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Polygenic risk scores (PRS) continue to improve with novel methods and expanding 
genome-wide association studies. Healthcare and third-party laboratories are 
increasingly deploying PRS reports to patients. Although new PRS show improving 
strengths of association with traits, it is unknown how the classification of high 
polygenic risk changes across individual PRS for the same trait. Here, we determined 
classification of high genetic risk from all cataloged PRS for three complex traits. While 
each PRS for each trait demonstrated generally consistent population-level strengths of 
associations, classification of individuals in the top 10% of each PRS distribution varied 
widely. Using the PRSMix framework, which incorporates information across several 
PRS to improve prediction, we generated sequential add-one-in (AOI) PRSMix_AOI 
scores based on order of publication. PRSMix_AOIₙ led to improved PRS performance 
and more consistent high-risk classification compared with the PRSₙ. The PRSMix_AOI 
approach provides more stable and reliable classification of high-risk as new PRS 
continue to be generated toward PRS standardization. 
 
Polygenic risk scores (PRS), which quantify the genetic risk for traits from common variants, 
have improved in their predictive performances over the past decade.1 Building on classical 
approaches of pruning and thresholding, methods incorporating Bayesian approaches using 
prior knowledge about genetic architecture, relatedness of individuals, linkage disequilibrium 
patterns, and genetic effects across populations have improved assignment of variant weights 
and PRS performance.2–5 In parallel, genome-wide association studies (GWAS) have continued 
to expand in size, with the most recent iteration of the GWASs for human height and coronary 
artery disease reaching 5.4 million and 1.3 million participants, respectively.6,7 Incorporation of 
multi-ancestry and multi-trait GWAS data has further improved PRS prediction in diverse 
ancestral groups.8 In attempting to quantify total inherited risk, each of these PRS iterations for 
a given trait captures unique information contingent on source GWAS, method, and training 
dataset.    

PRS are increasingly being delivered to patients. Third-party genetic testing companies and 
healthcare system laboratories are already delivering polygenic scores for coronary artery 
disease, diabetes, cancers, and other diseases.9,10 The eMERGE consortium has developed 
PRS reports for 10 diseases to return to participants within healthcare system as part of a larger 
effort to study genomic risk assessment and management.11–13 Furthermore, researchers 
recently developed clinically valid assays, clinical workflows, and patient- and physician-oriented 
information materials to accompany PRS reports delivered within the Mass General Brigham 
Biobank and the Veterans Affairs Genomic Medicine at Veterans Affairs (GenoVA) Study.14,15 
New clinical trials are incorporating PRS into medical decision-making (NCT05819814, 
NCT05850091), and medical societies have begun to release initial statements on their 
utility.16,17  

Despite ongoing progress toward clinical implementation, the variability of individual-level 
classification of ‘high genetic risk’ using different PRS for a given trait remains largely untested, 
and consensus PRS for any trait currently do not exist. Previous efforts have focused on 
population-level prediction metrics, rather than consistency of high-risk classification presented 
in individual clinical reports now as a part of clinical implementation workflows.8 Prior limited 
availability of large holdout diverse datasets has limited individual-level benchmarking to assess 
agreement in classification between PRS. Furthermore, there is a need to aggregate and 
incorporate orthogonal data from available PRS while overcoming correlation between scores 
and maximize predictive performance.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.24310897doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.24.24310897


 

 

Using the large and ancestrally-diverse All of Us (AOU) cohort18, we set out to compare the 
classification of individuals with high genetic risk based on published polygenic scores for three 
common, complex diseases: coronary artery disease (CAD), type 2 diabetes (T2DM), and major 
depressive disorder (MDD). We also test the effect of using PRSMix19 — a tool that agnostically 
incorporates information across several PRS for a given trait to improve prediction accuracy for 
a target population — in influencing high genetic risk classification over iterations of polygenic 
scores. 

