
Title
Co-development of gut microbial metabolism and visual neural circuitry in human infants

Authors
Kevin S. Bonham
Emma T. Margolis
Guilherme Fahur Bottino
Fadheela Patel
Shelley McCann
Michal R. Zieff
Kirsty A. Donald
Laurel J. Gabard-Durnam*
Vanja Klepac-Ceraj*

ORCID numbers:
Kevin S. Bonham: 0000-0003-3200-7533
Guilherme Fahur Bottino: 0000-0003-1953-1576
Emma T. Margolis: 0000-0002-2036-8078
Fadheela Patel: 0000-0001-5177-7416
Michal Zieff: 0000-0001-9352-9947
Shelley McCann: 0000-0002-9753-7968
Kirsten A. Donald: 0000-0002-0276-9660
Laurel J. Gabard-Durnam 0000-0002-4564-8068
Vanja Klepac-Ceraj: 0000-0001-5387-5706

Running title: Infant gut microbiome associates with visual neurodevelopment

Abstract
Infancy is a time of rapid brain development supporting foundational sensory learning. The gut 
microbiome, also undergoing extensive developmental changes in early life, may influence brain 
development through metabolism of neuroactive compounds. Here, we show across the first 18 
months of life that microbial genes encoding enzymes that produce and degrade neuroactive 
compounds, including neurotransmitters GABA and glutamate, the amino acid tryptophan, and 
short-chain fatty acids including acetate and butyrate, are associated with visual 
neurodevelopmental learning, measured by the visual-evoked potential (VEP). Microbial gene 
sets from stool collected around 4 months of age were strongly associated with VEP features 
measured from 9 to 14 months of age and showed more associations than concurrently 
measured gene sets, suggesting microbial metabolism in early life may have long term effects 
on neural plasticity and development. 
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Introduction
The gut microbiome in early life has potential long-term implications for brain and body health.  
One important way this influence can occur is through interactions with the central nervous 
system as a “microbial-gut-brain-axis” (Rhee, Pothoulakis, and Mayer 2009; Collins, Surette, 
and Bercik 2012). The metabolic potential of the microorganisms that inhabit the gut vastly 
exceeds that of human cells alone, with microbial genes outnumbering host genes by a 
hundredfold (Gilbert et al. 2018). In particular, gut microbes have the ability to metabolize and 
synthesize many neuroactive compounds (Valles-Colomer et al. 2019). Extensive work in 
preclinical models suggests that these neuroactive compounds can influence the brain through 
both direct and indirect routes. For example, major neurotransmitters (e.g., glutamate, γ-
aminobutyric acid (GABA), serotonin, and dopamine) are readily synthesized and degraded by 
intestinal microbes and can directly stimulate enteric nerve cells or enter circulation and pass 
the blood-brain barrier to influence central nervous function (Janik et al. 2016; Ahmed et al. 
2022). Glutamatergic/GABA-ergic signaling is critical for balancing the brain’s excitatory and 
inhibitory neurotransmission levels, and bi-directional glutamatergic/GABA-ergic signaling 
between the gut microbiome and brain is implicated in several physical and mental health 
conditions (Filpa et al. 2016; Baj et al. 2019). Similarly, the gut and the microbiome are critical to 
the regulation of metabolism for the neurotransmitters serotonin and dopamine, particularly 
through the metabolism of dietary tryptophan (Agus, Planchais, and Sokol 2018). Moreover, 
short-chain fatty acids (SCFAs) produced by the gut microbiome may impact the brain directly 
by modulating neurotrophic factors, glial and microglial maturation, and neuroinflammation 
(Dalile et al. 2019; Erny et al. 2021). Other indirect pathways for gut microbial influence on the 
brain include vagus nerve stimulation, neuroendocrine modulation and immune system 
regulation (Rhee, Pothoulakis, and Mayer 2009). 

