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Abstract  

 
Frailty is a multifaceted clinical state associated with accelerated aging and adverse health outcomes. 
Informed etiological models of frailty hold promise for producing widespread health improvements 
across the aging population. Frailty is currently measured using aggregate scores, which obscure 
etiological pathways that are only relevant to subcomponents of frailty. Therefore, we performed the 
first multivariate genome-wide association study of the latent genetic architecture between 30 
frailty deficits, which identified 408 genomic risk loci . Our model included a general factor of genetic 
overlap across all deficits, plus six novel factors indexing shared genetic signal across specific groups 
of deficits. Follow-up analyses demonstrated the added clinical and etiological value of the six factors, 
including predicting frailty in external datasets, divergent genetic correlations with clinically relevant 
outcomes, and unique underlying biology linked to aging. This suggests nuanced models of frailty are 
key to understanding its causes and how it relates to worse health.  
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Frailty is a complex clinical state that affects more than 40% of adults aged over 65 years(1). 
It is defined as a state of progressive, multisystem physiological decline that reduces an 
individual’s ability to withstand external stressors (1). This deterioration can lead to both 
physical and mental impairment and is strongly associated with adverse health outcomes, 
including earlier mortality(2) and increased levels of disability and hospitalization(3). Global 
population aging means that frailty represents a growing public health concern(4). Family-
based studies indicate a substantial genetic component to frailty, with heritability estimates of 
~45%(5). Therefore, genetic methods offer a promising tool for better understanding the risk 
pathways to this critical health state. Nevertheless, the etiology of frailty remains largely 
unknown, limiting our potential to identify effective therapeutic or preventive treatments. We 
hypothesized that what has limited our etiological understanding is that we have traditionally 
only considered aggregate measurements of frailty in genetic studies.  

The two most common methods for measuring frailty are the Frailty Index (FI) and Fried Frailty 
Score (FFS)(6, 7). The FI quantifies frailty by calculating the proportion of ‘deficits’ that are 
present within an individual from a set of ≥30 phenotypes associated with poor health outcomes 
in older adults(6). The FFS uses an aggregate score across five physical frailty deficits (weight 
loss, weakness, exhaustion, slow walking speed and physical inactivity), where the presence 
of ≥3 of these deficits indicates frailty(7). Although the FFS is easier to measure in large 
samples, it is intended to capture pathways of physical frailty and does not provide sufficient 
information to assess the more nuanced subgroupings that may occur within the broader frailty 
construct(8). By contrast, the deficits that form the FI span many levels of functional, 
psychological, and social aspects of health, allowing frailty to be measured across a broad 
spectrum of traits. Yet, FI deficits are heterogeneous and vary in their underlying etiology.  

Phenotypic work clearly indicates that the deficits comprising the FI are not always strongly 
correlated and are driven by diverse biological mechanisms(9-11). Their combination into a 
single aggregate score is, therefore, likely to obscure causal pathways of frailty. For example, 
previous work that applied principal component analysis to phenotypic data of FI deficits 
demonstrated that additional informative variance associated with frailty was captured when 
three clusters were modelled instead of one cluster(12). Information that is lost by aggregation 
could be identified by a more detailed genetic analysis. Recent advances in multivariate 
genomics, such as the development of Genomic Structural Equation Modelling (Genomic 
SEM)(13), offer the opportunity to model the genetic basis of frailty at a multi-dimensional level.  

We used Genomic SEM to identify novel groupings of genetic overlap between 30 frailty deficits 
using publicly available GWAS summary statistics. We identified seven distinct latent factors 
underpinning frailty that displayed unique genetic overlap with clinically relevant health 
outcomes and were defined by divergent sets of genomic risk loci and biological pathways, 
which provided empirical support for a majority of the 12 ‘hallmarks of aging’(14). In 
combination, these latent constructs yielded enhanced prediction of frailty status in external 
cohorts and a dramatic improvement in genomic locus discovery compared to aggregate 
measures. 

Results 
 
Multivariate Genetic Architecture of Frailty 
Following careful quality control and selection of frailty deficit phenotypes (Online Methods), we used 
Genomic SEM to model the genome-wide genetic overlap from GWAS data for 30 frailty deficits(15-19) 
(Figure 1 and Tables S1-S2). As Genomic SEM can model genetic overlap across even mutually 
exclusive participant samples, this allowed us to bring together the most well-powered genomic 
studies currently available for the 30 frailty deficits and produce estimates with the highest possible 
precision. Using a combination of exploratory and confirmatory factor analysis (Online Methods), this 
modeling procedure yielded a bifactor model that provided a good fit to the data (Figure 1 and Table 
S3; comparative fit index (CFI) = 0.93; standardized root mean squared residual (SRMR) = 0.07). This 
model included a General Factor that indexed genetic overlap across all 30 deficits and so is 
conceptually similar to prior aggregate measures of frailty. In addition, the model produced six residual 
group factors that were orthogonal (i.e. uncorrelated) to the General Factor, which were defined by 
additional genetic overlap within subsets of frailty deficits. These six factors captured distinct, albeit 
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inter-correlated, frailty pathways related to social isolation (Factor 1), unhealthy lifestyle (Factor 2), 
multimorbidity (Factor 3), respiratory/metabolic problems (Factor 4), poorer cognition (Factor 5), and 
disability (Factor 6). The remaining analyses evaluated the divergent validity and clinical utility of these 
six factors by examining their ability to uniquely capture frailty-relevant pathways at increasingly 
granular levels of biological analysis.  
 
 

 
 

Figure 1: A path diagram of the standardized results for our bifactor model of frailty. All 30 frailty deficits 
load onto the General Factor of frailty (large pink oval), which is orthogonal to Factors 1 to 6 (i.e. residual factors). 
The small circles represent the 30 measured frailty indicators (i.e. genetic variance captured in the univariate 
GWAS for that phenotype), whereas the medium-size ovals represent latent factors (i.e. unmeasured constructs 
representing genetic overlap between the indicators that load onto them). Single-headed arrows represent a 
directional genetic correlation between a latent factor and an indicator (i.e. factor loadings), whereas curved double-
headed arrows represent inter-factor correlations between Factors 1 to 6. Standard errors of the correlation 
coefficients are reported in square brackets. SOB = shortness of breath walking on flat ground; BFP = body fat 
percentage; BMR = basal metabolic rate; WP = slow walking pace; GF = low fluid intelligence score; OHR = poorer 
overall health rating; DIS = long-standing illness, disability or infirmity; EYE = eye disorder/problem; HGS = low 
hand grip strength; LSA = low social/leisure activity; LON = loneliness, isolation; MOT = feelings of 
unenthusiasm/disinterest; MD = major depressive disorder; TIR = tiredness/lethargy; INS = insomnia; OH = poor 
oral health; FIN = financial difficulties; FRA = fracture in last 5 years; FALL = number of falls in past year; PAIN = 
pain experienced in past month; CP = chest pain; WHZ = wheeze/whistling in chest in past year; HL = age-related 
hearing loss; LWS = not living with spouse/partner; CON = unable to confide; CIG = number of cigarettes smoked 
per day; ASI = pulse wave arterial stiffness index; LPA = physical inactivity; ILL = number of non-cancer illnesses; 
MAP = mean arterial pressure. 
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Genetic Overlap between Latent Frailty Factors and Aging-Related Health Traits 
To validate whether the latent factors in the bifactor model reflect different aspects of frailty, we 
measured the level of genetic correlation between each of the latent factors and 52 aging-related health 
outcomes and established frailty measures (Figure 2 and Tables S4-S5). The General Factor displayed 
high positive genetic correlations with the FI (𝑟𝑔 = 0.93 [SE = 0.02], PFDR = 9.1x10-298) and FFS (𝑟𝑔 = 

0.83 [0.02], PFDR = 9.1x10-298), indicating that the General Factor closely approximates both of these 
frailty phenotypes in line with expectations, given that this latent factor represents genetic overlap 
between all 30 included deficits. These findings were corroborated by the fact that all the latent factors 
(except Factor 1 (social isolation)) were associated with shorter parental lifespan (𝑟𝑔 < -0.31, PFDR < 

3.2x10-06), reduced longevity (𝑟𝑔 < -0.21, PFDR < 0.01), increased risk of common aging-related infections 

(𝑟𝑔 > 0.22, PFDR < 0.01), hospitalization due to infection (𝑟𝑔 > 0.15, PFDR < 0.008), and heart failure (𝑟𝑔 > 

0.15, PFDR < 0.005), all of which reflect key clinical correlates of frailty.   
 