We determined the associations of published PRS for complex traits from the Polygenic Score 
Catalog20 in AOU, which has aggregated genotype data and extensive phenotypic information 
on 236,393 participants (average enrollment age: 51.8 years; 60.6% female; genetically inferred 
ancestry of 54.7% EUR, 22.9% AFR, 18.9% AMR, 2.3% EAS and 1.1% SAS).21 Specifically, we 
calculated 57 scores for CAD, 129 scores for T2DM, and 18 scores for MDD. We tested the 
associations of these scores with corresponding outcomes. In each group of trait-specific 
scores, we chose the strongest target disease-associated score deposited by each unique 
publication in the group to form the subset of scores called PRSₙ, with n referring to the 
chronological order of the PRSₙ publication among the group of all trait-specific PRSₙ chosen – 
this resulted in 40 CAD PRSₙ, 39 T2DM PRSₙ, and 7 MDD PRSₙ. Then, for each of the three 
trait-specific groups of chronologically ordered PRSₙ, we generated a parallel group of 
sequential add-one-in (AOI) PRSMix_AOIₙ scores wherein, using PRSMix, each PRSₙ was 
combined with all other PRSₙ in its group published before it to produce its corresponding 
PRSMix_AOIₙ score. Finally, we generated three trait-specific PRSMixall scores, each describing 
the PRSMix of all published PRS for the given trait. PRSMixall was used to establish a 
benchmark definition and classification of high genetic risk, allowing consistent comparison 
between individual PRSₙ and their paired PRSMix_AOIₙ. (Figure 1) 

First, we calculated the associations and classification stability of high polygenic risk, defined as 
the top 10% of the score distribution, with the corresponding trait. Using contemporary PRS for 
common diseases, defining a threshold of top 10% as high genetic risk is associated with 
approximately two-fold greater risk of disease in prior studies.14 The ORs associated with top 
10% risk classification ranged from 1.25-2.50 for all CAD PRSₙ with CAD, 1.30-2.58 for all 
T2DM PRSₙ with T2DM, and 0.99-1.47 for all MDD PRSₙ with MDD.(Extended Figure 1) While 
each PRSₙ demonstrated consistent strengths of association, classification of individuals in the 
top 10% of each PRS distribution varied widely. The Jaccard index, a metric of similarity, is the 
proportion of observations in agreement between two sets of data relative to the total number of 
observations. The median [interquartile range] Jaccard index for top 10% classification by CAD 
PRSₙ was 0.17 [0.13-0.22], indicating poor agreement across scores. Similarly, the median 
Jaccard index for the top 10% classification was 0.18 [0.15-0.22] for T2DM PRSₙ and 0.11 
[0.08-0.17] for MDD PRSₙ (Figure 2). This trend was invariant of threshold choice. 
(Supplementary Table 1) When restricting to polygenic scores from the five most recent 
publications, we continued to observe poor agreement of high-risk classifications, with median 
[IQR] Jaccard index estimates of 0.15 [0.13-0.22] for CAD PRSₙ, 0.26 [0.18-0.35] for T2DM 
PRSₙ, and 0.18 [0.07-0.23] for MDD PRSₙ. 

Chronologically adding score PRSₙ in order of publication into PRSMix_AOIₙ led to 
progressively stronger associations with the outcome. This is most evident for PRSₙ from the 
past five publications, where the C-statistics associated with the top 10% risk classification 
using PRSMix_AOIₙ vs. PRSₙ ranged from 0.545-0.546 vs. 0.515-0.536 for CAD, 0.543-0.547 
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vs. 0.520-0.546 for T2DM, and 0.521-0.522 vs. 0.500-0.521 for MDD, respectively.(Figure 3) 
The ORs were significantly stronger for the top 10% of individuals using PRSMix_AOIₙ vs. PRSₙ 
respectively, with median [IQR] ORs for CAD (1.99 [1.77-2.27] vs. 1.68 [1.48-1.87], 
Pheterogeneity<0.001), T2DM (2.46 [2.45-2.50] vs. 1.86 [1.60-1.96], Pheterogeneity<0.001), and MDD 
(1.47 [1.37-1.50] vs. 1.30 [1.17-1.40], Pheterogeneity<0.001). (Figure 4A) The Nagelkerke’s pseudo-
R2 (median [IQR]) associated with top 10% risk classification for PRSMix_AOIₙ vs. PRSₙ was 
higher for CAD (0.008 [0.005-0.012] vs. 0.004 [0.002-0.006], Pheterogeneity<0.001), T2DM (0.017 
[0.017-0.018] vs. 0.008 [0.004-0.009], Pheterogeneity<0.001) and MDD (0.0033 [0.0022-0.0038] vs. 
0.0014 [0.0005-0.0023], Pheterogeneity<0.001). (Figure 4B) 