Rapidly growing literature connects the metabolic potential of the gut microbiome and brain 
function in humans  (reviewed in (Ahmed et al. 2022; Parker, Fonseca, and Carding 2019; 
Aburto and Cryan 2024)), however, the overwhelming majority of this research is performed in 
adults. Importantly, both the gut microbiome and the brain undergo dramatic and rapid 
development over the first postnatal years (Yassour et al. 2016; Bonham et al. 2023; Lippé et al. 
2007; Dean et al. 2014). However, very little is currently known about how gut-brain influences 
emerge or change during this critical window for both systems (Ahrens et al. 2024; Meyer et al. 
2022). Interrogating this early co-development in humans is therefore key to both understanding 
adaptive gut-brain function and behavior and informing strategies to support it. The visual cortex 
has been shown to be sensitive to gut microbiome modulations in adults (Canipe, Sioda, and 
Cheatham 2021) and in rodents (Lupori et al. 2022), yet the visual cortex undergoes its most 
rapid period of plasticity and maturation over infancy when the microbiome changes most 
significantly (Deen et al. 2017; Ellis et al. 2021; Kiorpes 2015). Visual cortical maturation can be 
robustly indexed via EEG with the visual-evoked potential (VEP) response to visual stimuli from 
birth. The VEP is especially useful for indexing visual neurodevelopment as its morphology 
includes amplitude deflections and latencies to those deflections that reflect maturation of 
function and structure, respectively.
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Here, we investigated the co-development of microbial gene functional potential - specifically 
genes encoding enzymes that metabolize neuroactive compounds - and visual 
neurodevelopment as indexed by the VEP in a longitudinal community sample of 185 infants 
from Gugulethu in Cape Town, South Africa recruited as part of an ongoing prospective study, 
called “Khula” (Zieff et al. 2024). Stool samples and EEG were collected at up to 3 visits in the 
first 18 months of life. Shotgun metagenomic sequencing was used to obtain microbial gene 
sequences from infant stool samples. To index visual cortical development, latencies and 
amplitudes were extracted from each deflection component of the VEP (i.e., first negative-going 
deflection, N1; first positive-going deflection, P1; and second negative-going deflection, N2), 
producing six VEP features of interest. We evaluated the concurrent association between 
microbial genes and VEP amplitudes and latencies and tested prospective influences of 
microbial genes from early visits on VEP changes at later visits to reveal the temporal dynamics 
of gut-brain co-development within individuals during this most critical window of plasticity.

Results

The brain and microbiome develop rapidly in the first months of life
To investigate the co-development of the gut microbiome and visual neurodevelopment, we 
collected stool and measured VEP in a longitudinal cohort of 194 children in South Africa in the 
first 18 months of life (Figure 1A, B, Table 1; visit 1, N = 119, age 3.6 ± 0.7 months, visit 2, N = 
144, age 8.7 ± 1.4 months, visit 3, N = 130, age 14.2 ± 1.0 months). As expected for children at 
this age (Koenig et al. 2011; Yassour et al. 2016; Bäckhed et al. 2015), the microbial 
composition was developmentally dependent, with the first principle coordinate axis for both 
taxonomic profiles (Figure 1C; variance explained = 15.1%; R = -0.50)) and functional profiles 
(Figure 1D; variance explained = 12.9%; R = -0.57) driven strongly by the age of the subject at 
the time of collection. Similarly, both amplitude and latency VEP features were also strongly 
correlated with age, such that latencies (especially P1 and N2) became shorter, while the P1 
became less positive and the N1 and 2 components became more negative in amplitude as 
infants got older (Figure 1E).
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Fig. 1: The gut microbiome and VEP both develop over the first 18 months of life. 
(A) Study design; participants (N=194) were seen up to 3 times over the first 18 months of life. 
Metagenomes and EEG data were collected, generating microbial functional profiles (stool) and VEP 
waveforms (EEG) used in subsequent analyses. (B) Longitudinal sampling of study participants; Density 
plots (top) for stool and EEG collection show the ages represented in each visit. The scatter plot (bottom) 
shows individual participant visits. Dotted lines connect separate visits for the same participant. When 
stool and EEG data were collected for the same visit (purple) but not on the same day, dot represents the 
median age of collection, and vertical bars in blue and red represent stool and EEG collections 
respectively. (C) Principal coordinate analysis (PCoA) by multidimensional scaling (MDS) on Bray-Curtis 
dissimilarity of taxonomic profiles; percent variance explained (fraction of positive eigenvalues) by each of 
the first two axes are indicated on the x and y axes respectively. (D) PCoA of microbial functional profiles 
(UniRef90s). (E) Average VEP waveforms at each visit. 

Microbial genes with neuroactive potential are associated with visual 
development
To test whether microbial metabolic potential was related to early life brain activity, we 
performed feature set enrichment analysis (FSEA) using groups of potentially neuroactive 
microbial genes and the VEP amplitude and latency features (Bonham et al. 2023; Valles-
Colomer et al. 2019). For each gene set that had at least 5 genes represented in a given 
comparison group, logistic regression was performed using VEP features as predictors and the 
presence or absence of each microbial gene in the metagenome as the response to determine 
concurrent associations (see Methods). Z statistics for in-set genes were compared to all genes 
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using a permutation test to determine significance of the associations as described in 
(Subramanian et al. 2005). Of the 35 genesets assessed, 19 had sufficient representation to 
test, and of those, 18 were significantly associated with at least one EEG feature during at least 
one visit within the 18-month window after correcting for false discovery rate (Benjamini-
Hochberg, q < 0.2; Figure 2, Table 2). Microbial genes involved in synthesis or degradation of 
molecules with neuroactive potential were associated with both VEP amplitudes or latencies at 
each visit, demonstrating widespread associations between early life gut microbiome and visual 
cortex neurodevelopment. The number of these associations increased over time (visit 1 had 6 
associations, visit 2 had 24, and visit 3 had 37), which could reflect the fact that in utero 
development is thought to occur in a sterile environment, providing less opportunity for microbial 
metabolism to influence visual cortex development in the first 3 months of life.

