorter schemas for outbreak detection. Given these results, we 

exclusively measured the genomic diversity within potential outbreak level clusters (i.e, 4 ADs) 

for the pipelines using the PubMLST cgMLST schema. The maximum distance between 

same-cluster samples per pipeline had an average of 2 ADs, a value that increases to 3 SNPs 

when mapping to an ST-representative reference (Figure 13E). 

 

Finally, we conducted an additional exercise to evaluate the resolution gain obtained when 

applying a previously explored rationale 20,55 in which the cgMLST is dynamically increased to 

the maximum number of wgMLST shared loci for a given cgMLST cluster. This exercise was 

conducted for the wgMLST INNUENDO schema (N = 2754 loci), starting either from a static 

core of 678 loci (INNUENDO-like-INNUENDOcgMLST) or from a core of 899 loci shared by 

99% of the studied dataset (INNUENDO-like-INNUENDO99), as well as for the SeqSphere 

wgMLST schema (N = 1595 loci), starting from a core of 860 loci shared by 99% of the studied 

dataset (SeqSphere-wgMLST). In all cases, there was a clear gain in the discriminatory power, 

with an increase of about 5 ADs in the maximum pairwise distances observed between the 

isolates of the same original cgMLST cluster (Additional file 36). These clusters often enroll 

isolates with considerably high genetic distances (Additional file 36), thus consolidating the 

observation that a threshold of 4 ADs is high for pipelines with original short cgMLST schemas, 

as it would likely overestimate the size of a real outbreak. The application of a dynamic 

wgMLST approach as the one tested here might mitigate this risk, providing a layer of extra 

resolution towards a more reliable detection of outbreak signals. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2024. ; https://doi.org/10.1101/2024.07.24.24310933doi: medRxiv preprint 

https://doi.org/10.5281/zenodo.12805750
https://doi.org/10.5281/zenodo.12805750
https://doi.org/10.5281/zenodo.12805750
https://doi.org/10.5281/zenodo.12805750
https://doi.org/10.1101/2024.07.24.24310933
http://creativecommons.org/licenses/by-nd/4.0/


 

 

26 

6. Impact of applying a different assembly pipeline and updating the allele-caller: 

proof-of-concept study  

Given the availability of an alternative assembly pipeline within the Consortium (INNUca 20,83), 

we sought to investigate if its usage in replacement of AQUAMIS would impact the study 

outcomes. Additionally, taking into account that the main allele-caller tested in this study 

(chewBBACA 72) was significantly updated while we were conducting our analyses, we 

extended this proof-of-concept investigation by also comparing the clustering results obtained 

when two different versions of this software are used, namely the stable chewBBACA v2.8.5 

and the recent (at the time of this analysis) chewBBACA v3.3.5. In summary, for each species, 

we took the INNUENDO-like pipeline (exactly as applied throughout the whole study, i.e. 

providing the AQUAMIS assemblies as input and using chewBBACA v2.8.5 - details in the 

Methods section) and compared its clustering results with those obtained when INNUca 

assemblies or chewBBACA v3.3.5 are used. Similar to the species-specific sections, these 

exercises were conducted for the two clustering methods used in this study (i.e. single-linkage 

and MSTreeV2). Our results revealed a high cluster congruence at all threshold levels for all 

species, with the usage of either INNUca or chewBBACA v3.3.5 yielding barely no deviation 

from the theoretical y=x scenario (slope varying between 0.984 and 1.003), indicating that the 

clustering at one level with the original pipeline is highly concordant with the clustering at the 

exact same level in each of the two alternative workflows (Additional file 37). We further 

performed an in depth comparison at outbreak level. Although our pairwise comparison 

strategy is quite strict, i.e. only considers a cluster as detected by two pipelines if it has exactly 

the same composition at the same AD level, the alternative pipelines were able to detect more 

than 94% and 97% of the clusters yielded by the original pipeline, when INNUca assemblies 

or chewBBACA v3.3.5 are used, respectively (Additional file 37). These values are 

considerably higher than those obtained in the inter-pipeline comparisons presented above 

for each species. Altogether, this exercise shows that the species-specific results and 

conclusions of this study would be maintained if other assemblies have been provided or if the 

partners using chewBBACA had updated their respective pipeline to the newest version of this 

software. In another perspective, it underscored the added value of the tools developed in this 

study to comprehensively and rapidly evaluate the impact of software updates and changes 

of components, which is pivotal to ensure the long-term robustness and sustainability of 

routine genomics workflows.  
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Discussion 

The integration of WGS into foodborne disease surveillance represents a significant advance 

in public health, providing unparalleled resolution to detect and respond to outbreaks. Still, the 

gains of WGS can only be fully leveraged by taking a One Health approach, which is not free 

of challenges 5. For instance, intra-country and supra-national One Health surveillance enrolls 

multiple stakeholders (commonly in different stages of WGS application) and different 

surveillance systems (decentralized and centralized), complicating harmonization and 

communication 5,40,84. Moreover, with the multitude of bioinformatics pipelines available 

nowadays, which are under constant innovation and refinement, it is now clear that, even 

though cg/wgMLST are becoming the standard WGS typing methods for FWD outbreak 

detection and investigation, the community is not evolving towards the adoption of a common 

WGS pipeline, as demonstrated in our study. In this context, as reinforced by WHO, it is critical 

to guarantee that WGS solutions are comparable between laboratories at regional, national 

and international levels 13. In the present study, we relied on a collaborative effort of multiple 

European institutes from seven different Countries, from the food, animal and human health 

sectors, to perform a large-scale assessment of the comparability and congruence at 

clustering level of different WGS pipelines for four major foodborne bacterial pathogens: L. 

monocytogenes, S. enterica, E. coli, and C. jejuni. We took a surveillance-guided approach in 

which each participating institute ran their pipeline over the same sequencing dataset, rather 

than conducting a theoretical comparison focused on assessing the impact of individual 

software components on the overall pipeline performance. This strategy provided a more 

realistic picture of how the clustering results obtained by different laboratories in their routine 

activities can be compared between each other at all possible resolution levels, while unveiling 

the WGS typing congruence with traditional methods and the inter-pipeline performance for 

outbreak detection. 

 

In this comprehensive study, we observed variations in clustering patterns across different 

bioinformatics pipelines, reflecting the diversity of approaches being currently applied for 

routine genomic analysis. Still, we generally found an overall good concordance for the 

pipelines following a cg/wgMLST approach, which displayed a high clustering congruence and 

similar discriminatory power across all levels of resolution, with the notable exception of C. 

jejuni comparisons. Indeed, for this pathogen, we observed a significant variation in resolution 

power that could be linked to the inclusion of pipelines running over schemas with a very 

discrepant number of loci. While this discrepancy reflects the current lack of a standard 

schema for C. jejuni, our observation that cgMLST pipelines with larger schemas often 

required thresholds two or three times higher than those with shorter schemas to detect the 
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same clusters raises concerns about the lower performance (or even reliability) of the latter in 

discriminating outbreak clusters. In this regard, our results suggest that the application of a 

dynamic wgMLST approach that takes advantage of the accessory genome 57–59 might 

mitigate this risk, as simulated here for C. jejuni, S. enterica and E. coli. 

 

Another significant observation was that even allele-based pipelines with overall high 

congruence exhibited some non-negligible differences in detecting outbreak clusters. 