More importantly, using PRSMix_AOIₙ resulted in more congruent high-risk classification 
compared to the respective PRSₙ itself over time. Using PRSMix_AOIₙ the Jaccard index 
improved to median [IQR] of 0.39 [0.24-0.53] for CAD PRSMix_AOIₙ, 0.64 [0.45-0.85] for T2DM 
PRSMix_AOIₙ, and 0.44 [0.15-0.80] for MDD PRSMix_AOIₙ. (Figure 5) When restricting to PRSₙ 
from the five most recent publications, we observed significantly higher congruence in high-risk 
classifications between PRSMix_AOIₙ scores, with median Jaccard index estimates of 0.92 
[0.91-0.93] for CAD PRSMix_AOIₙ, 0.78 [0.78-0.78] for T2DM PRSMix_AOIₙ, and 0.80 [0.69-
0.95] for MDD PRSMix_AOIₙ. (Extended Figure 3) These findings of improved congruence for 
high genetic risk of CAD, T2DM, and MDD generalize across ancestral subgroups.(Extended 
Figure 4) 

As a result of the greater congruence in high-risk classification, using PRSMix_AOIₙ led to more 
consistent estimation of genetic risk percentile for individual participants. Individuals classified in 
top 10% risk by the PRSMixall for CAD have median percentiles across PRSₙ of 86 [79-91.5] vs. 
93 [87-97] for PRSMix_AOIₙ.(Figure 6A) Similarly, individuals classified in the top 10% risk by 
the PRSMixall for T2DM have median percentiles across PRSₙ of 87 [81-93] vs. 95 [91-98] for 
PRSMix_AOIₙ.(Figure 6B) Additionally, individuals classified in the top 10% risk by the PRSMixall 
for MDD have median [IQR] percentiles across PRSₙ of 86 [79-92] vs. 95 [92-98] for 
PRSMix_AOIₙ. (Figure 6C) These findings of improved individual-level classification for high 
genetic risk of CAD, T2DM, and MDD generalize across ancestral subgroups.(Extended Figure 
5). For any given PRSₙ, high-risk individuals fall to a lower, wider range of percentiles across all 
PRSₙ when compared with their paired PRSMix_AOIₙ scores. For the PRSₙ among the last five 
published PRSₙ for each trait that had the most inconsistent high-risk classification relative to 
PRSMixall, the median [IQR] percentiles of individuals classified in top 10% risk by PRSₙ vs. 
PRSMix_AOIₙ were 78 [55-92] vs. 95 [92-98] for CAD, 87 [71-95] vs. 95 [93-98] for T2DM and 
59 [33-81] vs. 95 [93-98] for MDD.(Extended Figure 6).    