Fig. 2:  Concurrent feature set enrichment analysis of microbial neuroactive genes and VEP for 
three visits.
FSEA results for all genesets where at least one visit had a significant hit (q < 0.2) with at least one VEP 
latency (A) or amplitude (B). Dots indicate the Z-statistic from logistic regression for each gene in a gene 
set. Vertical bars indicate the median Z-statistic for the gene set as a whole. Y-axis position for each gene 
set indicates visit number. Visit 1 for inositol degradation and DOPAC synthesis were not tested, since 
there were fewer than 5 genes from those genesets present in the sample (See Methods).

Specifically, across the gene sets involved in neurotransmitter synthesis and degradation, 
glutamate synthesis  showed robust associations with all VEP features, primarily at the 3rd visit 
(mean age 14.3 months), while glutamate degradation was weakly but significantly associated 
only with the amplitude of N2 at visit 3. GABA synthesis was also associated with the latency of 
the P1 peak at visit 1 (mean age 3.6 months). The regulation of this balance between glutamate 
and GABA (i.e., excitatory/inhibitory balance) is important for modulating neuroplasticity in the 
visual cortex during infancy (Fagiolini and Hensch 2000; Hensch et al. 1998), and suggests that 
microbial metabolism is related to the VEP as an index of this changing neuroplasticity. Gene 
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sets involved in tryptophan metabolism, which is linked to the metabolism of the 
neurotransmitter serotonin as well as other neuroactive molecules such as kynurenine (Agus, 
Planchais, and Sokol 2018) was associated with VEP latencies of P1 at visit 1, N1 and P1 at 
visit 2, and N2 at visit 3. The degradation of quinolinic acid, also downstream of tryptophan 
metabolism, was negatively enriched in children with shorter P1 latency at visit 1 and smaller P1 
amplitude at visit 3, while the synthesis of quinolinic acid was positively associated with the 
amplitude of the N2 peak at visit 1. Serotonin is a key regulator of other neurotransmitters, while 
quinolinic acid is part of the kynurenine pathway and is a neurotoxin that can cause neuronal 
dysfunction, but may also play a role in glutamate uptake in the brain (Lugo-Huitrón et al. 2013; 
Tavares et al. 2000).

Amongst the short-chain fatty acid (SCFA) metabolizing gene sets tested, acetate synthesis 
was strongly associated with all VEP features except N1 amplitude at visit 3, and also with N2 
latency at visit 2. Propionate degradation was significantly associated with VEP latencies at 
every visit over the 18-month window (N1 at visits 1 and 2, and both P1 and N2 at visit 3), as 
well as with the amplitude of N1 at visit 3, while propionate synthesis was negatively associated 
with N1 latency at visit 1 and positively associated with N2 amplitude at visit 3. Butyrate 
synthesis is also associated with P1 and N2 latencies at visit 2, and with their amplitudes at visit 
3. SCFAs play important roles in immune regulation, including neuroinflammation. Propionate is 
widely regarded as neuroprotective, having indirect effects on the CNS by regulating 
inflammatory responses and stimulating the release of GLP-1 from neuroendocrine cells in the 
gut epithelium, while circulating butyrate increases myelination (Chen et al. 2019) . Finally, 
within the remaining gene sets tested, we observed robust associations in particular between 
menaquinone (Vitamin K2) gene sets and the VEP features over this infancy window. This is 
reassuring as vitamin K2 specifically is posited to promote healthy vision both outside of the 
brain through effects on the retina and within the brain where it can protect neural circuits from 
oxidative stress (Li et al. 2003). Notably, across significant gene set associations with VEP 
features, the P1 and N2 component amplitudes and latencies were consistently the most 
sensitive to these microbial gene sets. Both P1 and N2 components are known to show the 
most dramatic changes with development during the first year of life and may best reflect 
underlying visual learning and plasticity at this stage. 