Importantly, our findings support the inclusion of additional subgroups when measuring frailty 
accumulation by highlighting divergent genetic correlations with aging-related health outcomes. For 
example, Factor 5 (poorer cognition), was the only latent factor to demonstrate positive genetic 
correlations with Alzheimer’s disease (𝑟𝑔 = 0.32 [SE = 0.07], PFDR = 2.26x10-05) and amyotrophic lateral 

sclerosis (𝑟𝑔 = 0.38 [0.06], PFDR = 1.07x10-08). Factor 5 also captured genetic variance associated with 

smaller grey matter volume (𝑟𝑔= -0.34 [0.05], PFDR = 9.53x10-12) and lacunar stroke (𝑟𝑔 = 0.25 [0.09], 

PFDR = 9.80x10-03). By contrast, Factor 2 (unhealthy lifestyle) demonstrated genetic correlations with 
brain-related vascular changes, including increased white matter hyperintensities (𝑟𝑔 = 0.21 [0.09], PFDR 

= 0.04) and resting state fluctuation amplitudes (𝑟𝑔 = 0.19 [0.08], PFDR = 0.03), whereas Factor 3 

(multimorbidity) was correlated with ischemic and lacunar stroke (𝑟𝑔 = 0.45 [0.05], PFDR = 6.21x10-18 and 

𝑟𝑔 = 0.38 [0.09], PFDR = 3.00x10-03), but not cerebrovascular markers. Finally, all the latent frailty factors 

displayed distinct patterns of genetic correlations with routinely collected blood and urinary biomarkers 
(Figure 2), which may represent potential endophenotype profiles for these frailty subgroups. By 
definition, the identified relationships are independent of shared risk pathways captured by the General 
Factor of frailty. It follows that our model of frailty has potential clinical utility for targeted prevention and 
therapeutic intervention in patients that present with elevated risk within a subgroup of frailty deficits. 
 
Multivariate GWAS Identifies 408 Genomic Risk Loci Associated with Frailty 
We subsequently performed a multivariate GWAS of our frailty bifactor model using Genomic SEM to 
uncover genomic risk loci that were associated with each latent frailty factor (PBONF < 7.14x10-09). We 
pruned out any significantly heterogenous genetic signal (QSNP) from our GWAS results to ensure that 
we were only measuring genetic effects that were shared between the deficits that defined that 
particular latent factor (Online Methods). From this shared signal, we identified a total of 408 genomic 
risk loci across the seven latent frailty factors (Figure 3 and Tables S6-12). We integrated the results 
from our GWAS with the lead single nucleotide polymorphisms (SNPs) of the risk loci identified in the 
previously published GWAS of the FI(20) (Table S13) and FFS(21) (Table S14). Of the overlapping 
lead SNPs (12/14 for the FI and 18/37 for the FFS), we replicated 33.3% of the previously identified 
genomic risk loci for the FI and 22.2% for the FFS with the General Factor. 100% of the risk loci for both 
frailty phenotypes displayed nominal significance with at least one of our latent frailty factors, supporting 
validation of our model in measuring frailty. However, 33.3% of the FI loci and 25% of the FFS loci were 
significant for the SNP-level heterogeneity metric (QSNP P < 7.14x10-09; Tables S13-14). As QSNP 
identifies SNPs that are likely to be deficit-specific or that show heterogeneous effects between the 
included frailty deficits, these findings indicate that existing aggregate frailty measures are sensitive to 
large effects driven by a single indicator that are not part of more general frailty pathways. Furthermore, 
33.3% and 27.8% of the FI and FFS loci were replicated by the residual factors (i.e. Factors 1 to 6) 
instead of the General Factor. This demonstrates that our model can comprehensively define subgroups 
within the frailty construct, which one aggregate measure overlooks. 
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Figure 2: A heatmap of the genetic correlations between aging-related health outcomes and each of the 
latent factors from the frailty bifactor model. Genetic correlations with an FDR-corrected P-value <0.05 are 
highlighted in bold. Blue shading represents a positive genetic correlation whereas red shading represents a 
negative genetic correlation. For visualization purposes, only health outcomes that demonstrated at least one FDR-
corrected P-value <0.05 with one or more of the latent factors are included in this figure (full results can be found 
in Table S5). 
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Figure 3: Manhattan plots of the shared genetic signal for each of the latent factors in the frailty model. 
The x-axis depicts the chromosomes and the y-axis represents the -log10 P-values of the association between each 
individual SNP and each latent factor. The closest gene to the lead SNP are annotated for top loci for each latent 
factor. The dashed grey line denotes the genome-wide significance threshold adjusted for multiple testing (i.e. 

PBONF < 7.14x10-09). �̂� is the expected sample size of each latent factor implied by the GWAS summary 

statistics of that factor, which are influenced by the power of the factor loadings of the indicators (i.e. 
frailty deficits) that define it. 
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Gene Expression and Epigenetic Changes Associated with Latent Frailty Factors 
We completed a series of post-GWAS analyses to explore how the genetics underpinning each of the 
frailty latent factors may influence underlying biology. We applied Multi-marker Analysis of GenoMic 
Annotation (MAGMA) gene property analysis to test for enriched gene expression changes in 54 body 
tissues and Stratified Genomic SEM to test for enrichment in 146 functional annotations linked to gene 
expression and epigenetic changes in tissues and cell subtypes within the brain (Figure 4 and Online 
Methods).  
 

 
 

Figure 4: Results from the MAGMA gene property analysis (Panel A) and the Stratified Genomic SEM (Panel 
B). In Panel A, the y-axis denotes the -log10 P-value of the enrichment between each latent frailty factor and body 
tissues from GTEx version 8 (only tissues with significant enrichment are displayed). The light grey dashed line 
denotes the cut-off for nominal significance (i.e. P-value < 0.05) and bars that are marked with an asterisk indicate 
enrichment that remained significant after adjusting for multiple testing (i.e. PFDR < 0.05). Panel B displays 
heatmaps of the enrichment values calculated using Stratified Genomic SEM to test for differences in gene 
expression and epigenetic marks associated with each latent frailty factor in a selection of brain-relevant tissues 
and cell types. Significant enrichment values are marked with an asterisk (PFDR < 0.05). GF = General Factor; F1 
= Factor 1; F2 = Factor 2; F3 = Factor 3; F4 = Factor 4; F5 = Factor 5; F6 = Factor 6). 
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MAGMA gene property analysis showed significant enrichment in the brain and pituitary gland for all 
the latent frailty factors except for those underlying multimorbidity (Factor 3) and disability (Factor 6) 
pathways (Figure 4A). The only other tissues that demonstrated significantly enriched changes in gene 
expression were the reproductive organs, whereby Factor 2 (unhealthy lifestyle) showed significant 
gene expression changes in the testis, Factor 3 (multimorbidity) showed significant changes in gene 
expression in the cervix and uterus, and Factor 5 (poorer cognition) showed significant gene expression 
changes within the ovaries (Table S15).  
 
Stratified Genomic SEM provided a more in-depth picture of enrichment in the brain (Table S16). We 
found widespread enrichment in gene expression and epigenetic changes throughout the brain regions 
in oligodendrocytes and neurons for the General Factor of frailty. However, the widespread nature of 
this enrichment demonstrates that using an aggregate measure of frailty is less likely to provide a fine-
tuned picture of the underlying mechanisms of frailty due to its generalized impact on brain function. In 
contrast, the residual factors provided a more detailed understanding of pathways implicated by 
different frailty deficits, which could present future therapeutic targets within the broad spectrum of frailty 
(Figure 4B). For instance, Factor 1 (social isolation) only showed significant gene expression changes 
in the dorsal striatum (caudate and putamen) and methylation changes in the substantia nigra, whereas 
Factor 2 (unhealthy lifestyle) showed enriched gene expression in the spinal cord, but not any of the 
tested brain regions. In addition, Factor 5 (poorer cognition) showed gene expression enrichment in 
excitatory prefrontal cortex neurons and oligodendrocyte precursor cells, as well as epigenetic changes 
in the angular gyrus, cingulate gyrus, anterior caudate, dorsolateral prefrontal cortex, hippocampus and 
substantia nigra.     
 