In a comprehensive assessment of published PRS for three complex diseases, high PRS 
classification of individual participants was highly inconsistent across individual PRS. Because 
the strengths of association of individual PRS were significant at the population level, each 
score captures complementary predictive information as a by-product of its training process. 
This can be a function of the size of its GWAS, the composition of the training dataset, the exact 
phenotype definition, and assumptions of the polygenic score method, among other factors. We 
observed instability in risk estimates even between scores generated from the same GWAS or 
trained in the same cohort study. This instability builds on the inherent large variances in 
individual PRS estimates due to propagation of error as a function of GWAS sample size, 
number of causal SNPs and SNP-heritability – collectively resulting in instability of prediction 
across scores.22 
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Discrepancy in classification of high genetic risk is problematic in current clinical implementation 
efforts based on single PRS. As GWAS continue to grow and PRS methods continue to 
improve, newer scores will be published. While we observe a high degree of correlation of 
scores across population-level metrics, we show that each subsequent score has poor 
agreement of high-risk (as defined as being in the top 10%) status. As single PRS continue to 
demonstrate iterative improvement, adopting new single PRS empirically will lead to continual 
reassignment of high-risk, which will yield confusion and lack of confidence. In addition to 
reporting population-based association, prediction, and calibration metrics, benchmarking 
individual scores in hold-out datasets to understand these implications is critical prior to 
implementation. 

Use of PRSMix_AOI to sequentially incorporate new PRS is a framework that can be deployed 
by biobanks to provide a more robust and stable classification of high-risk as well as improved 
overall PRS population-based metrics. This method factors out highly correlated scores and 
utilizes complementary information of available PRS to help predict risk more accurately in the 
target population. When a new score is published, it can be incorporated into the PRSMix_AOI 
model yielding an improved PRS with less marked variability in updating the classification of 
high-risk for individuals. Importantly, stability is accompanied by more accurate high-risk 
classification. Very significant gains in predictive performance for an additional PRS would 
cause more substantial and likely appropriate classification changes with this approach. There 
is nominal additional computational effort needed in calculating the input scores needed to 
calculate PRSMix_AOI. Moreover, this method’s stable and improved prediction generalizes 
across ancestral groups, helping mitigate previously characterized disparities in PRS 
performance.23 The better accuracy and inter-PRSMix_AOIₙ consistency make it an ideal 
framework for incorporation into clinical workflows for PRS reporting and updating.    

This study has several limitations. To mirror the development of the majority of published PRS, 
and given the recency of and middle-aged baseline of AOU, we performed association analyses 
with prevalent disease and still found significant instability in prediction. Future efforts on 
instability of incident disease prediction with follow-up beginning early in life will be additionally 
informative. We also used hospitalization and procedural codes to classify disease instead of 
clinically adjudicated outcomes. In this manuscript, we focus on common complex diseases for 
well-powered analyses. While some reports use OR for high risk classification, we show wide 
variability in population-level metrics and percentile classification leading to wide variability in 
individual-level OR estimation by PRSₙ. Thus the proposed PRSMix_AOI approach provides 
stability for both percentile and OR-based reporting. 

In conclusion, in a comprehensive assessment of published PRS for three complex diseases, 
high PRS classification was highly inconsistent. Using PRSMix_AOI to sequentially incorporate 
new PRS enables standardization toward more stable and reliable classification of high risk. 
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Online Methods: 

Study population 

The All of Us (AOU) Research Program is a cohort study focused on recruiting individuals 
traditionally underrepresented in biomedical research. Since 2018, AOU has enrolled people 
aged 18 and older from over 730 sites across the United States. The program has consented 
more than 800,000 participants, of whom over 560,000 have completed the basics of enrollment 
including collection of health questionnaires and biospecimens. For these participants, there is 
ongoing linkage to electronic health record (EHR) data, including ICD-9/ICD-10, SNOMED, and 
CPT codes. Genetic data comprises array samples from 315,000 participants and whole-
genome sequencing (WGS) from 245,394 participants. This study used WGS data from the 
Controlled Tier Dataset version 7 release. 

Outcome ascertainment 

CAD was defined based on self-report, occurrences of at least 2 diagnosis codes for myocardial 
infarction or a single procedure code for coronary revascularization. T2DM was defined based 
on diagnosis codes, laboratory results and medication prescriptions, as previously described by 
the eMERGE consortium.24 MDD was defined based on the presence of at least two diagnosis 
codes for major depressive disorder. All phenotype definitions are detailed in supplementary 
tables 2-4.  