Microbial metabolic potential predicts future brain development in infancy
Given that differences in metabolic potential of the early life microbiome may exert their effects 
over time, we sought to determine whether microbial genes at early time points were associated 
with subsequent VEP development. To investigate this, we performed FSEA on stool samples 
collected at visit 1 with VEP measured at visit 2 (age at stool collection = 3.6 ± 0.8 months, age 
at VEP = 8.6 ± 1.5 months) or visit 3 (age at stool collection = 3.7 ± 0.7 months, age at VEP = 
14.1 ± 1.1 months), as well as visit 2 stool samples with visit 3 VEP (age at stool collection = 8.9 
± 1.5 months, age at VEP = 14.3 ± 1.0 months) (Figure 3A). All gene sets except DOPAC 
synthesis that had a significant hit with concurrently measured VEP were also significantly 
associated with at least one future VEP feature (Figure 3B, Tables 2-5). Notably, the quantity of 
those associations increased substantially for all longitudinal comparisons compared to 
concurrent ones. For example, only 6 microbial gene sets were associated with visit 1 VEP, and 
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each of those was only associated with a single concurrently measured VEP feature. By 
contrast, 13 visit 1 gene sets were associated with visit 2 VEP features, and 11 were associated 
with visit 3 VEP features, the majority (9/13 for visit 2, 8/11 for visit 3) were associated with at 
least 2 VEP features, and nearly half (6/13 for visit 2, 5/11 for visit 3) were associated with more 
than 2. 

Fig. 3:  Gut microbial genes predict future VEP latencies and amplitudes
(A) Age distributions for stool samples (left) and VEP (right) for each longitudinal comparison (same 
individual) tested, V1 stool Z V2 VEP, V1 stool V3 VEP, and V2 stool V3 VEP. As in Figure 2, (B) and → → →
(C) show FSEA results for all genesets where at least one visit had a significant hit (q < 0.2) with at least 
one VEP latency or amplitude respectively. Dots indicate the Z-statistic from logistic regression for each 
gene in a gene set. Vertical bars indicate the median Z-statistic for the gene set as a whole. The Y-axis 
position for each gene set indicates longitudinal comparison. V1  V2 and V1  3 for inositol → →
degradation and DOPAC synthesis were not tested, since there were fewer than 5 genes from those 
genesets present in the sample (See Methods).
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Table 2: Longitudinal FSEA, visit 1 stool -> visit 2 VEP

Gene set Feature type Peak Enrichment Q value

GABA synthesis amp
P1 -0.3987298838 0.08078918919

N2 0.3661036051 0.1129448276

Glutamate synthesis
latency

N1 -0.2829156583 0.04452

P1 0.2625066112 0.08078918919

amp P1 0.2316538042 0.1023130435

Glutamate degradation
latency

P1 0.3369665011 0.1598153846

N2 0.3252682367 0.1800808989

amp P1 0.3256631998 0.1760093023

Tryptophan synthesis
latency

N1 -0.2211303459 0.02725714286

P1 0.1671470069 0.08078918919

N2 0.1900183195 0.04845714286

amp N2 -0.1630723325 0.1023130435

Quinolinic acid synthesis amp N1 -0.2735268422 0.1609156627

Quinolinic acid degradation latency
P1 0.1979735587 0.1023130435

N2 0.1950682309 0.1118888889

Acetate synthesis

latency

N1 -0.2190895918 0.02935384615

P1 0.1926523891 0.06115384615

N2 0.2157444594 0.0318

amp
P1 0.1860132394 0.0742

N2 -0.1960332174 0.05492727273

Butyrate synthesis amp N1 -0.3193476197 0.1698494118

Isovaleric acid synthesis

latency N1 0.2711007176 0.1223076923

amp
N1 0.2412188311 0.1800808989

P1 -0.2409522895 0.1609156627

Menaquinone synthesis latency N1 -0.1393490274 0.1598153846

Inositol synthesis
amp N1 -0.4295268274 0.1804304348

latency N1 -0.4219126859 0.1834357895

p-Cresol synthesis amp

N1 -0.3665789266 0.1825935484

P1 0.452086746 0.1014571429

N2 -0.5164507055 0.04452

17-beta-Estradiol degradation latency N2 0.3550449716 0.1800808989
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Table 3: Longitudinal FSEA, visit 1 stool -> visit 3 VEP