Gene Prioritization and Pathway Analysis 
We used five methods to map potentially causal genes to each latent frailty factor to assess the 
biological pathways that might be associated with each frailty subgroup. These methods included 
mapping SNPs to genes based on their position, whether they were known expression quantitative trait 
loci (eQTLs) or if they were located in promoter regions known to regulate chromatin interactions 
(Tables S17-S23). In addition, we performed a genome-wide gene-based test using MAGMA (Tables 
S24-S30) and applied summary data-based Mendelian randomization (SMR) to identify SNPs that 
demonstrated evidence of having a pleiotropic effect on expression, splicing or methylation changes in 
gene function (Tables S31-S37). We triangulated the results from these five gene mapping techniques 
and prioritized the most likely candidate genes based on whether they were mapped by three or more 
of the methods. This resulted in 1195 genes being prioritized, which we took forward for pathway 
analysis (54 for the General Factor; 4 for Factor 1 (social isolation); 20 for Factor 2 (unhealthy lifestyle); 
585 for Factor 3 (multimorbidity); 194 for Factor 4 (metabolic/respiratory problems); 266 for Factor 5 
(poorer cognition) and 72 for Factor 6 (disability)) (Supplementary Results). Using METASCAPE we 
performed enrichment analysis to identify gene ontology pathways and disease pathways that were 
significantly associated with the prioritized genes mapped to each latent factor(22). As there can be 
extensive redundancy between gene sets, we combined highly correlated enriched pathways into 
clusters, named according to the gene ontology pathway that had the strongest enrichment with the 
latent frailty factors (Online Methods and Figure 5). Since the General Factor was orthogonal to the 
other latent frailty factors, we conducted pathway analysis separately for that factor, but performed a 
combined analysis for Factors 1 to 6 to account for the potential overlap in implicated gene pathways 
owing to the presence of inter-factor correlations between these latent residual factors. 
 
Pathway analysis of the prioritized genes for the General Factor identified only two significantly enriched 
disease pathways for intelligence and scoliosis (Tables S38-40).  In contrast, we found high levels of 
significant enrichment (i.e. PFDR < 0.05) for all residual latent frailty factors, except Factor 1 (Figure 5 
and Tables S41-43). The most strongly enriched pathway cluster (lead gene ontology term = RNA 
polymerase I promoter opening) included multiple gene sets linked to known aging-related processes 
including telomere function, amyloid fiber formation and oxidative stress, and was significantly enriched 
across Factors 2 (unhealthy lifestyle), 3 (multimorbidity), 5 (poorer cognition), and 6 (disability). Other 
pervasive cross-factor enrichment implicated immune function, epigenetic regulation, and cancer as 
key pathways involved in frailty pathogenesis. In addition to the shared enrichment in aging-related 
pathways observed across the factors, we also found evidence for the discriminant validity of the frailty 
factors. For example, only Factors 3 (multimorbidity) and 5 (poorer cognition) demonstrated significant 
enrichment for pathways linked to Alzheimer’s disease and general neurodegeneration. Factor 3 
(multimorbidity) was also enriched in protein maturation and folding pathways, providing consistent 
evidence that aspects of frailty related to multimorbidity and cognition may be more highly linked to 
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dementia and neurodegenerative pathways compared to other aspects of frailty. Factor 4 
(metabolic/respiratory problems) genes were enriched in gene sets linked to cell signaling (particularly 
Rap1 pathways) and 16p11.2 distal deletion syndrome. This is a rare syndrome that results from the 
partial deletion of the short arm of chromosome 16 leading to symptoms including intellectual disability, 
developmental delay and autism spectrum disorder. This syndrome can be caused by unmasked 
recessive mutations in the CLN3 gene(23), which was where the most significant risk locus for our frailty 
GWAS was located (lead SNP = rs27741; Factor 4 P-value = 1.09x10-35) (Figure 3). Enrichment 
analysis of disease pathways from the DisGeNet database further demonstrated that the frailty factors 
display distinct underlying biology. Factor 3 (multimorbidity) genes were strongly enriched in pathways 
linked to red blood cell and lipid biomarkers, whereas Factor 2 (unhealthy lifestyle) and 6 (disability) 
genes were significantly enriched in cancer pathways, and additionally, in gout and arthritis pathways 
for Factor 6.  
 
 

 
 

Figure 5: Results from pathway enrichment analysis of the prioritized genes for the residual frailty factors 
(Factors 1-6). The upper heatmap shows the enrichment for the top 20 enriched gene ontology pathway clusters. 
The displayed values represent the results for the most significant gene ontology term in the cluster (as named on 
the y-axis). The lower heatmap displays the enrichment for the top 20 most significantly enriched disease pathways 
from the DisGeNet database. There were no significantly enriched pathways for Factor 1 (social isolation) as only 
4 genes (CTNND1, TMX2, MED19 and EGR3) were mapped to that latent factor. Significant enrichment values 
are marked with an asterisk (PFDR < 0.05). GFRs = Growth Factor Receptors; VEGFA/R2 = vascular endothelial 
growth factor A/receptor 2; F1 = Factor 1; F2 = Factor 2; F3 = Factor 3; F4 = Factor 4; F5 = Factor 5; F6 = Factor 
6. 
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Polygenic Risk Scores of Frailty Factors Predict Frailty and Health in External Cohorts 
To validate the latent frailty factors as phenotypes that capture frailty-specific variance, we created 
polygenic risk scores (PRSs) for each latent frailty factor and used regression models to test how well 
they predicted frailty and frailty-related outcomes in three external older adult cohorts (the Lothian Birth 
Cohort 1936 [LBC1936] (N = 1,005; mean age = 69.60), the English Longitudinal Study of Aging [ELSA] 
(N = 7,181, mean age = 68.45) and the Prospective Imaging Study of Aging [PISA] (N = 3,265, mean 
age = 60.34)) (Online Methods and Supplementary Methods). To measure the cumulative predictive 
capacity of our frailty model, we also created a PRS phenotype that combined the polygenic signal of 
all seven frailty factors using multiple regression (herein referred to as Multi-PRS). This allowed us to 
compare the performance of our overarching multivariate model in predicting frailty status relative to 
PRSs created from existing aggregate frailty GWAS measures (i.e. the FI-PRS(20) and FFS-PRS(21)). 
The combined Multi-PRS provided the strongest prediction of the FI across all three tested cohorts 
(Table S44 and Figure 6A-B).  
 
We additionally measured the association of the latent frailty PRSs with other frailty-related health 
outcomes, which helped to provide a more detailed picture of how these frailty subgroupings may 
differentially impact aging processes (Table S45 and Supplementary Methods). We found that the 
PRS for Factor 5 (poorer cognition) and the Multi-PRS significantly predicted lower cognitive ability in 
LBC1936 (β = -0.65, SE = 0.10, PFDR = 1.43x10-08 and β = -0.62; SE = 0.10, PFDR = 3.34x10-08), but not 
cognitive change. The Multi-PRS was also significantly associated with dementia (β = 0.2, SE = 0.07, 
PFDR = 9.60x10-03) and stroke (β = 0.18, SE = 0.05, PFDR = 6.40x10-04) in ELSA. 