Although our comparative analysis at outbreak level was intentionally strict, only considering 

clusters with the same isolate composition as concordant between pipelines, it was crucial to 

uncover discrepancies with potential practical impact on outbreak case definition and inter-

laboratory communication. Indeed, despite the case-definition criteria typically include a static 

and similar threshold for both centralized (e.g. ECDC and EFSA) and national pipelines 36–39, 

our findings indicate that a cut-off flexibilization by up to 2-3 ADs increases the likelihood that 

a given pipeline detects clusters with the exact same composition as another pipeline by 

roughly 10%. Consistently with previous observations 41, our results also showed that same-

schema pipelines tend to detect the same outbreak signals at more similar thresholds, and 

that, in this scenario, the flexibilization of just 1 AD is often sufficient to reach very concordant 

performance in outbreak detection. Importantly, the application of GT or HC clustering 

methods, which are the most widely applied for cg/wgMLST analysis 27, had considerably less 

impact on pipeline discrepancies. We anticipate that, contrary to the choice of the schema, 

the current lack of consensus about the clustering method to employ should not be a main 

factor hampering inter-laboratory comparability. For L. monocytogenes and S. enterica, we 

also simulated the application of a more stringent cut-off (e.g., 4 ADs for L. monocytogenes 

and 5 ADs for S. enterica), which consolidated that the cut-off flexibilization favors the 

detection of the same outbreak signal in different laboratories. In practice, as the discrepancy 

increases with the variability of pipelines under comparison, a potential reasonable approach 

when setting international and inter-sectoral case definition criteria can be the inclusion of 

suspected outbreak samples based on a flexible threshold, instead of the usual reliance on a 

static and similar cut-off that does not take into account the comparability of the pipelines 

involved in the investigation. In the context of a multi-national outbreak, the proposed 

approach of relaxing and tailoring the outbreak cut-off would reduce the likelihood of missing 

isolates that go unreported as they fall outside the case definition threshold in a given national 

pipeline, but that would cluster within the defined threshold in the pipeline centralizing the 

genomic outbreak investigation (e.g. ECDC or EFSA). 
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The adoption of this strategy for outbreak case-definition implies shaping the threshold 

boundaries according to the specific context of the outbreak under investigation, namely: i) 

the genetic and temporal distance between the outbreak isolates already with a confirmed 

epidemiological link; ii) the clustering performance and comparability of the pipelines involved 

in the outbreak investigation (regional, national or supra-national); and, iii) the expected 

genetic heterogeneity, evolutionary context and available typing information (ST, CC, 

serotype, drug susceptibility profile) of the potential outbreak-causing strain. While the first 

premise is expected to be strengthened as the integration of genomic and epidemiological 

data becomes more frequent (at national and international levels), we consider that the 

present study adds significant value to better inform outbreak investigation regarding the last 

two knowledge gaps. On the one hand, we present actual data regarding the comparability of 

a panoply of pipelines currently in place in several countries and sectors, and describe an 

innovative methodology for the rapid and comprehensive assessment of pipeline clustering 

congruence and outbreak performance comparability. On the other hand, with the assessment 

of the congruence between WGS typing and traditional typing data, we showcase very 

different levels of genetic heterogeneity of the most prevalent STs, CCs and/or serotypes, 

which represents valuable information for routine genomic surveillance and outbreak case 

definition. Indeed, while we consolidated the existence of STs/CCs/serotypes with a clear 

polyphyletic signature, such as the ST7 and the ST325 for L. monocytogenes and the 

Thompson and the Newport serotypes for S. enterica, we also found contrasting scenarios 

where the intra-ST or intra-serotype diversity was quite low, such as the ST8 and the ST87 for 

L. monocytegenes, the Agona serotype for S. enterica and the ST53 for C. jejuni. Besides the 

potential implications that these different evolutionary patterns may have for the selection of 

isolates for routine WGS surveillance based on traditional typing data, which is commonly 

performed for the highly prevalent S. enterica and C. jejuni species 85, these observations 

underscore the potential inadequacy of applying a single “outbreak threshold” within a species, 

as this may lead to an oversizing of potential outbreak clusters when highly clonal WGS-

derived lineages (often overlapping with STs/serotypes) are involved. For instance, a previous 

in-depth lineage-specific WGS analysis of L. monocytogenes evolution also corroborates that 

the outbreak cut-offs should not disregard the sub-lineages/CCs under analysis 86. This topic 

warrants further research in order to determine which threshold ranges render the highest 

epidemiological concordance per genogroup or even to evaluate the need of (novel) 

cg/wgMLST typing schemas tailored to their population structure and evolutionary history. The 

integration of epidemiological data in large-scale WGS studies, for example, through the 

analysis of epidemiologically confirmed outbreaks, will be also crucial to tackle this subject. 
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Noteworthy, even though allele-based pipelines are increasingly consolidated as the method 

of choice for routine FWD WGS typing with recognized gains 6–8,20,87, one cannot dismiss the 

application of a SNP-based analysis for FWD outbreak detection and investigation. Indeed, 

they are intuitively used by many laboratories for an enhanced discrimination of outbreak 

isolates detected by cg/wgMLST, and are still in place in others as main approach for FWD 

outbreak detection (e.g. SnapperDB or CFSAN SNP pipeline 16,30,88–90). The timeframe of this 

international Consortium and the dimension of our study rendered it impractical to perform an 

in-depth SNP analysis for each one of the ~100 to ~300 potential outbreak clusters 

consistently detected by all allele-based pipelines for each species. Still, by conducting a SNP 

analysis for the top represented STs/serotypes, we investigated the congruence between SNP 

and cg/wgMLST clustering and measured the SNP diversity within potential cg/wgMLST 

outbreak clusters. Our results suggest that, when using an ST- or serotype-specific reference 

(similar to what is done in SnapperDB), SNP-based analyses frequently provide equal to 

higher discriminatory power than cg/wgMLST pipelines, which is also reflected in the higher 

SNP than allelic distance within a cg/wgMLST outbreak cluster. However, not unexpectedly, 

this observation was sensitive to the genetic heterogeneity of the dataset, and, consequently, 

influenced by the ST/serotype under evaluation by the SNP-based pipeline and by the 

cg/wgMLST schema used by each allele-based pipeline. For example, in C. jejuni, although 

dependent on the ST, ST-specific SNP-based clustering generally provided higher resolution 

than the allele-based pipelines running shorter schemas, but not so frequently when compared 

to the pipelines relying on the biggest schema (PubMLST). When comparing SNP-based 

pipelines between themselves (only possible for L. monocytogenes and S. enterica), there 

were noticeable resolution discrepancies, particularly in S. enterica analyses. These 

discrepancies were related with the QC inclusion criteria applied by each SNP-based pipeline, 

which had a considerable impact on the size of the core SNP alignment, and, consequently, 

on the resolution. It is noteworthy that our study did not explore the need and benefits of 

conducting more advanced phylogenetic reconstructions (e.g., Maximum Likelihood) and/or 

integrating recently described models that incorporate epidemiological and evolutionary data 

(e.g., substitution rates) 91 in SNP-based outbreak detection and investigation. In summary, 

the variations detected between SNP-based pipelines and their sensitivity to multiple factors 

showcase the known difficulties in the comparison and integration of surveillance data from 

laboratories relying on this approach, as often reported in FWDs EQAs 32–34. In another 

perspective, our study suggests that SNP-based pipelines provide enough resolution for 

outbreak detection when performed at ST level, which consolidates their great potential to 

leverage even higher resolution when outbreak-specific references are used to zoom-in 

cg/wgMLST-derived outbreak clusters. Regarding this topic, we explored a dynamic 
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cg/wgMLST approach that performs such zoom-in by automatically increasing the resolution 

through the inclusion of shared accessory wgMLST loci 20,55, as implemented in ReporTree 55. 

Although we did not perform a direct comparison to assess the congruence between the two 

zoom-in approaches, the results of this exercise sustain that the “cg/wgMLST only” approach 

can be a promising alternative to enhance the intra-outbreak resolution, while avoiding the 

need of relying on different methodologies and likely reducing the complexity and turn-around 

time of the genetic investigation in the context of outbreak.  

 

The relevance of large-scale WGS typing approaches goes far beyond the detection and 

investigation of outbreaks. Indeed, the identification and real-time monitoring of main 

circulating lineages is pivotal for a sustainable and efficient pathogen surveillance. Therefore, 

in the last few years, a significant effort has been made towards the development of clustering-

based nomenclatures. For instance, for cgMLST, Enterobase and INNUENDO propose 

nomenclature systems based on the hierarchical clustering at different resolution levels 20,92, 

and other approaches relying on Life Identification Numbers (LIN) were recently released 93,94. 