Genotyping and quality control 

Participants in AOU were genotyped using the Illumina Global Diversity Array at AOU genome 
centers. Central quality control measures included filtering for sex concordance, a cross-
individual contamination rate below 3%, and a call rate above 98%. Further quality control 
performed by AOU included filtering for variants with population-specific allele frequency greater 
than 1% or a population-specific allele count greater than 100 in any AOU-computed ancestry 
subpopulations. Ancestry was inferred based on genetic similarity with projections of 20 
principal components of genetic ancestry using 1000 Genomes as a reference panel. Inferred 
genetic ancestry in AOU was estimated in high-quality WGS samples that were restricted to bi-
allelic sites, a minor allele frequency above 0.1%, a call rate above 99%, and a linkage 
disequilibrium-pruned threshold r2 = 0.1.  

Polygenic score calculation 

The variant effect sizes for 61 scores for CAD, 133 scores for T2DM and 18 scores for MDD 
were downloaded from Polygenic Score Catalog on May 28, 2024. Of these, we excluded 4 
CAD scores and 4 T2DM scores that were already developed using PRSMix to prevent potential 
overfitting. This left 57 CAD scores, 129 T2DM scores, and 18 MDD scores for use in further 
analysis, none of which were previously trained in AOU or developed using AOU GWAS data. 
For score accession numbers see supplementary tables 5-7. All scores were harmonized to the 
AOU reference dataset using PRSMix. Scores with an OR/SD < 1 in the entire AOU cohort were 
considered anti-correlated and were thus inverted in all further analyses. All scoring in AOU was 
done using PLINK2 software. All polygenic scores were adjusted for enrollment age, sex, and 
the first ten principal components of genetic ancestry and then standardized to have a mean of 
0 and a standard deviation of 1. Individuals were next binned into 100 groupings according to 
percentile of score, and individuals in the top 10% of the score distribution were deemed to have 
high genetic risk. 
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PRSMix and PRSMix_AOI 

PRSMix is a framework that evaluates and leverages the data from a group of PRS for a target 
trait to generate a new score with improved prediction accuracy. PRSMix uses an elastic net 
model to produce a weighted linear combination of all the input PRS. The PRSMix framework 
was used first to harmonize all scores from the PGS Catalog to the AOU reference dataset via 
the harmonize_snpeffect_toALT function. In addition, PRSMix was used to combine PRS via the 
combine_PRS function. PRSMix was run using all default parameters. This includes the use of 
age, sex, and the first 10 principal components as covariates, as well as an 80% vs. 20% split of 
the cohort into the training and testing cohorts, respectively. For each trait, we generated a 
PRSMixall score defined as the PRSMix of all published PRS for a given trait.  

Within each trait of interest, only a subset of all the trait-specific scores were selected to be 
used as a PRSₙ for subsequent paired PRSMix_AOIₙ. For each unique PGS Catalog Publication 
(PGP) ID found within the group of all trait-specific scores, the score with the highest OR/SD 
was selected as the representative PRSₙ for that publication. This selection mechanism resulted 
in 40 PRSₙ out of 57 total CAD scores, 39 PRSₙ out of 129 total T2DM scores, and 7 PRSₙ out 
of 18 total MDD scores. Each group of trait-specific PRSₙ were then ordered by publication date, 
using the number of variants included in the score as the tiebreaker with smaller variant sizes 
coming first. For each of the three trait-specific groups of ordered PRSₙ, we generated a parallel 
group of sequential add-one-in (AOI) PRSMix_AOIₙ scores. For each PRSₙ, we used PRSMix to 
combine the PRSₙ with all other PRSₙ published prior in its group to produce its corresponding 
PRSMix_AOIₙ score.  