We used elastic net regression to jointly model the PRS’s for the seven frailty factors so that we could 
rank the order that each contributed to predicting frailty status (Supplementary Results and Table 
S46). The General Factor of frailty was ranked as the highest contributor to FI prediction in ELSA and 
PISA. By contrast in LBC1936, the Factor 3 (multimorbidity) PRS was ranked highest in FI prediction 
while the General Factor PRS provided the most prediction of FFS status. We also used elastic net 
regression to rank the performance of the full latent frailty model (Multi-PRS) against the previously 
derived aggregate frailty GWAS measures (FI-PRS and FFS-PRS). We found that the Multi-PRS 
outperformed the FI-PRS and the FFS-PRS when predicting FI and FFS status in all tested datasets 
(Figure 6C-F and Table S47). Sensitivity analyses that grouped samples by age demonstrated that the 
predictive contribution of our Multi-PRS was stable across different age groups, whereas the 
contributions from the PRS of the individual latent frailty factors changed by age, suggesting that 
preventive or therapeutic interventions targeting specific frailty subgroups may be more successful if 
provided at specific points in the life course (Supplementary Results). Together, these findings 
validated our model as representing a novel genetic measure that captures frailty-relevant pathways, 
which explained more genetic variance than aggregate GWAS measures that have been used in the 
field so far. They also underline the importance of modeling subgroups within the frailty construct to 
better understand what drives frailty onset across the life course.  
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Figure 6: Results from the polygenic risk score (PRS) analysis of the latent frailty factors. Panel A displays 
a bar plot of the variance explained (R2) by each PRS that we estimated for prediction of the Frailty Index (FI) in 
each external cohort. Panel B depicts a forest plot of the odds ratios (95% Confidence Intervals [CI]) for each 
standard deviation (SD) increase in frailty (measured by the Frailty Index) associated with our frailty PRS 
phenotypes in each of the external cohorts. These values were calculated using linear regression models. 
Significant predictions (i.e. PFDR < 0.05) are depicted as filled in dots, whereas non-significant predictions are 
depicted as an empty circle. Panels C-F represent the results from the elastic net regression analyses, which rank 
the performance of our Multi-PRS (i.e. combined latent frailty factor score) when modelled with the aggregate 
Frailty Index PRS (FI-PRS), the aggregate Fried Frailty Score PRS (FFS-PRS), age, sex and ancestral principal 
components as covariates. Only the predictors that explain significant additional unique variance over and above 
the other covariates are included in these graphs. All analyses represent standardized results. LBC1936 = Lothian 
Birth Cohort 1936; PISA = Prospective Imaging Study of Aging; ELSA = English Longitudinal Study of Aging; F1-
F6 = Factors 1-6; GF = General Factor; W1 = Wave 1. 
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Discussion 
 
We report the first genomic factor analysis of frailty. We introduce seven novel latent constructs of the 
shared genetics between 30 frailty deficits, including a General Factor of frailty and six additional 
residual factors representing genetic overlap between distinct subsets of frailty deficits related to social 
isolation, unhealthy lifestyle, multimorbidity, metabolic/respiratory problems, poorer cognition, and 
disability. We identify 408 genomic risk loci for these latent constructs that are enriched for pathways 
related to accelerated aging, including epigenetic modifications and immune regulation. This 
demonstrates a substantial advance in genomic locus discovery for frailty compared to prior 
GWAS of aggregate frailty measures, which only identified 14 genomic loci for the FI(20) and 
37 genomic loci for the FFS(21). We further validate the latent constructs as being of relevance to 
frailty and related health outcomes at multiple levels of biology and in the prediction of frailty status in 
external data. 
 
Our findings support previous phenotypic studies that highlight the merit, relative to single aggregate 
scores, of using data reduction methods to improve our understanding of frailty etiology (12, 24, 25). 
However, by taking a multivariate genomic approach we were able to integrate theoretical knowledge 
with biological evidence to better define the underlying pathways of frailty and to differentiate 
generalized pathogenic pathways from more nuanced pathways that are specific to a subset of deficits, 
both of which are fundamental to understanding this complex clinical construct. For example, our 
genetic correlation and pathway analyses implicate immune function and epigenetic modifications as 
being key drivers of frailty pathogenesis across multiple deficit groupings. This is in line with findings 
linking frailty and elevated CRP levels, red blood cell distribution width, and white blood cell count (26-
29). Our frailty factors were also significantly genetically correlated with health complications associated 
with infection, including hospitalization and sepsis. The associations between frailty and common viral 
infections, such as pneumonia(30), COVID-19(31) and urinary tract infections(32) are well documented. 
Furthermore, our findings consistently demonstrated evidence for widespread epigenetic changes in 
frailty, supporting previous work suggesting that epigenetic biomarkers, such as epigenetic clocks(33) 
or epigenetic risk scores(34) could be effective predictors of frailty. 
 
The seven frailty factors displayed discriminant validity across multiple levels of biological analysis, 
indicating that existing aggregate measures of frailty are likely to miss clinically relevant distinctions. 
For example, we find that the poorer cognition factor (Factor 5) was uniquely associated with dementia 
pathways, particularly Alzheimer’s disease. In addition, our GWAS and gene prioritization findings 
implicated SPI1 as a key locus for Factor 5, which is a well-replicated Alzheimer’s disease risk locus(35-
37). Interestingly, Factor 5 had similar factor loadings from lower fluid intelligence and poor self-reported 
overall health rating, indicating that subjective health reports as well as cognitive testing could be 
indicative of subsequent heightened dementia risk in individuals who present with these frailty deficits. 
In fact, subjective cognitive decline has been widely supported as a potential early marker of cognitive 
impairment(38). The other loading onto this latent factor was slow walking pace, which is independently 
associated with heightened dementia risk(39). In addition, slow gait and subjective cognitive decline 
are used to measure motoric cognitive risk, a syndrome strongly associated with subsequent 
dementia(40).  
 
Furthermore, our genetic correlation and PRS analyses found that the multimorbidity factor (defined by 
number of illnesses and high mean arterial pressure) is a strong driver of frailty over and above the 
variance captured by a general aggregate measure of all frailty deficits. Prevalence of multimorbidity 
and associated polypharmacy is a global public health concern, with rates as high as 90% in certain 
populations(41). This latent factor produced by far the highest number of genomic risk loci and PRS 
analyses demonstrated that its predictive power was substantial. Gene prioritization and pathway 
analysis indicated enrichment in a wide array of aging-related pathways, including VEGFA signaling, 
which was recently identified in a multivariate GWAS of aging(42) and has been shown to be important 
in longevity(43). Taken together, our findings suggest that this latent factor comprises a broad set of 
disease-related biological pathways that are associated with the most common diseases found within 
populations that lead to a heightened risk for developing frailty and accelerated aging. This provides 
empirical support for the ‘geroscience hypothesis’, which theorizes that manipulating aging physiology 
will prevent associated diseases (44).  
 
Our findings should be viewed in light of several limitations. We did not explore the impact of sex 
differences, which are important in aging as evidenced by significant prevalence differences in frailty 
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across all age groups(45). Our tissue enrichment analyses alluded to this with significant enrichment 
identified for the sex-specific reproductive organs. Future work should be performed to interrogate the 
sex-specific multivariate genetic architecture of frailty. Furthermore, our analyses were restricted to 
samples of European genetic ancestry since the methods rely on linkage disequilibrium information that 
can vary across ancestral populations. Unfortunately, despite advances in collecting genomic data from 
multiple populations, it was not possible to identify publicly available GWAS data for the frailty deficits 
to conduct a trans-ancestry analysis, but this should be a major focus in the future to make these results 
more generalizable globally.  
 
In conclusion, we introduce the first genomic latent model of frailty. We demonstrate the added potential 
of modelling frailty as multiple latent factors, representing both a generalized pathway of frailty and 
distinct subgroups of deficits that share additional underlying biology. This can be contrasted to previous 
studies that have relied solely upon aggregate measures of frailty. This more nuanced model offered 
unique etiological insights into frailty and may aid in refining risk stratification of patients. Our genomic 
model of frailty may also help to develop novel preventive and therapeutic strategies that minimize the 
broad range of adverse frailty-related health outcomes.  
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Online Methods 
 
Phenotype Selection 
Phenotypes were selected based on deficits described by  the FI(46). Phenotype selection was 
further guided by choosing traits that reflect systemic pathways and health behaviors (e.g. 
number of diagnosed illnesses) as opposed to specific clinical diagnoses (e.g. type 2 diabetes). 
This allowed for modeling genetic variance for general aspects of frailty rather than disease-
specific pathways. Traits were included if they had well-powered GWAS summary statistics 
that were publicly available in a sample of ≥10,000 individuals of European ancestry. Analyses 
were restricted to European ancestry individuals as the methods used to estimate and model 
genetic overlap rely on ancestry-specific patterns of linkage disequilibrium (LD) and GWAS of 
sufficient sample size in other ancestry groups are not yet available across all the frailty traits. 
When possible, we prioritized the use of GWAS data from consortium-based studies since 
these tend to pool the largest sample sizes and have more rigorous phenotypic definitions (15-
19, 47-52). When consortia data was not available, we used European ancestry GWAS 
summary statistics downloaded from the PanUKB (https://pan.ukbb.broadinstitute.org). Table 
S1 displays a summary of the 52 traits included in our initial analysis. The effect estimates for 
each trait were formatted in a direction that reflected the ‘risk -inducing’ phenotype for frailty 
(i.e. slow walking pace as opposed to fast walking pace).   
 