For SNPs, the hierarchical “SNP-address” nomenclature has proven applicability in routine 

surveillance. In this study, we could identify, for each species and pipeline, subsequent 

distance thresholds in which cluster composition remains similar (i.e. “stability regions”). 

Despite slight deviations, concordant regions were normally found across all pipelines, thus 

showcasing their suitability to capture main WGS-derived lineages and species population 

structure. For instance, L. monocytogenes, S. enterica and E. coli exhibited stability regions 

across multiple levels of resolution (Figures 2C, 5C and 8C), including early “plateau” regions 

of considerable high stability that are not far from the “outbreak level” (where high instability 

was expectedly noticed). These “plateaux” represent specific genetic distance threshold 

ranges suitable for longitudinal monitoring of the main circulating lineages/genogroups, thus 

representing an important asset for the development/refinement of novel/existing 

nomenclature systems. This research line also informed us about the challenges associated 

with the identification of stability regions for C. jejuni, due to its high genetic diversity and 

polyclonal population structure 78–80. In fact, the identified regions for this species were often 

too short and less concordant between pipelines, anticipating great difficulties in the 

implementation of a robust hierarchical allele-based nomenclature system for this pathogen, 

and reinforcing the need for in-depth populational genomics studies to explore whether 

genogroup- or CC/ST-specific WGS-based classification systems could be an alternative 

solution to surpass these challenges. The identification of stability regions and their 

congruence with traditional typing have been the aim of multiple studies, typically relying on a 

single pipeline 20,59,65. In this study, we went a step further by performing this analysis for 
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multiple pipelines. We observed not only that the threshold ranges with the highest 

congruence with traditional typing have a good overlap with stability regions, but also that 

different pipelines yielded similar results between them. For example, in L. monocytogenes, 

we could identify, in all pipelines, a high congruence with CC and ST classifications around 

cgMLST thresholds of 388-508 and 150-190 ADs, respectively. A similar scenario was found 

for S. enterica, where we observed moderate congruence between cg/wgMLST stability 

regions and serotype and ST classifications, roughly at 1261-1663 and 205-310 levels, 

respectively. The interpretation of these results should take into consideration the fact that our 

study relied on curated datasets that aimed at mimicking the current species diversity in public 

repositories, thus being likely biased towards more prevalent lineages and/or countries with 

high WGS volume. Still, the good inter-pipeline comparability and the high congruence with 

traditional typing are good indicators that our results are robust and can be extrapolated to 

other diverse datasets and scenarios. For example, the cg/wgMLST stability region that we 

identified as best representing serotype classification for S. enterica corresponded well with 

the largest stability region detected in a previous large-scale comparative genomics study of 

this species that relied on a different dataset 65. In summary, our investigation on cluster 

stability regions and congruence with traditional typing provides valuable results with possible 

implications for future nomenclature design, while favoring backwards compatibility with pre-

WGS typing Era and increasing the confidence of laboratories to pursue the demanded 

technological transition.  

 

Ultimately, with the rampant increase of WGS data and number of laboratories conducting 

WGS-based surveillance, we anticipate that the typical exercises for inter-laboratory 

comparability assessment (e.g. EQAs, ring trials, proficient tests, etc.), which are usually 

focused on outbreak cluster detection among a limited number of isolates, will need to evolve 

to another scale in terms of dataset size and diversity, and the magnitude of congruence 

assessment. In this regard, the methodologies and tools developed throughout this study may 

not only facilitate such inter-laboratory assessments, but also contribute to support the 

continuous intra-laboratory evaluation and long-term sustainability of existing or newly 

developed pipelines. In order to showcase this application, we employed the developed tools 

to rapidly assess the impact of modifying certain pipeline components (assembly and allele 

calling), showing that our results would be maintained if alternative assemblies have been 

used or if chewBBACA had been updated to a newer version. 

 

In conclusion, this study provides valuable insights into the comparability of pipelines 

commonly used for FWD genomics surveillance and reinforces the need, while demonstrating 
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the feasibility, of conducting continuous and comprehensive WGS pipeline comparison 

studies. Our work contributes to accelerate the technological transition towards a robust FWD 

WGS surveillance at global scale, while promoting a smoother communication and 

cooperation between One Health stakeholders. 
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Methods 

Dataset selection and curation 

In order to accomplish the objectives of this study, we aimed to compile a diverse dataset 

(including sequencing reads and respective metadata) that captures the genomic diversity 

within the populations of L. monocytogenes, S. enterica, E. coli and C. jejuni. To this end, the 

BeONE partners shared anonymized sequencing reads under a Material Transfer Agreement. 

Read QC, trimming and assembly were performed with Aquamis v1.3.9 95 using default 

parameters. Briefly, reads were trimmed with fastp 96 and assembled with Shovill v1.1.0 97 

using SPAdes v3.15.4 de novo genome assembler 98. Assembly QC was performed with 

QUAST v5.0.2 99, Augustus 100 for gene prediction and BUSCO 101. ConFindr v0.7.4 102 was 

used for inter and intra genus contamination analysis and Kraken2 v2.1.2 103 for read and 

assembly based taxonomy profiling. MLST ST determination was performed with mlst v2.22.0 

21,104. All genome assemblies passing the QC were included in the final dataset. Among the 

others, we noticed that a considerable proportion of assemblies was flagged as “QC fail” 

exclusively due to the “NumContamSNVs” parameter (252 out of 371 for L. monocytogenes, 

198 out of 702 for S. enterica, 324 out of 675 for E. coli and 446 out of 919 for C. jejuni), 

suggesting that this setting might have been too strict. The manual inspection of a random 

subset of these samples showed that the detected contaminants were essentially related to 

sequencing errors. Therefore, we decided to recover the assemblies for which the percentage 

of reads corresponding to the correct species was >98% and integrate them in the final 

dataset. The final “BeONE dataset” comprised 1426 L. monocytogenes, 1540 S. enterica, 308 

E. coli and 610 C. jejuni isolates 47,49,51,53. In order to ensure the dataset diversity, we 

complemented this “BeONE dataset” with publicly available WGS data for the four species of 

interest, and for which the QC and assembly followed the exact same methodology 48,50,52,54,55. 

The final dataset used in this study comprised a total of 3300 L. monocytogenes, 2974 S. 

enterica, 2307 E. coli and 3686 C. jejuni isolates. 

 

Pipeline and input selection 

Based on the provided details for each pipeline, we established a strategy to avoid pipeline 

redundancy and increase the analytical scale (e.g., splitting the work between BeONE 

institutes with matching pipelines). As it would be unfeasible for each BeONE partner to filter 

the reads and/or assemble the genomes of so many isolates with the personal and 

computational resources available throughout the BeONE project timeframe, allele-based 

pipelines took as input all the assemblies available for these datasets, while SNP-based 

pipelines started from the QC-passed trimmed sequencing reads for the most represented 

STs/serotypes in each dataset, which were then aligned to the respective reference genome 
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sequences (details in Table 1 and Additional file 1). After an initial survey, we noticed that all 

allele-based approaches used by the BeONE partners that could be used to assemble the 

input datasets relied on SPAdes 98,105 for de novo genome assembly. Specifically, two non-

commercial automated workflows were available within the consortium: AQUAMIS 95,106 and 

INNUca 20,83. As the use of different assembly pipelines was not expected to have a significant 

impact on the clustering results 63 and AQUAMIS turned out to be faster and consume less 

computational resources, we decided to use the assemblies generated with this tool (see 

“Dataset selection and curation”) as input for all allele-based pipelines. Of note, AQUAMIS is 

aligned with the QC and assembly workflow implemented in the EFSA One Health WGS 

analytical pipeline 6,95. 