Statistical analysis 

The association of polygenic scores with outcome of interest were assessed using logistic 
regression with covariates of enrollment age, sex, and the first 10 principal components of 
genetic ancestry. The discrimination of each of these polygenic scores was assessed using 
Harrell’s C-statistic. The proportion of phenotypic variance explained by the polygenic score on 
the observed scale was determined using Nagelkerke’s pseudo-R2 metric via the rcompanion R 
package. This calculation involved finding the R2 for the complete model, which included the 
variable of interest and baseline model covariates, and then subtracting the R2 for the baseline 
covariates alone. Significance in differences between distributions of PRSₙ and PRSMix_AOIₙ 
were determined through subgroup heterogeneity meta-analysis. Standard errors for   
Nagelkerke’s pseudo-R2  were determined via standard bootstrapping procedure. Congruence 
of risk estimates was assessed with the Jaccard similarity index, which measures the amount of 
overlap or similarity between two sample sets.25 All analyses were two-sided. Statistical 
analyses were performed using R version 4.3.1. 

Data availability 

All data are made available from the All of Us Research Study to researchers from universities 
and other institutions with genuine research inquiries following institutional review board and All 
of Us approval. This research was approved by the Mass General Brigham institutional review 
board. The weights of the polygenic scores analyzed in this study are publicly available for 
download from the Polygenic Score Catalog.20 The mixing weights of the PRSMix_AOIₙ are 
available in the supplementary tables 5-7.  
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Software and Code Availability 
 
No custom software or algorithms were developed for data collection. We used the following 
softwares for handling and scoring the genetic data: Plink 2.0, R 4.3.1 (including package 
PRSmix), and Python 3.11.5 (including packages pandas 2.1.4 and NumPy 1.6.2). For data 
analysis and visualization, we used R 4.3.1 (including packages PRSmix, ggplot2, meta, class, 
rcompanion, survminer) and Python 3.11.5 (including packages pandas 2.1.4, NumPy 1.6.2, 
and Matplotlib 3.7.2). Analyses were performed on the AOU Researcher Workbench. Results 
are reported in compliance with the AoU Data and Statistics Dissemination Policy. 
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Figure 1: Overview of analysis 

 

A) Polygenic scores that were not developed using PRSMix and do not include All of Us 
participants in their development were downloaded from the PGS catalog and calculated in the 
All of Us cohort for three traits of interest, including 57 scores for coronary artery disease (CAD), 
129 scores for type 2 diabetes (T2DM), and 18 scores for major depressive disorder (MDD). B) 
PRSMix, a tool that incorporates information across several PRS for a given trait to improve 
prediction accuracy for a target population, was used to generate a PRSMixall for each trait 
incorporating all available scores in a training dataset of 189,114 individuals. Being in the top 
10% of these trait-specific PRSMixall score distributions was used as the benchmark for 
classifying high genetic risk. C) For publications that had shared multiple scores in the PGS 
Catalog for a trait, the score with the strongest association with the trait of interest was identified 
and chronologically ordered as PRSₙ. D) PRSMix was used to generate a set of chronological 
add-one-in (AOI) PRSMix_AOIₙ scores corresponding to each set of PRSₙ, wherein we 
combined each PRSₙ with all prior published PRSₙ scores for the same trait. These PRSₙ, 
corresponding PRSMix_AOIₙ, and the single PRSMixall scores for each trait were calculated and 
further analyzed in a holdout population of 47,279 participants in All of Us.  
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Figure 2: Jaccard index heatmaps for high genetic risk across trait-specific polygenic score 
(PRSₙ) pairs  

 
Jaccard indices of similarity calculated for pairs of classification of top 10% risk determined by 
polygenic scores (PRSₙ) for coronary artery disease, type 2 diabetes mellitus, and major 
depressive disorder. Scores are ordered chronologically based on date of publication, 
advancing left to right and bottom to top. The median [interquartile range] Jaccard index for top 
10% classification was: A) 0.17 [0.13-0.22] for coronary artery disease; B) 0.18 [0.15-0.22] for 
type 2 diabetes mellitus; and C) 0.11 [0.08-0.17] for major depressive disorder.  
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Figure 3: Chronologic trends in C-statistic estimates for PRSₙ vs. PRSMix_AOIₙ across three 
traits 