Genetic Correlation Estimation 
We conducted multivariable linkage disequilibrium (LD) score regression (LDSC) using the 
GenomicSEM R package along with publicly available LD scores and weights from the 1000 
Genomes Phase 3 European reference panel that excluded the major histocompatibility 
complex (MHC) owing to its complex patterns of LD(53, 54). LDSC was applied to estimate a 

genetic covariance matrix with SNP-based heritability (ℎ𝑆𝑁𝑃
2 ) of each phenotype on the diagonal 

and the genetic covariance across each pairwise combination of traits on the off-diagonal. 
Multivariable LDSC also produces a sampling covariance matrix that includes the sampling 
variances (i.e., the squared standard errors) of the estimates on the diagonal and the sampling 
dependencies on the off diagonal that can arise due to participant sample overlap. This 
sampling covariance matrix is estimated directly from the GWAS data and is what allows 
Genomic SEM to produce appropriate estimates for traits with varying levels of precisio n (e.g., 
with different participant sample sizes) and varying and unknown levels of sample overlap. This 
was important for producing interpretable results within the current study, wherein our frailty 
deficits varied widely with respect to statistical power. Prior to running LDSC, each of the 
GWAS summary statistic datasets underwent a uniform formatting and quality control step 
using the munge function in the GenomicSEM R package. This included removing SNPs with 
a minor allele frequency (MAF) below 0.01 and an imputation score (INFO) below 0.9, 
restricting SNPs to HapMap 3 SNPs, and aligning all GWAS effects to the same reference allele 
(13). For all genome-wide analyses, we used a false discovery rate (FDR) corrected p-value 
threshold of <0.05 to account for multiple testing.  
 
In line with the recommendations from the original LDSC developers, traits were removed from 
further analyses if they had a ℎ𝑆𝑁𝑃

2  Z-statistic ≤4 as these can yield unstable estimates of genetic 

overlap(55). We converted these estimates to the liability scale for binary traits using population 
prevalence values based on recent epidemiological estimates for European ancestral 
populations (Table S1)(56-65). The sum of effective sample sizes across the cohorts that had 
contributed to that GWAS was used to adjust for cohort-specific ascertainment(66).   
 
The results from the genetic correlation analysis (Table S2) were used to perform additional 
quality control, where deficits were brought forward for subsequent analysis providing they met 
the following criteria: (i) in instances where two traits were highly multicollinear (rg ≥0.9), we 
removed the trait in the pair that had the lowest mean genetic correlation ( rg) with the other 
included traits; (ii) we removed traits that had low mean genetic correlations with the other 
measured traits (mean rg ≤0.10) as these traits are not empirically indicated to be part of the 
broader multivariate genetic architecture of frailty; ( iii) for phenotypically similar traits (e.g., 
number of cigarettes smoked per day vs smoking initiation), we retained the deficit with the 
highest mean rg with all other deficits. This resulted in a final list of 30 traits that were brought 
forward for all subsequent analyses (Table S1). A frailty index constructed with 30 or more 
deficits has been shown to sufficiently capture frailty in phenotypic literature(8). 
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Genomic Factor Analysis 
Exploratory Factor Analysis. Since the latent pattern of the shared genetic architecture between 
frailty deficits has not been assessed previously, we initially ran an exploratory factor analysis 
(EFA) using the stats R package to identify a plausible latent structure that describes the 
genetic overlap across the included frailty deficits. To avoid model overfitting, we used the 
genetic covariance matrix estimated in odd autosome as the input to the EFA and the genetic 
covariance matrix estimated in even autosomes as the input for the subsequent confirmatory 
factor analysis (CFA). We used the Kaiser rule(67) and the number of optimal coordinates 
test(68) to determine the number of factors to extract in the EFA, which both suggested that 
seven factors were appropriate. We additionally extracted a 6-factor model (Table S48) as 
there were a high number of cross-loadings in the 7-factor specification, indicating a more 
parsimonious structure may be appropriate,  and the 5th factor in the 7-factor model only 
captured genetic variance related to mean arterial pressure (Table S49). Owing to highly 
pervasive correlations between our frailty deficits (Table S2), we applied promax factor 
rotation, which allows for inter-factor correlations.  
 
Confirmatory Factor Analysis. We then conducted a CFA using the genetic covariance matrix 
from the even autosomes as input. The CFA model was guided using the EFA in odd 
autosomes, where a frailty deficit was specified to load on a factor when standardized loadings 
were ≥0.30. Diagonally weighted least squares (DWLS) was used for model estimation and any 
frailty deficits that had negative residual variances were constrained to have a residual variance 
>0.001. The 6-factor (Comparative Fit Index [CFI] = 0.92; Standardized Root Mean Square 
Residual [SRMR] = 0.07) and 7-factor model specification (CFI= 0.89; SRMR= 0.07) both 
provided good fit to the even autosome data (Table S50). The 6-factor model was selected 
over the 7-factor model as it: ( i) provided improved fit to the data while offering a more 
parsimonious representation of the data relative to the 7-factor structure; (ii) it produced more 
theoretically interpretable factors of latent genetic architecture between distinct groups of 
multiple frailty deficits compared to the 7-factor model; and (iii) the 6-factor model continued to 
provide good fit to the data in all autosomes (CFI= 0.92; SRMR = 0.06) (Table S51).  
 
Bifactor Model. While the 6-factor model produced theoretically meaningful latent factors, the first latent 
factor displayed strong factor loadings for 16 out of the 30 frailty deficits and the model included 
pervasive cross-loadings of frailty deficits on multiple factors. Taken together, these findings indicated 
that a bifactor model was an appropriate way to capture the general frailty pathways across all included 
deficits, as well as the genetic variance specific to distinct subsets of deficits.  
 
Therefore, we estimated the fit of a bifactor model that included loadings for all 30 frailty deficits onto a 
general factor of frailty (herein termed General Factor), in addition to the loadings on the 6 latent factors 
from the CFA model (herein named Factors 1-6). A key benefit to this approach is that the General 
Factor is orthogonal (i.e. uncorrelated) to the additional residual group factors, which enabled us to 
interpret the General Factor as general genetic pathways of frailty that are distinct from the more 
focused subsets of genetic variance that underlie potential subgroups within the frailty spectrum. A 
bifactor model thereby provided a more direct test of our hypothesis that aggregate scores of frailty 
(e.g., the FI and FFS) miss unique risk pathways that are only shared between smaller subsets of frailty 
deficits. 
 
Owing to the inclusion of the General Factor, some of the original factor loadings for the six CFA factors 
became nonsignificant. We iteratively removed any loadings from Factors 1-6 that were below our 0.30 
threshold to ensure that we only retained stable loadings in the final model specification. In cases where 
an indicator displayed loadings above our cut-off for multiple residual factors, we retained these cross-
loadings because a previous simulation study found that omitting substantial cross-loadings from a 
bifactor model based on a prior CFA model can upwardly bias the general factor loadings and 
downwardly bias residual group factor loadings, which cannot be picked up using standard model fit 
measures(69).  
 
We allowed the residual group factors (Factors 1-6) to be correlated (but orthogonal to the General 
Factor). This form of bifactor model is known as a bifactor(S-1) model and is sufficiently identified if a 
subset of the indicators only load onto the bifactor (in our case 50% of the frailty deficits solely loaded 
onto the bifactor)(70). To ensure the model was locally identified, factor loadings were constrained to 
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be equal when there were only two indicators that loaded onto a factor (i.e., for Factors 1 and 3).  The 
final bifactor(S-1) model (Figure 1 and Table S3) continued to provide good fit to the data (CFI = 0.93; 
SRMR = 0.07) and was brought forward for all subsequent analyses.  
 