 

Specific pipeline methodology 

Allele-based pipelines 

chewieSnake 

The chewieSnake pipeline v3.1.1 17 was used to perform allele calling with chewBBACA 

v2.0.12 (setting bsr_theshold: 0.6, size_threshold: 0.2) 72 on the genome assemblies, and to 

compute the distance matrix (grapetree_distance_method: 3) and generate a MST with 

GrapeTree v2.1 56. Details on the used schemas are provided in Additional file 38.  

 

INNUENDO-like 

The INNUENDO-like pipeline corresponds to a non-automated workflow similar to the one 

available at the INNUENDO platform 20. Allele-calling was performed with chewBBACA v2.8.5 

(setting bsr_theshold: 0.6, size_threshold: 0.2) 72. Depending on the species, this pipeline was 

run with alternative schemas, as detailed in Additional file 38. In order to distinguish the 

different approaches, except for L. monocytogenes for which only one schema was tested with 

this pipeline, for all the remaining species the pipeline name is followed by the schema used.  

 

Ridom SeqSphere+ 

This software was run by two laboratories on different datasets. One was responsible for the 

analysis of S. enterica and C. jejuni, and the other one for the analysis of L. monocytogenes 

and E. coli. In both cases, SeqSphere+ version 8.3.4 (Ridom, Münster, Germany) was used 

to perform cgMLST allele calling on assemblies, and samples covering less than 95% of target 

loci of the schemes were removed from subsequent analysis. Details on the used schemas 

are provided in Additional file 38. Of note, the partner Institute applying SeqSphere for C. jejuni 

typically run the cgMLST schema (637 loci) over closely related samples. A preliminary 

analysis revealed that the application of this methodology on the diverse C. jejuni dataset of 
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this study would yield a very low clustering resolution, which hampered the comparison with 

the remaining ones. For this reason, an extra SeqSphere analysis with the extended cgMLST 

schema (637 core loci + 958 accessory loci) was requested to the partner in order to avoid the 

exclusion of this pipeline. The obtained wgMLST allelic matrix was subjected to clustering 

analysis with ReporTree v1.0.1 55, as described below (this combined pipeline was designated 

SeqSphere-wgMLST). For the S. enterica dataset, hamming distances were calculated with 

SeqSphere+ version 8.3.4, and clustering analysis was performed with ReporTree v1.0.1 55, 

as described below. For L. monocytogenes and E. coli datasets, hamming distances and HC 

single-linkage clustering were calculated in R with the hammingdists function of cultevo 

package v1.0.2 107 and the hclust function of stats package v 0.1.0 108, respectively. 

 

Bionumerics 

cgMLST analysis was performed on assemblies with BioNumerics 8.1 (Biomérieux). Details 

on the used schemas are provided in Additional file 38. For all four target pathogens entries 

covering less than 95% of the loci in the scheme were removed. Entries with “multiple 

consensus loci” above 30 were removed. Furthermore, only sequences with genome sizes 

within the following size range were kept for further analysis: L. monocytogenes (2.8-3.1 Mb), 

S. enterica (4.5-5.3 Mb), E. coli (4.5-5.6 Mb)  and C. jejuni (1.53-1.9 Mb). Hamming distances 

were also calculated with Bionumerics. 

 

MentaLiST 

cgMLST profiles were computed with MentaLiST v1.0.0 109 (docker: mentalist:1.0.0--

39e9e05e54) for each species of interest. MentaLiST 109 was used to build the k-mer 

databases for each species of interest with a kmer length (-k) of 31 and a minimum a 

percentage of allele coverage (-c) of 1.0, as well as call alleles from input fasta format (--fasta) 

with the original voting algorithm (--output_votes), and including alleles from 'special cases' 

such as incomplete coverage, novel, and multiple alleles (--output_special). Details on the 

used schemas are provided in Additional file 38. 

 

SNP-based pipelines 

snippySnake (and WGSBAC) 

snippySnake v1.1.0 41,110 ran snippy v4.6.0 111 on each sample followed by snippy-core to 

obtain the core-alignment and variant table. The snippy parameters were “mapqual: 60; 

basequal: 13; mincov: 10; minfrac: 0; minqual: 100; maxsoft: 10”. A SNP distance matrix 

was computed using snp-dists v0.7.0 112. Details on the reference genomes are provided in 

Additional file 1. 
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WGSBAC 113 ran snippy v4.6.0 111 for each ST or serotype in standard settings for the 

sequencing data of each sample using the respective reference genome sequence (details in 

Additional file 1). Based on core-genome SNP-alignments, snp-dists v0.6.3 112 was used to 

calculate pairwise SNP-distances, which were used for hierarchical clustering with the 

hierClust function v.5.1 of the statistical language R 108. After the cluster congruence analysis 

for L. monocytogenes, it was observed that WGSBAC yields the exact same clustering results 

as SnippySnake. This was later confirmed for the other species (data not shown), so we only 

presented the results of SnippySnake, which also reflect the WGSBAC performance. 

 

CSI Phylogeny 

CSI Phylogeny v1.4 62 was used to call SNPs and infer phylogenies. Settings used were: “min, 

SNP depth: 10”, “min relative SNP depth: 10%”, “Minimum distance between SNPs (prune): 

10”, “min SNP quality: 30”, “min read map quality: 25”, “min Z-score: 1.96”, “ignore 

heterozygous SNPs: false”. In brief, the pipeline maps sequencing read data using BWA MEM 

114 to the chosen reference sequence (details in Additional file 1), then vcfutils (part of 

SAMtools 115) is used to call SNPs. SNPs are then filtered by CSI Phylogeny 62, which 

produces a SNP matrix and a SNP pseudoalignment. Note that the usual CSI Phylogeny 

workflow would then produce a maximum likelihood tree from the alignment 116. However, in 

order to create comparable results between the methods, this final step was skipped in this 

study, and, instead, a single-linkage tree was created from the SNP matrix with ReporTree 

v1.0.1 55, as described below. 

 

SnapperDB 

SnapperDB 16 software was utilized to assign a SNP address to each of the analyzed isolates. 

The ‘SNP address’ strain level nomenclature is used to describe the relationship between 

isolates in a defined population, and is routinely performed at the partner institute using 

hierarchical single linkage clustering at seven decreasing thresholds of genetic differences 

(250, 100, 50, 25, 10, 5 and 0 SNPs difference) to identify epidemiologically significant 

clusters. For the purpose of this study, partitions were identified at all possible SNP levels. 

 

Output harmonization and clustering at all resolution levels 

For the cluster congruence analysis, it was important to harmonize the output of the different 

pipelines having clustering information at each possible distance threshold (i.e. all possible 

resolution levels). However, except for the WGSBAC pipeline and the Ridom SeqSphere+ 

pipeline for L. monocytogenes and E. coli, which provided a partitions table, the vast majority 
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of them do not produce this type of output, but instead end up with outputs such as allele/SNP 

or distance matrices and phylogenetic trees (Table 1). Therefore, in order to have a 

harmonized input for the clustering congruence analysis, allele matrices (in the case of 

chewieSnake, INNUENDO-like, C. jejuni SeqSphere-wgMLST and MentaLiST) or distance 

matrices (in the case of Ridom SeqSphere+, Bionumerics, snippySnake, CSI Phylogeny and 

SnapperDB) were used as input for ReporTree v1.0.1 55. This tool was used to process the 

available outputs and obtain clustering information at all possible distance thresholds. Default 

parameters were used, except for the argument “--loci-called”, which was set to 95% in order 

to remove samples with more than 5% missing loci, and for the argument “--site-inclusion”, 

which was set to 99% for the INNUENDO-like using the INNUENDO wgMLST schemas and 

the C. jejuni SeqSphere-wgMLST pipeline in order to only keep informative wgMLST loci with 

alleles assigned for 95% of the samples (Additional file 38). ReporTree was run for all of them 

using the single-linkage hierarchical clustering algorithm, which is also the default clustering 

method that the respective institutes use to determine clusters of potential public health 

interest. For all cases where allelic matrices were available, an additional ReporTree run was 

performed requesting clustering with the MSTreeV2 GrapeTree algorithm 6,24,56,64. 