 
C-statistics are based on logistic regression models predicting disease of interest, with high 
genetic risk as the only variable. High genetic risk is defined as the top 10% of each respective 
polygenic score. PRSₙ indicates a chosen subset of individual trait-specific PRS ordered based 
on date of publication. PRSMix_AOIₙ indicates polygenic scores generated using the PRSMix 
framework, wherein PRSₙ is combined with all individual PRSₙ published before it.  
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Figure 4: Association strength and variance explained for PRSₙ vs. PRSMix_AOIₙ across three 
traits 

 
A) Median and interquartile range for odds ratios across scores are based on logistic regression 
models predicting disease of interest, with variables of high genetic risk, age, sex, and first ten 
principal components of genetic ancestry. High genetic risk is defined as the top 10% of each 
respective polygenic score. PRSₙ indicates individual trait-specific PRS ordered based on date 
of publication. PRSMix_AOIₙ indicates polygenic scores generated using the PRSMix 
framework, PRSₙ was combined with all individual PRSₙ published before it. The proportion of 
phenotypic variance explained by the high polygenic risk classification by each polygenic score 
for each respective disease. B) Median and interquartile range for incremental Nagelkerke’s 
pseudo-R2 metric across scores, as the difference of the full model inclusive of the polygenic 
score plus age, sex, and the first ten principal components of ancestry minus R2 for the 
covariates alone. CAD: coronary artery disease. T2DM: type 2 diabetes. MDD: major 
depressive disorder. * designates Pheterogeneity<0.001. 
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Figure 5: Jaccard index heatmaps for high genetic risk across trait-specific PRSMix_AOIₙ pairs 

 
Jaccard indices of similarity calculated for pairs of classification of top 10% risk determined by 
PRSMix_AOIₙ - polygenic scores generated by chronologically adding in PRSₙ using PRSMix 
framework for coronary artery disease, type 2 diabetes mellitus, and major depressive disorder. 
Scores are ordered chronologically based on date of publication, advancing left to right and 
bottom to top. The median [interquartile range] Jaccard index for top 10% classification was: A) 
0.39 [0.24-0.53] for coronary artery disease; B) 0.64 [0.45-0.85] for type 2 diabetes mellitus; and 
C) 0.44 [0.15-0.80] for major depressive disorder. 
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Figure 6: Median percentile distributions of PRSₙ vs. PRSMix_AOIₙ across three traits for 
individuals identified as having high genetic risk using PRSMixall 

 
Distributions of the median percentile per polygenic score type for individuals classified in top 
10% risk by the PRSMixall for each disease of interest. PRSₙ indicates individual trait-specific 
PRS ordered based on date of publication. PRSMix_AOIₙ indicates polygenic scores generated 
using the PRSMix framework, PRSₙ was combined with all individual PRS published before it. 
A) Individuals classified in top 10% risk by the PRSMixall for CAD have median percentiles 
across PRSₙ of 86 [79-91.5] vs. 93 [87-97] for PRSMix_AOIₙ. B) Similarly, individuals classified 
in the top 10% risk by the PRSMixall for T2DM have median percentiles across PRSₙ of 87 [81-
93] vs. 95 [91-98] for PRSMix_AOIₙ. C) Additionally, individuals classified in the top 10% risk by 
the PRSMixall for MDD have median percentiles across PRSₙ of 86 [79-92] vs. 95 [92-98] for 
PRSMix_AOIₙ.  
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Extended Figure 1: Odds ratios for high genetic risk using PRSₙ vs. PRSMix_AOIₙ with three 
traits 
 