Genetic Correlations with Related Health Traits 
Frailty is known to increase the risk of many adverse health outcomes, but it is unclear whether this is 
owing to shared genetics between the more general frailty pathways or whether some outcomes are 
only associated with certain deficits within the frailty state. Furthermore, since this represented the first 
time that frailty has been measured in this latent framework, we wanted to validate our factors as 
reflecting frailty since well-powered independent GWAS samples for all 30 deficits are not currently 
available to do a full replication GWAS. Therefore, we performed genetic correlation analyses to assess 
the associations between 52 aging-related health outcomes and frailty phenotypes to assess the 
different patterns of shared genetics between these outcomes and each of the latent factors (Table S4-
S5)(20, 21, 71-90). We used the same quality control procedures and data curation steps on the GWAS 
summary statistics for these 52 health outcomes as described for the main frailty deficits using the 
munge function in the GenomicSEM R package. However, in the case of pneumonia there were no 
prior available GWAS summary statistics with a SNP-based heritability estimate high enough to be 
included in LDSC. Therefore, we conducted a fixed-effect meta-analysis using METAL software, which 
comprised publicly available GWAS summary statistics data from the European ancestry sample in 
PanUKB (https://pan.ukbb.broadinstitute.org; NCases = 14,054 and NControls = 405,999) and FinnGen 
release 10 (https://r10.finngen.fi; NCases = 63,377 and NControls = 348,804). This resulted in a total GWAS 
sample of 832,234 individuals (77,431 pneumonia cases and 754,803 healthy controls), which 
produced a reasonable SNP-based heritability Z-statistic for LDSC (Table S4; Z-statistic = 4.1). We 
then constructed a separate genome-wide genetic variance and covariance matrix for each of the 52 
external traits combined with the 30 frailty deficits using multivariable LD score regression. We re-
specified our latent frailty model with an additional correlation between the external trait and each latent 
factor to get the genetic correlation and standard error estimates for each of the external traits with each 
latent factor. We used an FDR-corrected p-value threshold <0.05 to correct for multiple testing.  
 
Multivariate GWAS of Latent Frailty Factors 
Data Standardization. We performed a multivariate GWAS within the GenomicSEM R package 
that estimated the individual SNP associations with each of the latent factors in our bifactor(S-
1) model. We initially used the sumstats function to create a standardized data file that 
converted the SNP effect estimates from each univariate GWAS into covariances between each 
individual SNP and the overall phenotypic variance of each deficit and standardized the SNP 
effects relative to the phenotypic variance of the trait (13). This allowed these SNP effects to 
be added to the genetic covariance matrix as they were then on the same scale as the LDSC 
estimates. All phenotypes were based on genome build 37 (GRCh37/hg19) or were converted 
to build 37 using the MungeSumstats R package(91). We removed any SNPs that had a MAF 
<0.01 or an imputation score (INFO) <0.6 according to recommended defaults within the 
package. We used the 1000 Genomes Phase 3 European ancestry dataset as our reference 
genome and aligned SNPs to have the same effect (A1) and non-effect (A2) allele across 
phenotypes. SNPs were removed if either the effect or non-effect allele did not match the 
reference genome. As sumstats performs listwise deletion across the included traits  only SNPs 
that had been measured in all the contributing univariate GWASs were included, resulting in a 
final harmonized dataset of 5,849,452 SNPs for multivariate GWAS analysis.  
 
Multivariate GWAS Estimation. The standardized GWAS data and LDSC results were used as 
input for calculating multivariate GWAS of the frailty latent factors using the userGWAS function 
in the GenomicSEM R package. We fixed the measurement model (i.e. the genome-wide factor 
loadings and factor correlations) for all SNPs. This improved computational tractability and 
model interpretability as the SNP-specific estimates were scaled according to the same 
measurement model across all SNPs (as opposed to the entire model being re-estimated for 
each SNP). We removed any SNPs that required a high level of smoothing (i.e. Z-statistic 
change pre- and post-smoothing >1.96) or that produced lavaan warnings for negative 
observed variable or latent variable variances or non-positive definite covariance matrices (293 
SNPs removed in total). 
 
QSNP Heterogeneity Index. As previously described, not all the genetic signal captured within 
the latent factor GWAS results represent genuinely shared genetic variance . For example, 
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strong signal from a single indicator (i.e. the FTO locus for body fat percentage) can lead to 
false positives if not properly accounted for(13). Likewise, some of the non-significant genetic 
signal within the multivariate GWAS results may represent areas of the genome that have highly 
heterogenous magnitudes and directions of effects on the different univariate indicators(13). 
For this reason, it is necessary to calculate the QSNP heterogeneity statistics for each SNP, 
which reflects a χ2 distributed statistic that is more significant for SNPs whose effects deviate 

strongly from the patterning of effects implied by the factor model. As part of the current project, 
we introduce and validate a more computationally efficient way of calculating QSNP. While the 
prior formulation of QSNP required estimating a series of follow-up models to calculate the 
heterogeneity statistic, our new formulation is automatically calculated for each factor predicted 
by a SNP in the model. This change thereby greatly reduced the run-time of our analysis. The 
new QSNP equation starts by calculating the residual covariance matrix for the subset of the matrix that 
reflects the SNP-phenotype covariances for the phenotypes that load on a given factor (RSNP) as: 
 

  RSNP = 𝑆𝑆𝑁𝑃 − ∑ 𝜃𝑆𝑁𝑃                   (1) 

            
where 𝑆𝑆𝑁𝑃  is the vector of SNP-phenotype covariances and ∑ 𝜃𝑆𝑁𝑃 reflects the model implied SNP-

phenotype covariances. These model implied estimates reflect the product of the estimated SNP-effect 
on a given factor and the factor loadings for each trait. The precision of those SNP-phenotype estimates 
is indexed by taking the eigen decomposition of the portion of the sampling covariance matrix (V) that 
indexes those SNP-phenotype effects (VSNP): 

      VSNP = (P1 P0) (
𝐸 0
0 0

)  (
𝑃1

 ′ 

𝑃𝑜
 ′ )     (2) 

 
where P1 is the matrix of principal components (eigenvectors) of VSNP, P0 is the null space of VSNP, and 
𝛦 is a diagonal matrix of the non-zero eigenvalues of VSNP. These eigenvalues and eigenvectors can 

then be used to weight the residual covariance matrix of the SNP-phenotype estimates to obtain a 𝜒2 

distributed test statistic given as:  

      QSNP(𝑑𝑓)~𝑅𝑆𝑁𝑃′P1𝛦
-1

P1′𝑅𝑆𝑁𝑃                       (3) 

 
where df reflects the degrees of freedom, which will be one less than the number of indicators for the 
factor. We note that this equation is iteratively applied for each factor that is predicted by a SNP, such 
that a separate RSNP, VSNP, and factor-specific QSNP are produced.  
 
We demonstrate via simulation that this new approach continues to produce a 𝜒2 distributed 

statistic that is statistically equivalent to the previously described formulation of QSNP. We used 
the simulateData function within the lavaan R package to simulate data for 3 different factor 
models each with 50,000 observations for 1000 SNPs. We tested a 2 -factor model with 3 
indicators on each factor (2 degrees of freedom [df]), a 2-factor model with 4 indicators on each 
factor (3 df) and a 2-factor model with 6 indicators on each factor (5 df). We confirmed across 
all 3 examples that the new method remained 𝜒2-distributed and that they did not differ 

significantly from the estimates calculated using the old method in terms of the mean Q SNP 

(Supplementary Results). In addition, the new method consistently demonstrated a well-
calibrated type 1 error rate (p < 0.05) (Supplementary Results).  
 
For our empirical frailty application, we pruned out the QSNP significant signal from our GWAS 
summary statistics for each latent frailty factor to ensure that we only measured shared genetic 
variance operating via each latent factor in our subsequent post -GWAS analyses. We did this 
by removing SNPs that had a Bonferroni-corrected QSNP p-value <7.14x10-09 (i.e. 5x10-08/7) 
and any SNPs that were within a 1 megabase window upstream or downstream of this location 
to ensure that variants that were in LD with these heterogenous regions were removed .  
 
Once the QSNP signal had been pruned from the latent factor summary statistics, we used the 

method developed by Mallard and colleagues to calculate the expected sample size (�̂�) of each 

latent factor(92) using the following equation: 
 

�̂� ≈
1

𝑚
∑ 𝑛𝑗

𝑏

𝑀𝐴𝐹=𝑎
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Where the expected sample size (�̂�) is approximately equal to the mean SNP expected sample size 

(𝑛𝑗) for 𝑚 number of SNPs that have a MAF between 𝑎 and 𝑏 (in this case we used a MAF range of 

SNPs between 10-40% as these provide more stable estimates)(92). This value quantifies the amount 
of error-free genetic variance that is being captured by each latent factor, so this value can also act as 
an indicator of how well-powered each latent factor is within the model.    
 