 

Traditional typing 

The traditional typing information used in this work corresponded to the ST and CC for L. 

monocytogenes, ST and serotype for S. enterica and E. coli, and ST and CC for C. jejuni. ST 

was determined for all species with mlst v2.22.0 21,104 through Aquamis v1.3.9 95, as described 

above (“Dataset selection and curation” section). L. monocytogenes and C. jejuni CCs were 

inferred for each predicted ST based on the information present in PubMLST/BIGSdb 21 

schema profiles for this species. S. enterica serotype was determined with SeqSero2 v1.1.1 

117 using default parameters. E. coli serotype was determined for QC-passed reads with 

patho_typing v1.0 118 using default parameters. 

 

PopPUNK 

The main genomic lineages present in E. coli and C. jejuni datasets were inferred with 

PopPUNK v2.6.5 (default parameters) using E. coli v2 and C. jejuni v1 databases obtained on 

November 22nd, 2023 from BacPop website (https://www.bacpop.org/poppunk/ 119) and 

providing AQUAMIS genome assemblies as input. Given the unavailability of functional 

databases for L. monocytogenes and S. enterica at the time of this study, this tool was not 

used for these two species.  

 

Identification of pipeline stability regions 
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Stability regions, i.e. distance thresholds providing similar clustering results were determined 

with ReporTree v1.0.1 55 using default parameters. Briefly, this pipeline uses the script 

comparing_partitions_v2.py 55,120 to assess the number and composition of clusters obtained 

at progressively increasing distance thresholds and determine the neighborhood Adjusted 

Wallace coefficient (nAWC) at consecutive partitions (“n + 1” → “n”), based on a previously 

described approach 57–59. This script was run with default settings requesting the “stability” 

analysis, and, therefore, a region was considered as of stability when a nAWC ≥ 0.99 was 

observed in more than 5 subsequent thresholds.  

 

Congruence analysis 

Cluster congruence was assessed with the script comparing_partitions_v2.py 55,120 requesting 

the “between_methods” analysis. Briefly, for each pairwise comparison, we calculated the 

AWC, as a measure of the probability that two samples that cluster together using one method 

(at a given threshold level) also cluster together with another one (at a given threshold level) 

or belong to the same lineage, ST, CC or serotype 58. This was conducted between all possible 

threshold levels in both directions (method A → method B and method B → method A). In 

addition, for each comparison, we also calculated the Adjusted Rand (AR) coefficient as a 

measure of the overall agreement between the typing methods 58. The three values calculated 

for each comparison were then combined into a “Congruence Score” (CS) (CS  = AWCA → B + 

AWCB → A + AR), which varies from 0 (no congruence) to 3 (absolute congruence). This score 

was used to compare clustering results at each possible threshold of a pipeline either with 

traditional typing data or with each of the possible thresholds of another pipeline.  

 

Identification of correspondence points 

The script get_best_part_correspondence.py 121 was used for each pipeline comparison in 

order to assess what was the threshold that provided the most similar clustering results in the 

other pipeline (i.e., the best “correspondence point”), as assessed by CS scores. Only 

comparisons yielding CS ≥ 2.85, which ensures a score ≥ 0.95 for each CS metric component, 

were considered as possible “correspondence points” (i.e., no correspondence was reported 

when the best match had CS < 2.85). When a given threshold had a single valid 

correspondence point, this was assumed as the point of highest congruence. When a given 

threshold had several valid correspondence points, the closest threshold was reported as the 

best match. The trendline fitting the correspondence points of each comparison, as well as 

the respective r2 and slope, were determined with the scipy v1.10.0 linregress function 122.  

 

Assessment of the discriminatory power at high-resolution thresholds 
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The script comparison_outbreak_level.py 121 was used to assess the discriminatory power of 

each pipeline at high-resolution thresholds. Briefly, all the clusters identified at a potential 

outbreak level (7 ADs for L. monocytogenes, 14 ADs for S. enterica, 9 ADs for E. coli, and 4 

ADs for C. jejuni, see section “Thresholds for identification of outbreak clusters” for details) by 

each allele-based pipeline and their composition was recorded. Then, a list with the union of 

these clusters was created and the lowest threshold level at which each cluster was identified 

with the same composition in each pipeline (allele- and SNP-based) was assessed. Only 

samples passing the QC of all pipelines were considered for these analyses. 

 

The script stats_outbreak_analysis.py was used to determine the number of clusters identified 

by a given pipeline at a given threshold that could also be detected with the exact same 

composition by another pipeline at a (or up to a) similar or even higher threshold. Only samples 

passing the QC of all pipelines were considered for these analyses. Clusters with overlapping 

samples but different compositions were considered as different clusters. 

 

Regarding the assessment of the genetic diversity within potential outbreak-related clusters, 

we used the script stats_outbreak_analysis_snp_dists.py. This script determines, for each 

cluster identified by a given allele-based pipeline at a given threshold, the maximum allelic or 

SNP distance within the cluster that the same or an alternative allele- or SNP-based pipeline 

detected with the exact same composition.  

 

Thresholds for identification of outbreak clusters 

The threshold used for identification of potential outbreak clusters varied between species. 

For L. monocytogenes, we used a cutoff corresponding to 7 ADs, as this is the threshold 

conventionally used to determine potential outbreak-related samples in this species 7,63,123. For 

the other three, namely S. enterica, E. coli and C. jejuni, we considered a dynamic approach 

using the level for outbreak detection determined by in the INNUENDO project 20. Specifically, 

0.43% of the core loci for S. enterica, 0.34% for E. coli, and 0.59% for C. jejuni. For S. enterica 

and E. coli, the corresponding absolute threshold translated to 14 and 9 ADs in all pipelines, 

respectively, which are absolute thresholds similar to the ones obtained in INNUENDO 20. For 

C. jejuni, the calculated absolute threshold varied between pipelines, corresponding to 4 ADs 

for the pipelines running shorter schemas and 8 ADs for those running the PubMLST schema. 

However, as previous studies suggested the application of a 4 ADs threshold also for the 

PubMLST schema 81,82, we decided to run our exercise with a 4 ADs threshold in all pipelines. 

Noteworthy, in order to provide more informative results regarding the inter-pipeline pipeline 

comparison at outbreak level, this study also explored other commonly used thresholds (e.g. 
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4 ADs in L. monocytogenes and 5 ADs in S. enterica). Additionally, taking advantage of the 

flexibility of stats_outbreak_analysis.py (described above), the exercise included the 

assessment of the proportion of clusters identified by a given pipeline at a static threshold (= 

AD1) that could also be detected with the exact same composition when: i) a static threshold 

(= AD2) is also applied to the second pipeline (e.g. Figures XC, YC, WC and ZC); or ii)  a 

range of thresholds (≤ AD2) is also applied to the second pipeline (e.g. Figures XD, YD and 

WD). 