Gene set Feature type Peak Enrichment Q value

GABA synthesis

latency P1 0.4343386934 0.04452

amp
P1 0.4099001639 0.0742

N2 -0.5065759161 0.02544

Glutamate synthesis
latency N1 -0.3035011084 0.02935384615

amp N1 -0.2344054782 0.1118888889

Tryptophan synthesis
latency N1 -0.1875306139 0.04452

amp P1 -0.2176124281 0.0159

Quinolinic acid degradation
latency

P1 -0.1862809727 0.109392

N2 -0.2624478514 0.1834357895

amp P1 -0.1689430121 0.1609156627

Acetate synthesis latency N1 -0.1728769986 0.08078918919

Propionate synthesis amp P1 0.3586598762 0.08078918919

Propionate degradation

latency
N1 -0.5097549612 0.109392

P1 0.5345516637 0.08806153846

amp
P1 0.738806805 0

N2 -0.6669122013 0.02725714286

Butyrate synthesis
latency

N1 0.3373261944 0.1223076923

N2 -0.3232764867 0.1498520548

amp P1 0.368868764 0.1014571429

Menaquinone synthesis

latency P1 0.1582676302 0.08703157895

amp

N1 -0.1417486481 0.1397408451

P1 0.1488038682 0.1131864407

N2 -0.1567020165 0.1023130435

Inositol synthesis amp N2 -0.4538038427 0.1210451613

ClpB

latency N1 -0.2835050435 0.1804304348

amp
P1 -0.3284206328 0.1129448276

N2 0.3585858703 0.08001290323
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Table 4: Longitudinal FSEA, visit 2 stool -> visit 3 VEP

Gene set Feature type Peak Enrichment Q value

GABA synthesis latency N1 -0.3762158971 0.107325

Glutamate synthesis
latency

N1 -0.1676219701 0.1609156627

P1 0.2979689116 0.0159

amp P1 0.23424529 0.03816

Glutamate degradation
latency P1 0.3174180129 0.14045

amp N2 0.2829464416 0.187555102

Tryptophan synthesis amp

N1 -0.1554890366 0.06083478261

P1 0.1865391121 0.02935384615

Quinolinic acid synthesis
latency

N1 -0.3186382801 0.061056

P1 0.333137823 0.043725

amp P1 0.2577611214 0.1391826087

Acetate synthesis
latency

N1 -0.1673242602 0.061056

P1 0.2574696731 0

N2 -0.1373776916 0.1529837838

amp P1 0.1469554921 0.1210451613

Propionate synthesis amp P1 0.2994151994 0.1262363636

Propionate degradation

latency

N1 -0.5503973578 0.0742

N2 0.4492537427 0.1609156627

amp

P1 0.5088146404 0.1118888889

N2 -0.4229989983 0.187555102

Butyrate synthesis
latency

N1 -0.3316428446 0.08078918919

P1 0.3335618515 0.0742

N2 -0.2908124776 0.1223076923

amp N2 0.3066681625 0.1118888889

Isovaleric acid synthesis
latency P1 0.2316852688 0.1556526316

amp P1 0.2469367892 0.1129448276

Menaquinone synthesis

latency N1 0.1528795641 0.1210451613

amp

N1 -0.1644331641 0.107325

P1 0.2014568364 0.02935384615

N2 -0.1634034966 0.1121672727

Inositol degradation latency N1 -0.6381259915 0.02935384615

P1 0.5323381792 0.1014571429
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amp P1 0.6413929993 0.02935384615

p-Cresol synthesis
latency

P1 0.3118799423 0.1397408451

N2 -0.3152864697 0.1391826087

amp N1 -0.3039764673 0.1658142857

S-Adenosylmethionine 
synthesis

amp
N1 -0.2228894468 0.1556526316

P1 0.2295724682 0.1347940299

17-beta-Estradiol degradation amp P1 0.2818613888 0.187555102

ClpB latency P1 0.2687857561 0.1804304348

Neurotransmitters GABA and glutamate, tryptophan metabolism (tryptophan and quinolinic acid) 
and SCFAs including menaquinone and acetate were all significantly associated with multiple 
VEP features across multiple longitudinal comparisons.

Discussion
The past decade has seen a remarkable growth in our understanding of the relationships 
between the gut microbiome and the brain. However, a great deal of that investigation has 
focused on neuropsychiatric disorders or atypical development, and animal models of those 
disorders (e.g., autism spectrum disorder, depression/anxiety) have an unknown relationship to 
the human disorders that they represent, limiting their explanatory potential. A research program 
that investigates typical development using non-invasive measurements in humans, that is 
accurate and reproducible and shows variation in the first year of life, and that is directly 
measurable in rodent models is sorely needed. The relationship between gut microbial 
metabolism and VEP development offers just such a paradigm.

Here, we have shown a robust, prospective relationship between microbial genes involved in 
the metabolism of neuroactive compounds and the development of visual response in the brain 
as measured by EEG. It is particularly encouraging that the microbial metabolism earlier in life is 
more strongly associated with future measures of VEP than those collected concurrently. While 
not dispositive, this would be the predicted outcome if microbial genes are causally influencing 
brain development. It is also encouraging that the gene sets most associated with VEP 
development are for the metabolism of molecules with known links to developmental 
neuroplasticity and development of the visual cortex (Fagiolini and Hensch 2000; Hensch et al. 
1998; Takesian et al. 2018).