Identification of Genomic Risk Loci for Latent Frailty Factors. We used FUMA v1.5.2 to identify 
genomic risk loci for each latent factor in our model using the default software parameters (93). 
We used a Bonferroni corrected genome-wide significance threshold of p < 7.14x10-09 (i.e. 
5x10-08/7 factors) to identify significant SNPs within our pruned GWAS summary statistics for 
each latent factor (i.e. QSNP significant variants removed). A genomic risk locus was defined as 
the region around a genome-wide significant SNP that included all SNPs that were in LD (𝑅2 < 

0.6) with that variant based on LD patterns in the 1000 Genomes Phase 3 European ancestry 
reference genome(93). If there were additional independently significant SNPs in LD with the 
lead SNP (𝑅2 > 0.1) or if loci were located within 250 kilobases (kb) of one another, these were 

merged into a single locus(93).  
 
Gene Mapping and Functional Annotation 
As an initial step to understand the biological implications of the loci underlying each latent frailty factor, 
we applied the SNP2GENE function in FUMA v1.5.2 to map potentially causal genes to each locus and 
to functionally annotate the candidate SNPs by integrating our results with various external 
datasets(93). This involved positionally mapping candidate SNPs to their closest protein-coding gene 
(within a 10kb window upstream or downstream of the SNP location). We conducted expression 
quantitative trait loci (eQTL) mapping to ascertain whether the candidate SNPs in our latent factor 
GWAS loci are known regulators of gene expression, which we defined as any eQTL-gene interaction 
displaying a PFDR ≤ 0.05(93). Since frailty represents a multi-system clinical state, we integrated publicly 
available eQTL data for multiple body tissues and cell types with our GWAS results to provide a broad 
overview of the potential impacts that the risk loci for frailty have on gene expression. This included 
integration of eQTL data from 15 repositories including the Blood eQTL Browser(94), BIOS QTL 
browser(95), BRAINEAC(96), MuTHER(97), xQTLServer(98), CommonMind Consortium(99), 
eQTLGen(100), PsychENCODE(101), DICE(102), scRNA eQTLs(103), eQTL Catalogue(104-120), 
GTEx v8(121), EyeGEx(122), InsPIRE(123) and TIGER(124). Finally, we conducted chromatin 
interaction mapping, which involved annotating candidate SNPs that displayed a significant 3D 
chromatin interaction (PFDR ≤ 1x10-6) with a known gene region based on pre-processed chromatin loop 
data and enhancer-promoter link data for multiple body tissues from 4 publicly available databases(101, 
125-127). We restricted successful mappings of SNPs to those where the candidate SNP overlapped 
with the enhancer region within one of the selected epigenomes and the promoter region of the mapped 
gene overlapped with the promoter region of the associated epigenome. Enhancer and promotor 
information was obtained for 111 epigenomes from the Roadmap Epigenomics Project(128).  
 
We additionally used MAGMA v1.08(129) to conduct a gene-based analysis that identified genes that 
were significantly associated with each latent factor. Any SNPs that were present in the GWAS 
summary statistics for the latent factor and that were located within one of the protein-coding genes in 
the Ensembl database (excluding the MHC region) were analyzed. We used the 1000 Genomes Phase 
3 European dataset as our LD reference panel and applied a Bonferroni correction for number of genes 
tested within each latent factor GWAS(93). Using gene expression data from GTEx v8 for 54 body 
tissues(121), we also used MAGMA to perform a gene property analysis to ascertain whether the genes 
that were significantly associated with the latent factor in the gene-based test were more likely to 
produce gene expression changes in particular body tissues(130).  
 
Stratified Genomic SEM  
Since frailty has been consistently linked to increased risk of poorer brain health and dementia, which 
represents a key burden on health services in aging populations(8), we explored whether there was 
evidence for brain-relevant functional enrichment in the genetic variance captured by our latent frailty 
factors. We applied Stratified Genomic SEM(56) to test whether there was evidence for enrichment in 
functional annotations (groups of genetic variants combined due to having a shared biological 
characteristic) that are known to influence tissue-specific gene expression in different brain regions, 
histone modifications, neuronal cell types, or the interaction between these neuronal cell types and 
protein-truncating-variant-intolerant (PI) genes. We used previously constructed functional annotations 
based on data from 1000 Genomes Phase 3 Baseline LD Version 2.2(131), GTEx(132), DEPICT(133), 
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the Roadmap Epigenetics Project(128) and the Genome Aggregation Database (gnomAD)(134), which 
consisted of a total of 172 functional annotations. This included 5 randomly selected non-brain control 
regions for the gene expression and histone modifications(135).  
 
We performed multivariable stratified LDSC to estimate the zero-order genetic covariance matrices and 
the corresponding sampling covariance matrices that were partitioned across the genomic regions of 
each functional annotation using the s_ldsc function in the GenomicSEM R package(56, 131). We 
subsequently used these matrices as the input data to the enrich function to calculate an enrichment 
ratio for the genetic variance captured within each latent factor in our bifactor model for each functional 
annotation(136). We removed 26 functional annotations from our analyses owing to high degrees of 
smoothing (defined as a Z-score difference >1.96 pre and post-smoothing), as this indicates low power 
to detect meaningful enrichment(135). This resulted in 146 functional annotations being retained in our 
analyses. We used an FDR corrected p-value threshold of <0.05 to account for multiple testing. 
 
Summary Data-Based Mendelian Randomization 
We applied multi-SNP summary data-based Mendelian randomization (SMR-multi) to prioritize genes 
for each latent frailty factor by identifying SNP-outcome (i.e. variant-frailty) associations that 
demonstrated strong evidence for being driven via intermediary pleiotropic effects on gene expression 
(eQTLs), splicing ratios (sQTLs) or methylation status (mQTLs; (137, 138). We used pre-processed 
data curated by the original method developers, which included eQTL data from BrainMeta v2(139), 
CAGE(140), GTEx v8(121), GEUVADIS(111), PsychENCODE (corrected for 100 hidden covariate 
factors)(141) and Westra et al(94); sQTL data from BrainMeta v2(139) and GTEx v8(121); and mQTL 
from Brain-mMeta(142) and McRae et al(138, 143). All data was based on genome build 37 
(GRCh37/hg19) and we aligned the GWAS data and QTL data to the same effect and non-effect 
alleles using the 1000 Genomes phase 3 European data as our reference. We converted the MAF 
column in the GWAS summary statistics into the effect allele frequency (EAF) by integrating data on 
the major allele for each SNP from dbSNP v155. Any SNPs that had a discrepant allele frequency >0.20 
between the GWAS and QTL data or that were located within the extended MHC region 
(chr6:28477797-chr6:33448354) were omitted from the analysis(138). SNPs that had a strong 
association (PQTL < 5x10-8) with the QTL region (i.e. expression, splicing or methylation) in each QTL 
dataset were selected as instrumental variables for SMR-multi analysis(138). Variants in high LD with 
the lead SNP in a region (𝑅2 > 0.9) were removed using the 1000 Genomes phase 3 European data as 

a reference. We then applied FDR correction across all the results (i.e. all tests conducted across all 
latent factors and all QTL datasets) and filtered our results to only include SMR associations with PSMR-

FDR < 0.05. To distinguish pleiotropy (i.e., association between exposure and outcome due to shared 
causal variant) from linkage (i.e., association between exposure and outcome due to independent 
causal SNPs being in LD with one another) we used the heterogeneity in dependent instruments 
(HEIDI) test using the default parameters to measure whether the association patterns within an 
instrumental variable were homogenous or not, and we rejected any associations that demonstrated 
significant heterogeneity (PHEIDI < 0.01)(138). 
 