 

wgMLST zoom-in exercise 

For the three species with wgMLST schemas available, namely S. enterica, E. coli and C. 

jejuni, we conducted an additional exercise that aimed to assess the potential of a dynamic 

cgMLST approach to increase the discriminatory power at outbreak level. Briefly, for each of 

the three species, the INNUENDO-like pipeline was run with the respective INNUENDO 

wgMLST schema (Additional file 38) and ReporTree v1.0.1 55 was used to identify clusters at 

all possible distance thresholds, as described above. For the purpose of this exercise, the “--

zoom-cluster-of-interest” argument of ReporTree was set to the threshold used for outbreak 

identification (see section “Thresholds for identification of outbreak clusters”). With this 

approach, for each cluster identified at this threshold level, the set of core loci was dynamically 

increased according to the samples that belong to the cluster. The maximum AD difference 

between two samples within a cluster and the difference between this value and the maximum 

distance observed in the initial analysis (i.e. with the cgMLST loci determined for the whole 

dataset) for the same cluster was determined with the script wgmlst_exercise.py. Of note, in 

C. jejuni, a similar analysis was performed for the SeqSphere-wgMLST pipeline. Moreover, as 

the INNUENDO-like pipeline using the INNUENDO static cgMLST schema was the one 

providing the lowest resolution in C. jejuni, for this species, we also tested the impact of 

performing a dynamic cgMLST approach using the INNUENDO wgMLST schema in outbreak 

clusters identified in an initial analysis with the static INNUENDO cgMLST schema. For this, 

we performed an additional ReporTree run, where, instead of providing the initial allele matrix 

for the static cgMLST, we provided the allele matrix for the wgMLST schema. Moreover, the 

file combining metadata and the clustering partitions at all levels that was obtained in the initial 

ReporTree run (with the static cgMLST schema) was provided as metadata input. This 

additional ReporTree run was performed for each cluster identified in the initial run at the 

threshold used for identification of outbreak clusters (i.e. 4 ADs) combining the “--filter” and “-

-subset” arguments. 

 

Assessing the impact of modifying pipeline components 
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This study involved the distribution of the same set of genome assemblies (generated with 

AQUAMIS 95) across multiple institutes in order to assess inter-pipeline cluster congruence. 

This approach was taken because it would be unfeasible for every BeONE partner to run their 

own assemblies with the personal and computational resources available throughout the 

BeONE project timeframe, and also because the use of different assembly pipelines was not 

expected to have a significant impact on the clustering results 63. Nevertheless, in order to 

assess the impact of providing genome assemblies performed with AQUAMIS 95 in a pipeline 

that does not use this assembly workflow, and of a possible future update of chewBBACA 72 

allele-caller, we performed two additional analysis: i) comparison of the clustering results 

obtained with same pipeline when AQUAMIS or INNUca 20,83 assemblies are provided as input; 

and ii) comparison of the clustering results obtained with the same pipeline when two different 

versions of chewBBACA are used. For the first analysis, we assembled the datasets of each 

of the four species with INNUca v4.2.2 20,83 with default parameters. Afterwards, the 

INNUENDO-like pipeline (with chewBBACA v2.8.5) was run in parallel using as input the 

INNUca and the AQUAMIS genome assemblies of the set of samples that passed the QC of 

the two assembly workflows. For the second analysis, for each of the four species, we ran in 

parallel the INNUENDO-like pipeline over the AQUAMIS genome assemblies using 

chewBBACA v2.8.5 and chewBBACA v3.3.5 with the non-populated cgMLST schemas 

available on April 1st, 2024 in chewie-NS 75,124. After an initial run of the allele-caller to identify 

the samples with less than 5% of missing loci, we then run the two versions of the allele-caller 

on the set of passing samples. For each of the two comparisons (different assembly workflows 

and different allele-caller versions), we performed a cluster congruence analysis and an in-

depth pairwise comparison at outbreak level following the above-mentioned methodologies. 

 

Graphical visualization 

Plots generated in this research study were generated with the Seaborn python module 125 or 

with the ggplot2 R package 126. 

 

Data availability 

Anonymized sequencing reads of the “BeONE dataset” are deposited in the European 

Nucleotide Archive (ENA) database under the BioProjects PRJEB57166, PRJEB57179, 

PRJEB57098 and PRJEB57119. Genome assemblies are deposited in the Zenodo repository 

(L. monocytogenes: 10.5281/ZENODO.7267486 47; S. enterica: 10.5281/ZENODO.7267785 

49; E. coli: 10.5281/ZENODO.7267844 51; C. jejuni: 10.5281/ZENODO.7267879 53). The public 

dataset data was retrieved from Zenodo (L. monocytogenes: 10.5281/ZENODO.7116878 48; 

S. enterica: 10.5281/ZENODO.7119735 50; E. coli: 10.5281/ZENODO.7120057 52; C. jejuni: 
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10.5281/ZENODO.7120166 54). The collection of scripts used to conduct these analyses are 

available at the github repository 

https://github.com/insapathogenomics/WGS_cluster_congruence 121. Supplementary data are 

available in the Zenodo repository (https://doi.org/10.5281/zenodo.12805750) 133. 
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Tables 

Table 1. Pipelines used for the cluster congruence analysis with indication of the input type, the schema or reference genome used for each 

species, the output used for clustering and the clustering method(s) applied. HC – Hierarchical clustering; GT – GrapeTree. 

Pipeline name Workflow 
Type of 
pipeline 

Input 
type 

Schema (if allele) / Type of dataset (if SNP) 
Output for 
clustering 

Clustering 
method 

Lm Se Ec Cj 

chewieSnake chewieSnake Allele Assembly 
Ruppitsc

h 
Enterobase Enterobase PubMLST Allele matrix HC and GT 

INNUENDO-like 
(Listeria) or INNUENDO-

like-schema 
INNUENDO-like* Allele Assembly Moura 

INNUENDO wgMLST/ 
INNUENDO cgMLST§ (EFSA)/ 

Enterobase 

INNUENDO wgMLST/ 
INNUENDO cgMLST§ (EFSA)/ 

Enterobase 

INNUENDO wgMLST/ 
INNUENDO cgMLST/ 

PubMLST 
Allele matrix HC and GT 

SeqSphere or 
SeqSphere-wgMLST (C. 

jejuni) 

Ridom 
SeqSphere+** 

Allele Assembly 
Ruppitsc

h 
Enterobase Enterobase SeqSphere (extended) 

Allele or 
Distance or 

Partition table 
HC and GT 

Bionumerics Bionumerics** Allele Assembly Moura Enterobase Enterobase Oxford 
Distance 

matrix 
HC 

MentaLiST MentaLiST Allele Assembly Moura INNUENDO INNUENDO INNUENDO Allele matrix HC and GT 

SnippySnake SnippySnake SNP Reads ST serotype serotype - 
Distance 

matrix 
HC 

CSI CSI Phylogeny SNP Reads ST*** serotype*** serotype ST 
Distance 

matrix 
HC 

WGSBAC WGSBAC SNP Reads ST serotype serotype - 
Distance 

matrix 
HC 

SnapperDB SnapperDB SNP Reads - serotype - - 
Distance 

matrix 
HC 

*This pipeline corresponds to an adaptation of the pipeline included in the INNUENDO platform 20; **Commercial software; ***CSI Phylogeny” 62 was also run with a more diverse dataset combining 

the sequencing data of the top STs/serotype; §This schema is the one implemented and recommended by EFSA and for clarity reasons it is referred throughout the manuscript as the “EFSA” schema. 
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Figures 

 

Figure 1. Summary of the different countries and sectors involved in the pipeline cluster 

congruence assessment, with indication of the diversity of pipelines used for FWD surveillance 

per country, sector and species.  
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Figure 2. Assessment of allele-based clustering at all possible threshold levels for L. 

monocytogenes and congruence with traditional MLST. A) Composition of the L. 

monocytogenes dataset used in this study in terms of ST in comparison with datasets of 

previous studies (Maury et al. 2016 127 and Moura et al. 2016 60), the LiSeq project 128 and the 

BIGSdb database as of November 2021 21. A GrapeTree 56 visualization of the MST obtained 

with the INNUENDO-like pipeline is shown. Nodes (i.e. samples) are collapsed at the threshold 

with highest congruence with CC (508 ADs for this pipeline) and colored according to the ST 
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classification. B) Number of partitions obtained by each pipeline at each possible distance 

threshold. C) Clustering stability regions determined for each pipeline. The different blocks of 

each pipeline start in a different line. Distance thresholds (x axis) are presented in log2 scale. 