 Interestingly, the sign of several associations changes from one comparison to another. For 
example, acetate synthesis, tryptophan synthesis, and quinolinic acid degradation are all 
positively associated with N2 latency when comparing visit 1 stool to visit 2 VEP, but negatively 
associated when comparing visit 2 stool to visit 3 VEP. The sign of tryptophan synthesis 
associations is particularly unstable; it is positively associated with P1 latency when comparing 
visit 1 or visit 2 stool to the following visit VEP, but negatively associated when comparing visit 1 
stool to visit 3 VEP, is negatively associated with P1 amplitude and N2 amplitude in one 
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comparison but positively associated in another. These results suggest that the impact of 
microbial metabolism on brain development may be context dependent.

One limitation of this study is the fact that we are only able to observe the genomic composition 
of the microbiome, rather than the concentration of metabolites themselves. This prevents us 
from determining the concentration of these molecules in the gastrointestinal tract, blood, and 
brain, as the abundance of these genes does provide information about their activity, their 
interactions with other metabolic pathways (including those of the host), or absorption by colonic 
epithelial cells. Additionally, the relationship between gene abundance and molecule 
concentration may be counterintuitive. For example, genes for breaking down a molecule may 
be prevalent if that molecule is at high concentrations, or the molecules may be rapidly 
degraded by other members of the community the moment they are produced. The balance of 
degradation and synthesis occurs both at the individual organism level and at the community 
level. This may also explain the somewhat puzzling results where some gene set / VEP feature 
associations change from positive to negative association (or vice versa) when comparing 
different timepoints. It may be that the relationship between metabolite and brain development 
remains the same, while the relationship between molecules and microbial selection changes at 
different stages of life. Addressing these limitations in humans is challenging, even if looking at 
stool metabolites, since overall exposure throughout the gastrointestinal tract is not necessarily 
reflected in the final concentration of those molecules in stool. Therefore, metabolites from 
blood plasma could provide more accurate systemic concentrations of molecules, but 
challenges remain on how to interpret them (Deng et al. 2023; Dekkers et al. 2022).

Given that the VEP is evolutionarily conserved in mammals and can be accurately measured 
during rodent development, the hypotheses generated in humans in this study are readily 
testable using in vivo models. Germ free or defined-microbiome animals (Wymore Brand et al. 
2015; Kennedy, King, and Baldridge 2018) may be supplemented with specific molecules such 
as SCFAs, or colonized with microbial species lacking or providing specific metabolic pathways, 
and molecule concentrations in tissues from the gut to the brain can be directly assessed. 
Uncovering relationships between microbial metabolism and specific molecules may also 
generate hypotheses that can be confirmed in human data. This study provides a foundation for 
deep investigation of the relationships between the gut microbiome and brain development.

Materials and methods

Cohort, ethics, etc
Participants and Study Design
Infants were recruited from local community clinics in Gugulethu, an informal settlement, in Cape 
Town, South Africa as part of an ongoing longitudinal study (most of the enrollment happened 
prenatally with 39% of infants enrolled shortly after birth (Zieff et al. 2024)). The first language for 
the majority of residents in this area is Xhosa. Study procedures were offered in English or Xhosa 
depending on the language preference of the mother. This study was approved by the relevant 
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university  Health  Research  Ethics  Committees  (University  of  Cape  Town study  number: 
666/2021). Informed consent was collected from mothers on behalf of themself and their infants. 
Demographic information including maternal place of birth, primary spoken language, maternal 
age at  enrollment,  maternal  educational  attainment,  and maternal  income were collected at 
enrollment (see Table 1).

Families were invited to participate in three in-lab study visits over their infant’s first year and a 
half of life. At the first in-lab study visit (hereafter Visit 1), occurring when infants were between 
approximately 2 months and 6 months of age, the following data were collected: the infants' age 
(in months), sex, infant electroencephalography (EEG), and infant stool samples. 

At the second study visit (hereafter Visit 2), occurring when infants were between approximately 
6 months and 12 months of age (age in months: M=8.60, SD=1.48, range=5.41-12.00) and at 
the third study visit (hereafter Visit 3), occurring when infants were between approximately 12 
months and 17 months of age (age in months: M=14.10, SD=1.04, range=12.10-17.00), infant 
EEG and stool samples were collected again. At visits in which infants were unable to complete 
both EEG and stool samples on the same day, EEG and stool samples were collected on 
different days. For concurrent time point analyses, infants with EEG and stool collected more 
than two months apart were excluded. Not all infants had EEG and microbiome data collected at 
all three timepoints or contributed usable data at all three timepoints.

All enrolled infants received a comprehensive medical exam at each visit, which included 
assessments of eye-related conditions. Several infants (n=3) were identified as having eye-
related anomalies during the medical exam, and they were excluded from any further analyses.