Gene Prioritization and Pathway Analysis 
In order to better understand the underlying biological pathways of each latent frailty factor, we 
conducted pathway analysis using the genes that had been prioritized by the aforementioned gene 
mapping analyses as input. However, since not all genes that are mapped to risk loci represent truly 
causal genes, we triangulated our results to only include genes that presented sustained evidence for 
being a potential causal candidate for each latent factor. We defined this as any gene that was mapped 
by ≥ 3 of our gene mapping methods (i.e. positional mapping, eQTL mapping, chromatin interaction 
mapping, MAGMA or SMR-multi). We used METASCAPE (22) to perform a pathway enrichment 
analysis to identify gene sets that were significantly overrepresented in the prioritized genes for each 
latent factor. Since the General Factor was orthogonal to the six latent residual group factors in our 
model, we conducted a single standalone pathway enrichment analysis for the General Factor 
prioritized genes because, by definition, the genetics underpinning this latent factor are uncorrelated 
with the genetics driving the other latent factors. We then performed a separate combined enrichment 
analysis of the prioritized genes for Factors 1-6 as this enabled us to explore what biology might be 
driving the inter-factor correlations that we saw in our model. The prioritized genes were assigned to 
any curated gene set they belonged to using data from Gene Ontology (GO) Biological Processes (1495 
gene sets)(144), the Human Molecular Signatures Database (MSigDB) Canonical Pathways (17 gene 
sets)(145), Reactome (262 gene sets)(146), Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Pathways (113 gene sets)(147), WikiPathways (89 gene sets)(148) and DisGeNET (2050 gene 
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sets)(149). The default hypergeometric test method was used to calculate enrichment for each gene 
set that included ≥ 1 of the prioritized genes and FDR correction was applied to correct for multiple 
testing(22). However, many of the gene ontology terms overlap, which leads to high levels of 
redundancy in the results, so we performed the recommended clustering analysis that combined related 
gene sets into groups by calculating the pairwise similarities between all enriched terms based on their 
Kappa-test score and hierarchally ordered them within a similarities matrix (Kappa similarities > 0.3 
were combined)(22). In the case of the multi-gene-list enrichment test for the analysis of Factors 1-6, 
this enrichment test was initially performed on each of the latent factor gene lists separately, followed 
by an additional test that combined the gene lists across all six latent factors to determine whether there 
were enriched gene ontology terms that were shared across the latent factors. This was appropriate 
since our initial results demonstrated that there was significant correlation between certain latent factors 
in our model.   
 
Polygenic Risk Scores 
Polygenic Risk Score Construction. To externally validate our frailty latent factors, we constructed 
polygenic risk scores (PRS) of each latent frailty factor and tested whether they predicted frailty and 
related health outcomes in three external cohort datasets, including the Lothian Birth Cohort 1936 
(LBC1936), the English Longitudinal Study of Ageing (ELSA), and the Prospective Imaging Study of 
Ageing (PISA) (see Supplementary Methods for sample descriptions). We used the GWAS summary 
statistics of the shared genetic signal for each of the latent frailty factors (i.e., the summary statistics 
that had removed significantly heterogeneous signal), as well as publicly available GWAS summary 
statistics (downloaded from GWAS Catalog(150)) from previously published studies of aggregate 
measures for the FI(20) and FFS(21) to construct a separate PRS for each of these predictor 
phenotypes. This enabled us to compare the prediction of the latent frailty factors with routinely used 
aggregate frailty measures. We performed routine quality control on each of the base datasets (i.e. the 
GWAS summary statistics) and the target datasets (i.e. individual-level cohort genetic data). We aligned 
the effect and non-effect alleles across all datasets to ensure that the direction of effect was concordant 
across analyses. We removed SNPs with a MAF < 0.01, as well as duplicate and ambiguous SNPs.  
 
Following quality control, PRS were calculated for the individuals in each of the three cohorts using 
PRSice-2 for LBC1936 and ELSA, and SBayesR for the PISA cohort. We followed default procedures 
for each methodology that have been described in detail by the respective developers(151, 152). Briefly, 
PRSice-2 uses a P-value based clumping and thresholding (P+T) approach in which the GWAS effect 
size estimates are used as SNP weights in the cohort data and clumping is applied to remove SNPs in 
high LD so that the final PRS only includes independent significant SNPs(151). In contrast, SBayesR 
is a Bayesian-based method, which estimates joint SNP effects across the genome using multiple linear 
regression whilst assuming a finite mixture of normally distributed priors(152). 
 
Prediction of Frailty and Related Phenotypes in the External Cohorts. We subsequently performed a 
series of analyses to explore how well the latent frailty factors predicted routinely measured frailty 
phenotypes and related traits in external data. First, we used linear regression models to assess how 
well each individual frailty latent factor PRS predicted the FI in LBC1936 (based on 30 deficits), ELSA 
(based on 62 deficits) and PISA (based on 69 deficits) and logistic regression models to measure how 
well they each predicted the FFS in LBC1936 (see Supplementary Methods and Tables S52-54 for 
details on the outcomes used). Since the latent frailty factors each represented distinct genetic variance 
that can contribute to frailty, we also used multiple regression to calculate a PRS of the combined scores 
for all 7 latent factors (i.e. Multi-PRS). Finally, to enable us to compare the performance of the latent 
factor PRS with previously published frailty GWAS aggregate measures, we also tested how well the 
FI GWAS PRS (FI-PRS) and the FFS GWAS PRS (FFS-PRS) predicted the same frailty outcomes in 
each dataset. All models included age, sex and ancestry principal components ([PCs]; for ELSA and 
PISA we used 10 PCs and for LBC1936 we used 4 PCs) as covariates. These models allowed us to 
calculate the amount of incremental phenotypic variance explained (R2) by each PRS, which was 
calculated by subtracting the covariate-only model R2 from the R2 of the full PRS and covariate 
model(153).  
 
To assess the association of the latent factor PRS’s with frailty-related health outcomes, we also 
conducted regression analyses to test the association of each frailty PRS with cognitive ability 
(LBC1936), cognitive change (LBC1936), dementia (ELSA), motoric cognitive risk (LBC1936), mortality 
(LBC1936), stroke (LBC1936, ELSA and PISA) and memory complaints (PISA) (see Supplementary 
Methods for phenotype and analysis descriptions). 
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Elastic Net Regression to Rank Performance of Frailty PRS. Finally, since conventional linear 
regression models can be upwardly biased due to model overfitting, we performed elastic net 
regularized regression models in all three cohorts to rank the polygenic contributions to frailty whilst 
minimizing bias from model overfitting and multicollinearity between predictors(154). This method 
allows highly genetically correlated variables to be grouped and the final coefficients returned in the 
model allow the predictors to be ranked by their contribution of prediction to the outcome(154). 
Therefore, we ran an initial model predicting the FI in each cohort using the seven individual latent frailty 
factor PRSs and covariates (age, sex and ancestry PCs) as predictors to rank the latent factors in order 
of their strength in predicting frailty. We then performed elastic net regression that included the Multi-
PRS, FI-PRS and FFS-PRS and covariates (age, sex, and 10 ancestry PCs) to rank prediction of the 
different genetic measures of frailty (i.e. multiple latent factors versus aggregate measures for the FI 
and FFS). 

Data Availability 
The latent frailty factor and pneumonia GWAS summary statistics that were created by this study will 
be made publicly available on GWAS Catalog upon publication. All of the GWAS summary statistics 
that were used in this study for the Genomic SEM and genetic correlation analyses are publicly available 
via the original articles or from PanUKB and FinnGen.  

 
Code Availability 
This code was developed using publicly available software that is available via the following links: 
 
Genomic SEM (including our new QSNP extension): https://github.com/GenomicSEM/GenomicSEM  
METAL: https://genome.sph.umich.edu/wiki/METAL  
FUMA: https://fuma.ctglab.nl  
SMR: https://yanglab.westlake.edu.cn/software/smr/  
METASCAPE: https://metascape.org/gp/index.html#/main/step1  
SBayesR: https://cnsgenomics.com/software/gctb/#Overview  
PRSice-2: https://choishingwan.github.io/PRSice/  
Lavaan: https://lavaan.ugent.be  
MungeSumstats: https://github.com/neurogenomics/MungeSumstats  
 
The specific code for the analyses in this study will be made available at https://github.com/IsyFoote 
upon publication. The code we used to create the latent growth curve models of cognitive ability and 
cognitive change in LBC1936 can be found here: https://lothianbirthcohorts.github.io/longitudinal-g-
models/longitudinal_g_models  
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