D) Barplot (top) with the number of samples of the top represented STs (≥ 50 samples) in L. 

monocytogenes dataset, with a swarmplot (bottom) indicating the AD threshold at which each 

pipeline clusters together all samples of each ST. E) Distribution of the AD thresholds at which 

each pipeline clusters together all samples of a given ST. The outlier STs are indicated above 

the respective diamond symbol.  
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Figure 3. Global evaluation of cluster congruence between different pipelines at all 

threshold levels for L. monocytogenes. A) Heatmap with the CS obtained for the 

comparison of the clustering results obtained at all possible thresholds of two pipelines (details 

on each pairwise comparison are in Additional file 2, with chewieSnake vs. Bionumerics using 

the HC algorithm being presented here as an example). The orange square highlights the 

levels of high resolution. To better link the heatmap with the clustering tree, we present an 

inverted dendrogram (i.e., from the highest to the lowest resolution) showing how the 

congruence at all levels is related with the phylogenetic structure of the dataset (dendrogram 

obtained with Bionumerics and visualized in auspice.us 129). Dashed red lines connect the CS 

score and clustering results obtained at similar distance thresholds. B) Zoom-in in the high 

resolution level highlighted in orange in panel A. C) Bi-directional correspondence points (gray 

lines) connecting the thresholds providing similar clustering results (closest threshold with the 

highest CS; only considered CS ≥ 2.85) by the two pipelines exemplified in panel A. D) 

Representation of the linear trend lines expected for the correspondence points with a 

theoretical slope deviation of 10% and 20% to be used as scale reference for the boxplots. 
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The slope is used as a proxy to evaluate whether two pipelines yield highly concordant 

clustering at the exact same level with slopes close to 1 (i.e. y=x scenario) reflecting high 

clustering concordance and similar discriminatory power across all levels. Boxplots present 

the slope distribution for allele vs. allele (orange) and SNP. vs. SNP (blue) pipeline 

comparisons for the linear trendlines with a r2 ≥ 0.99, illustrated in Additional file 2 and detailed 

in Additional file 6 (“n” refers to the number of comparisons with r2 ≥ 0.99 over the total number 

of comparisons). The boxplot of the allele vs. SNP scenario is not presented as only 42 out of 

the 248 comparisons yielded an r2 ≥ 0.99 (Additional file 6).  
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Figure 4. Evaluation of the performance of the genome-scale pipelines in the 

identification of potential outbreak-related isolates for the L. monocytogenes dataset. 

A) Density of the distance thresholds (ADs for allele-based pipelines and SNPs for SNP-based 

pipelines) required for the identification of clusters detected by at least one allele-based 

pipeline at 7 ADs. Only clusters having the same composition in all allele-based pipelines were 

included (n = 316). The results of SNP-based pipelines only include the clusters corresponding 

to the top 5 STs and were obtained using an ST-specific reference. B) Distribution of the 

difference between the minimum and maximum AD threshold needed to detect the same 

clusters across allele-based pipelines, using the same clusters as described in panel A. C) 

Overlap between the genetic clusters detected by allele-based pipelines at 7 ADs. D) Overlap 

between the genetic clusters detected by one pipeline at 7 ADs and those detected by the 

others at ≤ 9 ADs. E) Distribution of the maximum ADs within each “outbreak-level” cluster 

identified at 7 ADs by the respective pipeline. F) Distribution of the maximum SNP distances 

within “outbreak-level” cgMLST clusters identified by at least an allele-based pipeline at 7 ADs. 

G) Maximum allele (top) or SNP (bottom) distance threshold within each cluster determined 

by at least an allele-based pipeline at up to 7 ADs. The red dot indicates, for each threshold, 

the 95th percentile.  
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Figure 5. Assessment of allele-based clustering at all possible threshold levels for S. 

enterica and congruence with traditional serotype. A) Composition of the S. enterica 

dataset used in this study in terms of serotype and in comparison with the composition of the 

datasets of previous studies (INNUENDO 20 and BioProject PRJEB20997 130), and the 

Enterobase database as of November 2021 64. A GrapeTree 56 visualization of the MST 

obtained with the INNUENDO-like-INNUENDO99 pipeline is shown. Nodes (i.e. samples) are 

collapsed at the threshold with highest congruence with serotype (1514 ADs for this pipeline) 
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and colored according to the ST classification. B) Number of partitions obtained by each 

pipeline at each possible distance threshold. C) Clustering stability regions determined for 

each pipeline. The different blocks of each pipeline start in a different line. Distance thresholds 

(x axis) are presented in log2 scale. D) Barplot (top) with the number of samples of the top 

represented serotypes (≥ 50 samples) in S. enterica dataset, with a swarmplot (bottom) 

indicating the AD threshold at which each pipeline clusters together all samples of each 

serotype.  
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Figure 6. Global evaluation of cluster congruence between different pipelines at all 

threshold levels for S. enterica dataset. A) Heatmap with the CS obtained for the 

comparison of the clustering results obtained at all possible thresholds of two pipelines (details 

on each pairwise comparison are in Additional file 10, with Bionumerics vs. chewieSnake using 

the HC algorithm being presented here as an example). The orange square highlights the 

levels of high resolution. To better link the heatmap with the clustering tree, we present an 

inverted dendrogram (i.e., from the highest to the lowest resolution) showing how the 

congruence at all levels is related with the phylogenetic structure of the dataset (dendrogram 

obtained with chewieSnake and visualized in auspice.us 129). Dashed red lines connect the 

CS score and clustering results obtained at similar distance thresholds. B) Zoom-in in the high 

resolution level highlighted in orange in panel A. C) Representation of the linear trend lines 

expected for the correspondence points with a theoretical slope deviation of 10% and 20% to 

be used as scale reference for the boxplots. The slope is used as a proxy to evaluate whether 

two pipelines yield highly concordant clustering at the exact same level with slopes close to 1 

(i.e. y=x scenario) reflecting high clustering concordance and similar discriminatory power 

across all levels. The boxplot presents the slope distribution for allele vs. allele (orange) 
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pipeline comparisons for the linear trendlines with a r2 ≥ 0.99, illustrated in Additional file 10 

and detailed in Additional file 14 (“n” refers to the number of comparisons with r2 ≥ 0.99 over 

the total number of comparisons). The boxplots of the SNP vs. SNP and allele vs. SNP 

scenarios are not presented as only 4/14 and 6/160 comparisons yielded an r2 ≥ 0.99 

(Additional file 14). 
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Figure 7. Evaluation of the performance of the genome-scale pipelines in the 

identification of potential outbreak-related isolates for the S. enterica dataset. A) Density 

of the distance thresholds (ADs for allele-based pipelines and SNPs for SNP-based pipelines) 

required for the identification of clusters detected by at least one allele-based pipeline at 14 

ADs. Only clusters having the same composition in all allele-based pipelines were included (n 

= 255). The results of SNP-based pipelines only include the clusters corresponding to the top 

3 serotypes and were obtained using a serotype-specific reference. B) Distribution of the 

difference between the minimum and maximum AD threshold needed to detect the same 

clusters across allele-based pipelines, using the same clusters as described in panel A. C) 

Overlap between the genetic clusters detected by allele-based pipelines at 14 ADs. D) Overlap 

between the genetic clusters detected by one pipeline at 14 ADs and those detected by the 

others at ≤ 16 ADs. E) Distribution of the maximum ADs within each cluster identified at 14 

ADs by the respective pipeline. F) Distribution of the maximum SNP distances within cgMLST 

clusters identified by at least an allele-based pipeline at 14 ADs. G) Maximum allele (top) or 

SNP (bottom) distance threshold within each cluster determined by at least an allele-based 

pipeline at up to 14 ADs. The red dot indicates, for each threshold, the 95 th percentile.  
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Figure 8. Assessment of allele-based clustering at all possible threshold levels for E. 

coli and congruence with traditional serotype. A) Composition of the E. coli dataset used 

in this study in terms of serotype and in comparison with the composition of the datasets of 

previous studies (INNUENDO 20 and BioProject PRJNA230969 131,132), and the Enterobase 

database as of November 2021 64. A GrapeTree 56 visualization of the MST obtained with the 

INNUENDO-like-INNUENDO99 pipeline is shown. Nodes (i.e. samples) are collapsed at the 

threshold with highest congruence with serotype (620 ADs for this pipeline) and colored 
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according to the ST classification. B) Number of partitions obtained by each pipeline at each 

possible distance threshold. C) Clustering stability regions determined for each pipeline. The 

different blocks of each pipeline start in a different line. Distance thresholds (x axis) are 

presented in log2 scale. D) Barplot (top) with the number of samples of the most represented 

serotype (O157:H7) and ST (ST11) in E. coli dataset, with a swarmplot (bottom) indicating the 

AD threshold at which each pipeline clusters together all samples of each of them. 
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Figure 9. Global evaluation of cluster congruence between different pipelines at all 

threshold levels for E. coli dataset. A) Heatmap with the CS obtained for the comparison of 

the clustering results obtained at all possible thresholds of two pipelines (details on each 

pairwise comparison are in Additional file 19, with INNUENDO-like-Enterobase vs. 