Odds ratios are based on logistic regression models predicting disease of interest, with 
variables of high genetic risk, age, sex, and first ten principal components of genetic ancestry. 
High genetic risk is defined as the top 10% of each respective polygenic score. PRSₙ indicates a 
specific subset of individual trait-specific PRS ordered chronologically based on date of 
publication. PRSMix_AOIₙ indicates polygenic scores generated using the PRSMix framework 
wherein each PRSₙ was combined with all individual PRSₙ published before it. CAD: coronary 
artery disease; T2DM: type 2 diabetes; MDD: major depressive disorder. 
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Extended Figure 2: Chronologic trends in association strength and variance explained 
estimates for PRSₙ vs. PRSMix_AOIₙ across three traits 

 
A) Odds ratios are based on logistic regression models predicting disease of interest, with 
variables of high genetic risk, age, sex, and first ten principal components of genetic ancestry. 
High genetic risk is defined as the top 10% of each respective polygenic score. PRSₙ indicates 
individual trait-specific PRS ordered chronologically based on date of publication. PRSMix_AOIₙ 
indicates polygenic scores generated using the PRSMix framework, PRSₙ was combined with 
all individual PRSₙ published before it. The proportion of phenotypic variance is explained by the 
high polygenic risk classification by each polygenic score for each respective disease: B) 
Nagelkerke’s pseudo-R2 metric, as the difference of the full model inclusive of the polygenic 
score plus age, sex, and the first ten principal components of ancestry minus R2 for the 
covariates alone. CAD: coronary artery disease; T2DM: type 2 diabetes; MDD: major 
depressive disorder. 
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Extended Figure 3: Jaccard index distributions for high genetic risk determined by trait-specific 
PRSₙ vs. PRSMix_AOIₙ from five most recent publications 

 
Jaccard indices of similarity calculated for pairs of classification of top 10% risk determined by 
trait-specific polygenic scores from the last five respective publications. PRSₙ indicates 
individual trait-specific PRS ordered based on date of publication. PRSMix_AOIₙ indicates 
polygenic scores generated using the PRSMix framework, wherein each PRSₙ was combined 
with all individual PRSₙ published before it.  
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Extended Figure 4: Jaccard index distributions for high genetic risk determined by trait-specific 
PRSₙ vs. PRSMix_AOIₙ from five most recent publications across genetically predicted ancestry 
groups 

 
Jaccard indices of similarity calculated for pairs of classification of top 10% of risk determined by 
trait-specific polygenic scores from the last five respective publications. PRSₙ indicates 
individual trait-specific PRS ordered based on date of publication. PRSMix_AOIₙ indicates 
polygenic scores generated using the PRSMix framework wherein each PRSₙ was combined 
with all individual PRSₙ published before it. Genetically inferred ancestry based on k-nearest 
neighbor approach as European (EUR), African (AFR), admixed American (AMR), and East 
Asian (EAS).  
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Extended Figure 5: Median percentile of PRSₙ vs. PRSMix_AOIₙ across three traits for 
individuals identified as having high genetic risk using PRSMixall, across genetically predicted 
ancestry groups 

 
Distributions of the median percentile per polygenic score type for individuals classified in top 
10% risk by the PRSMixall for each disease of interest. PRSₙ indicates individual trait-specific 
PRS ordered based on date of publication. PRSMix_AOIₙ indicates polygenic scores generated 
using the PRSMix framework, PRSₙ was combined with all individual PRSₙ published before it. 
Genetically inferred ancestry based on k-nearest neighbor approach as European (EUR), 
African (AFR), admixed American (AMR), and East Asian (EAS).  
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Extended Figure 6: Score-specific percentile distributions of PRSₙ vs. PRSMix_AOIₙ across 
three traits for individuals identified as having high genetic risk using PRSMixall 

 
Median percentile and interquartile range per polygenic score type for individuals classified in 
top 10% risk by the PRSMixall for each disease of interest. PRSₙ indicates individual trait-specific 
PRS ordered based on date of publication. PRSMix_AOIₙ indicates polygenic scores generated 
using the PRSMix framework, PRSₙ was combined with all individual PRSₙ published before it. 
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