EEG Processing
EEG Data Acquisition
Electroencephalography (EEG) data were acquired from infants while they were seated in their 
caregiver’s lap in a dimly-lit, quiet room using a 128-channel high density HydroCel Geodesic 
Sensor Net (EGI, Eugene, OR), amplified with a NetAmps 400 high-input amplifier, and 
recorded via an Electrical Geodesics, Inc. (EGI, Eugene, OR) system with a 1000 Hz sampling 
rate. EEG data were online referenced to the vertex (channel Cz) through the EGI Netstation 
software. Impedances were kept below 100KΩ in accordance with the impedance capabilities of 
the high-impedance amplifiers. Geodesic Sensor Nets with modified tall pedestals designed for 
improving inclusion of infants with thick/curly/tall hair were used as needed across participants 
(Mlandu et al., 2024). Shea moisture leave-in castor oil conditioner was applied to hair across 
the scalp prior to net placement to improve both impedances and participant comfort (Mlandu et 
al., 2024). This leave-in conditioner contains insulating ingredients so there is no risk of 
electrical bridging and has not been found to disrupt the EEG signal during testing (unpublished 
data). Conditioning hair in this way allows for nets to lay closer to the scalp for curly/coily hair 
types and makes for far more comfortable net removal at the end of testing. 

The Visual-Evoked Potential (VEP) task was presented using Eprime 3.0 software (Psychology 
Software Tools, Pittsburgh, PA) on a Lenovo desktop computer with an external monitor 19.5 
inches on the diagonal facing the infant (with monitor approximately 65 cm away from the 
infant). A standard phase-reversal VEP was induced with a black and white checkerboard (1cm 
x 1 cm squares within the board) stimulus that alternated presentation (black squares became 
white, white squares became black) every 500 milliseconds for a total of 100 trials. Participant 
looking was monitored by video and by an assistant throughout data collection. If the participant 
looked away during the VEP task, the task was rerun.
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EEG Data Pre-Processing
VEP data were exported from native Netstation .mff format to .raw format and then pre-
processed using the HAPPE+ER pipeline within the HAPPE v3.3 software, an automated open-
source EEG processing software validated for infant data (Monachino et al. 2022). A subset of 
the 128 channels were selected for pre-processing that excluded the rim electrodes as these 
are typically artifact-laden. The HAPPE pre-processing pipeline was run with user-selected 
specifications. 

Pre-processed VEP data were considered usable and moved forward to VEP extraction if 
HAPPE pre-processing ran successfully, at least 15 trials were retained following bad trial 
rejection, and at least one good channel was kept within the visual ROI. Note that channels 
marked bad during pre-processing had their data interpolated as part of standard pre-
processing pipelines for ERPs (Monachino et al. 2022). Interpolated channels were included in 
analyses here as is typically done in developmental samples and given the low overall rates of 
interpolation present (e.g., all groups at all visits had an average of between 4 to 5 of 5 possible 
good channels in the region of interest retained).

Visual-Evoked Potentials (VEPs)
VEP waveforms were extracted and quantified using the HAPPE+ER v3.3 GenerateERPs script 
(Monachino et al. 2022). Electrodes in the occipital region were selected as a region of interest 
(i.e., E70, E71, E75, E76, E83). The VEP waveform has three main components to be 
quantified: a negative N1 peak, a positive P1 peak, and a negative N2 peak. Due to normative 
maturation of the waveforms as infants age, one set of user-specified windows for calculating 
component features was used for Visit 1 and 2 and another was used for Visit 3. For Visits 1 
and 2, the window for calculating features for the N1 component was 40-100 ms, 75-175 ms for 
the P1 component, and 100-325 ms for the N2 component. For Visit 3, the window for 
calculating features for the N1 component was 35-80 ms, 75-130 ms for the P1 component, and 
100-275 ms for the N2 component.

To correct for the potential influence of earlier components on later components, corrected 
amplitudes and latencies were calculated and used in all analyses. Specifically, the P1 
amplitude was corrected for the N1 amplitude (corrected P1 amplitude = P1 - N1 amplitude); the 
P1 latency was corrected for the N1 latency (corrected P1 latency = P1 - N1 latency); the N2 
amplitude was corrected for the P1 amplitude (corrected N2 amplitude = N2 - P1 amplitude), 
and the N2 latency was corrected for the P1 latency (corrected N2 latency = N2 - P1 latency). 