INNUENDO-like-INNUENDO99 using the HC algorithm being presented here as an example). 

The orange square highlights the levels of high resolution. To better link the heatmap with the 

clustering tree, we present an inverted dendrogram (i.e., from the highest to the lowest 

resolution) showing how the congruence at all levels is related with the phylogenetic structure 

of the dataset (dendrogram obtained with INNUENDO-like-INNUENDO99 and visualized in 

auspice.us 129). Dashed red lines connect the CS score and clustering results obtained at 

similar distance thresholds. B) Zoom-in in the high resolution level highlighted in orange in 

panel A. C) Representation of the linear trend lines expected for the correspondence points 

with a theoretical slope deviation of 10% and 20% to be used as scale reference for the 

boxplots. The slope is used as a proxy to evaluate whether two pipelines yield highly 

concordant clustering at the exact same level with slopes close to 1 (i.e. y=x scenario) 

reflecting high clustering concordance and similar discriminatory power across all levels. The 
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boxplot presents the slope distribution for allele vs. allele (orange) pipeline comparisons for 

the linear trendlines with a r2 ≥ 0.99, illustrated in Additional file 19 and detailed in Additional 

file 23 (“n” refers to the number of comparisons with r2 ≥ 0.99 over the total number of 

comparisons). The boxplot of the SNP vs. SNP scenario is not presented as we only had one 

comparison, and the one of the allele vs. SNP scenario is not presented as only 11/34 

comparisons yielded an r2 ≥ 0.99 (Additional file 23). 
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Figure 10. Evaluation of the performance of the genome-scale pipelines in the 

identification of potential outbreak-related isolates for the E. coli dataset. A) Density of 

the distance thresholds (ADs for allele-based pipelines and SNPs for SNP-based pipelines) 

required for the identification of clusters detected by at least one allele-based pipeline at 9 

ADs. Only clusters having the same composition in all allele-based pipelines were included (n 

= 185). The results of SNP-based pipelines only include the clusters corresponding to the 

O157:H7 serotype and were obtained using a serotype-specific reference. B) Distribution of 

the difference between the minimum and maximum AD threshold needed to detect the same 

clusters across allele-based pipelines, using the same clusters as described in panel A. C) 

Overlap between the genetic clusters detected by allele-based pipelines at 9 ADs. D) Overlap 

between the genetic clusters detected by one pipeline at 9 ADs and those detected by the 

others at ≤ 12 ADs. E) Distribution of the maximum ADs within each “outbreak-level” cluster 

identified at 9 ADs by the respective pipeline. F) Distribution of the maximum SNP distances 

within “outbreak-level” cgMLST clusters identified by at least an allele-based pipeline at 9 ADs. 

G) Maximum allele (top) or SNP (bottom) distance threshold within each cluster determined 

by at least an allele-based pipeline at up to 9 ADs. The red dot indicates, for each threshold, 

the 95th percentile.  
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Figure 11. Assessment of allele-based clustering at all possible threshold levels for C. 

jejuni and congruence with traditional serotype. A) Composition of the C. jejuni dataset 

used in this study in terms of CC and in comparison with the composition of the datasets 

INNUENDO 20 and the PubMLST database as of November 2021 21. A GrapeTree 56 

visualization of the MST obtained with the INNUENDO-like-PubMLST pipeline is shown. 

Nodes (i.e. samples) are collapsed at the threshold with highest congruence with CC (839 

ADs for this pipeline) and colored according to the ST classification. B) Number of partitions 

obtained by each pipeline at each possible distance threshold. C) Clustering stability regions 

determined for each pipeline. The different blocks of each pipeline start in a different line. 

Distance thresholds (x axis) are presented in log2 scale. D) Barplot (top) with the number of 
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samples of the top represented CCs (≥ 50 samples) in C. jejuni dataset, with a swarmplot 

(bottom) indicating the AD threshold at which each pipeline clusters together all samples of 

each CC.  
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Figure 12. Global evaluation of cluster congruence between different pipelines at all 

threshold levels for C. jejuni dataset. A) Heatmap with the Congruence score (CS) obtained 

for the comparison of the clustering results obtained at all possible thresholds of two pipelines 

(details on each pairwise comparison are in Additional file 28, with Bionumerics vs. 

INNUENDO-like-INNUENDO99 using the single-linkage hierarchical clustering (HC) algorithm 

being presented here as an example). The orange square highlights the levels of high 

resolution. To better link the heatmap with the clustering tree, we present an inverted 

dendrogram (i.e., from the highest to the lowest resolution) showing how the congruence at 

all levels is related with the phylogenetic structure of the dataset (dendrogram obtained with 

INNUENDO-like-INNUENDO99 and visualized in auspice.us 129). Dashed red lines connect 

the CS score and clustering results obtained at similar distance thresholds. B) Zoom-in in the 

high resolution level highlighted in orange in panel A. C) Representation of the linear trend 

lines expected for the correspondence points with a theoretical slope deviation of 10% and 

20% to be used as scale reference for the boxplots. The slope is used as a proxy to evaluate 

whether two pipelines yield highly concordant clustering at the exact same level with slopes 

close to 1 (i.e. y=x scenario) reflecting high clustering concordance and similar discriminatory 

power across all levels. The boxplot presents the slope distribution for allele vs. allele (orange) 
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pipeline comparisons for the linear trendlines with a r2 ≥ 0.99, illustrated in Additional file 28 

and detailed in Additional file 32 (“n” refers to the number of comparisons with r2 ≥ 0.99 over 

the total number of comparisons). The boxplots of the SNP vs. SNP and allele vs. SNP 

scenarios are not presented as only 4/14 and 6/160 comparisons yielded an r2 ≥ 0.99 

(Additional file 32).  
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Figure 13. Evaluation of the performance of the genome-scale pipelines in the 

identification of potential outbreak-related isolates for the C. jejuni dataset. A) Density 

of the distance thresholds (ADs for allele-based pipelines and SNPs for SNP-based pipelines) 

required for the identification of clusters detected by at least one allele-based pipeline at 4 

ADs. Only clusters having the same composition in all allele-based pipelines were included (n 

= 430). The results of the SNP-based pipeline only include the clusters corresponding to the 

top 5 STs and were obtained using an ST-specific reference. B) Distribution of the difference 

between the minimum and maximum AD threshold needed to detect the same clusters across 

allele-based pipelines, using the same clusters as described in panel A. C) Overlap between 

the genetic clusters detected by allele-based pipelines at 4 ADs. D) Overlap between the 

genetic clusters detected by one pipeline at 4 ADs and those detected by the others at ≤ 4 

ADs. E) Distribution of the maximum ADs within each “outbreak-level” cluster identified at 4 

ADs by the respective pipeline. F) Distribution of the maximum SNP distances within 

“outbreak-level” cgMLST clusters identified by at least an allele-based pipeline at 4 ADs. G) 

Maximum allele (top) or SNP (bottom) distance threshold within each cluster determined by at 

least an allele-based pipeline at up to 4 ADs. The red dot indicates, for each threshold, the 

95th percentile. 
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