All VEPs were visually inspected to ensure that the automatically extracted values were correct 
and were adjusted if observable peaks occurred outside the automated window bounds. 
Participants were considered to have failed this visual inspection and were subsequently 
removed from the data set if their VEP did not produce three discernible peaks. VEP waveforms 
of included participants by timepoint are included in Figure 1E. XX infants provided usable VEP 
data at Visit 1, XX infants provided usable VEP data at Visit 2, and XX infants provided usable 
VEP data at Visit 3. There were no differences in EEG quality (i.e., number of trials collected, 
number/percent of trials retained, number/percent of channels retained overall, number/percent 
of channels retained in ROI) by time point (all p>.05).

Biospecimens and sequencing
Sample Collection
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Stool samples were collected in the clinic by the research assistant directly from the diaper and 
transferred to the Zymo DNA/RNA ShieldTM Fecal collection Tube (#R1101, Zymo Research 
Corp., Irvine, USA) and immediately frozen at -80 ˚C. Stool samples were not collected if the 
subject had taken antibiotics within the two weeks prior to sampling. 

DNA Extraction
DNA extraction was performed at Medical Microbiology, University of Cape Town, South Africa 
from stool samples collected in DNA/RNA Shield™ Fecal collection tube using the Zymo 
Research Fecal DNA MiniPrep kit (# D4003, Zymo Research Corp., Irvine, USA) following 
manufacturer’s protocol. To assess the extraction process's quality, ZymoBIOMICS® Microbial 
Community Standards (#D6300 and #D6310, Zymo Research Corp., Irvine, USA) were 
incorporated and subjected to the identical process as the stool samples. The DNA yield and 
purity were determined using the NanoDrop® ND -1000 (Nanodrop Technologies Inc. 
Wilmington, USA). 

Sequencing
Shotgun metagenomic sequencing was performed on all samples at the Integrated Microbiome 
Research Resource (IMR, Dalhousie University, NS, Canada). A pooled library (max 96 
samples per run) was prepared using the Illumina Nextera Flex Kit for MiSeq and NextSeq from 
1 ng of each sample. Samples were then pooled onto a plate and sequenced on the Illumina 
NextSeq 2000 platform using 150+150 bp paired-end P3 cells, generating 24M million raw 
reads and 3.6 Gb of sequence per sample.

Statistics / computational analysis
Metagenome processing
Raw metagenomic sequence reads were processed using tools from the bioBakery as 
previously described (Bonham et al. 2023; Beghini et al. 2021). Briefly, KneadData v0.10.0 was 
used with default parameters to trim low-quality reads and remove human sequences (using 
reference database hg37). Next, MetaPhlAn v3.1.0 (using database 
mpa_v31_CHOCOPhlAn_201901) was used with default parameters to map microbial marker 
genes to generate taxonomic profiles. Taxonomic profiles and raw reads were passed to 
HUMAnN v3.7 to generate stratified functional profiles.

Microbial community analysis
Principal coordinates analysis was performed in the julia programming language (Bezanson et 
al. 2012) using the Microbiome.jl package (Bonham et al. 2021). Bray-Curtis dissimilarity 
(Distances.jl) was calculated across all pairs of samples, filtering for species-level classification. 
Classical multidimensional scaling was performed on the dissimilarity matrix 
(MultivariateStats.jl), and axes with negative eigenvalues were discarded.

Feature Set Enrichment Analysis (FSEA)
Potentially neuroactive genesets were extracted from Supplementary Dataset 1 from (Valles-
Colomer et al. 2019). Gut-brain modules provide Kegg Orthologue IDs (KOs), which were 
mapped to UniRef90 IDs using the utility mapping file provided with HUMAnN v3.1. For each 
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stool / VEP pair, logistic regression (LR) was performed linking the presence of absence of that 
UniRef in a sample with each VEP feature (N1, P1, and N2 latencies and amplitudes), 
controlling for the age at which the stool sample was collected, the number of retained VEP 
trials, and the difference in age between the stool collection and VEP measurement. For 
concurrently collected stool and VEP comparisons (Figure 2), subjects whose stool collection 
and VEP measurements were more than 2 months apart were excluded.

(1) UniRef ~ vep + age_months + n_trials + age_diff

FSEA was performed on each geneset that had at least 5 members in each comparison group 
according to the procedure set out in Subramanian et. al. (2005)(Subramanian et al. 2005). 
Briefly, enrichment scores (ES) are calculated based on the rank-order of z-statistics from the 
LR for each UniRef. A permutation test was then performed where the ES for 5000 random 
samples of ranks of the same length as the gene set are calculated, and the pseudo-p value is 
the number fraction of permutations where the permutation ES has a greater absolute value 
than the true ES.

Benjamini-Hochberg FDR correction was performed separately on all concurrently tested 
geneset / VEP feature combinations, and all longitudinal geneset / VEP feature combinations. 
Corrected p-values (q values) less than 0.2 were considered statistically significant.
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