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Abstract
Infancy is a time of elevated neuroplasticity supporting rapid brain and sensory development. The gut
microbiome, also undergoing extensive developmental changes in early life, may influence brain
development through metabolism of neuroactive compounds. Here, we leverage longitudinal data from
194 infants across the first 18 months of life to show that microbial genes encoding enzymes play a key
role in modulating early neuroplasticity are associated with visual cortical neurodevelopment, measured
by the Visual-Evoked Potential (VEP). Neuroactive compounds included neurotransmitters GABA and
glutamate, the amino acid tryptophan, and short-chain fatty acids involved in myelination, including
acetate and butyrate. Microbial gene sets around 4 months of age were strongly associated with the VEP
from around 9 to 14 months of age and showed more associations than concurrently measured gene
sets, suggesting microbial metabolism in early life may affect subsequent neural plasticity and
development.

Introduction
The gut microbiome in early life has potential long-term implications for brain and body health. One
important way this influence can occur is through interactions with the central nervous system as a
“microbial-gut-brain axis” (1–3) The metabolic potential of the microorganisms that inhabit the gut vastly
exceeds that of human cells alone, with microbial genes outnumbering host genes by a hundredfold (4)
In particular, gut microbes have the ability to metabolize and synthesize many neuroactive compounds
(5). However, the physiological relevance of this in humans has been difficult to quantify, particularly
during initial neurological development in early life.

Extensive work in preclinical models suggests that these neuroactive compounds can influence the brain
through both direct and indirect pathways. For example, major neurotransmitters (e.g., glutamate, γ-
aminobutyric acid (GABA), serotonin, and dopamine) are readily synthesized and degraded by intestinal
microbes and can enter circulation and pass the blood-brain barrier to influence central nervous function
(6–9) Glutamatergic/GABA-ergic signaling is critical for balancing the brain’s excitatory and inhibitory
neurotransmission levels, and alterations in the bi-directional glutamatergic/GABA-ergic signaling
between the gut microbiome and brain are implicated in several physical and mental health conditions
(10,11). Similarly, the gut and the microbiome are critical to the regulation of metabolism for the
neurotransmitters serotonin and dopamine, particularly through the metabolism of dietary tryptophan
(12). Moreover, short-chain fatty acids (SCFAs) produced by the gut microbiome may impact the brain
directly by modulating neurotrophic factors, glial and microglial maturation and myelination, and
neuroinflammation (13,14). Other indirect pathways for gut microbial influence on the brain include vagus
nerve stimulation, neuroendocrine modulation and immune system regulation (1).

Rapidly growing literature connects the metabolic potential of the gut microbiome and brain function in
humans (reviewed in 7,15,16), but the overwhelming majority of this research is conducted in cohorts of
adult participants. Importantly, both the gut microbiome and the brain undergo dramatic and rapid
development over the first postnatal years (17–19) However, very little is currently known about how gut-
brain influences emerge or change during this critical window (20–22). Interrogating this early co-
development in humans is, therefore, key to both understanding adaptive gut-brain function and behavior
and to informing strategies to support it. Specifically, the visual cortex has been shown to be sensitive to
gut microbiome modulations in adults (23) and in rodents (24), yet the visual cortex undergoes its most
rapid period of plasticity and maturation over infancy at the same time the microbiome changes most
significantly (25–27). Visual cortical functional maturation can be robustly indexed via
electroencephalography (EEG) with the Visual-Evoked Potential (VEP) response to visual stimuli from
birth. The VEP is especially useful for indexing visual neurodevelopment as its morphology includes
amplitude deflections as well as latencies to those deflections reflecting maturation of function and
structure, respectively.
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Here, we investigated the longitudinal co-development of microbial metabolic potential quantified via
genes encoding enzymes that metabolize neuroactive compounds and visual neurodevelopment as
indexed by the VEP in a longitudinal community sample of 194 infants from Gugulethu in Cape Town,
South Africa, recruited as part of the prospective longitudinal “Khula” Study (28). Stool samples and EEG
were each collected at up to 3 visits in the first 18 months of life. Shotgun metagenomic sequencing was
used to obtain microbial gene sequences from infant stool samples. To index visual cortical functional
development, latencies and peak amplitudes were extracted from each component of the VEP (i.e., first
negative-going deflection, N1; first positive-going deflection, P1; and second negative-going deflection,
N2), producing six VEP features of interest. We evaluated the concurrent association between microbial
genes and VEP amplitudes and latencies, and we tested prospective influences of microbial genes from
early visits on VEP changes at later visits. In this way, we were able to reveal the temporal dynamics of
gut-brain co-development within individuals during this most critical window of plasticity in both systems.

Methods and Materials

Cohort

Participants and Study Design
Infants were recruited from local community clinics in Gugulethu, an informal settlement in Cape Town,
South Africa, as part of a prospective longitudinal study (most enrollments happened prenatally with 16%
of infants enrolled shortly after birth; 28). The first language for the majority of residents in this area is
Xhosa. Study procedures were offered in English or Xhosa depending on the language preference of the
mother. This study was approved by the relevant university Health Research Ethics Committees
(University of Cape Town study number: 666/2021). Informed consent was collected from mothers on
behalf of themself and their infants. Demographic information, including maternal place of birth, primary
spoken language, maternal age at enrollment, maternal educational attainment, and maternal income,
were collected at enrollment (see Table 1).

Families were invited to participate in three in-lab study visits over their infant’s first two years of life. At
the first in-lab study visit (hereafter visit-1), occurring when infants were between approximately 2 months
and 6 months of age, the following data were collected: the infants’ age (in months), sex, infant
electroencephalography (EEG), and infant stool samples.

At the second study visit (hereafter visit-2), occurring when infants were between approximately 6 months
and 12 months of age (age in months: M=8.60, SD=1.48, range=5.41-12.00) and at the third study visit
(hereafter visit-3), occurring when infants were between approximately 12 months and 17 months of age
(age in months: M=14.10, SD=1.04, range=12.10-17.00), infant EEG and stool samples were collected
again. At visits in which infants were unable to complete both EEG and stool samples on the same day,
EEG and stool samples were collected on different days. For concurrent time point analyses, infants with
EEG and stool collected more than two months apart were excluded. Not all infants had EEG and
microbiome data collected at all three time points or contributed usable data at all three-time points.

All enrolled infants received a comprehensive medical exam at each visit, which included assessments of
eye-related conditions. Several infants (n=3) were identified as having eye-related anomalies during the
medical exam, and they were excluded from any further analyses.

EEG Processing

EEG Data Acquisition
Electroencephalography (EEG) data were acquired from infants while they were seated in their
caregiver’s lap in a dimly-lit, quiet room using a 128-channel high density HydroCel Geodesic Sensor Net
(EGI, Eugene, OR), amplified with a NetAmps 400 high-input amplifier, and recorded via an Electrical
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Geodesics, Inc. (EGI, Eugene, OR) system with a 1000 Hz sampling rate. EEG data were online
referenced to the vertex (channel Cz) through the EGI Netstation software. Impedances were kept below
100KΩ in accordance with the impedance capabilities of the high-impedance amplifiers. Geodesic
Sensor Nets with modified tall pedestals designed for improving inclusion of infants with thick/curly/tall
hair were used as needed across participants (29). Shea moisture leave-in castor oil conditioner was
applied to hair across the scalp prior to net placement to improve both impedances and participant
comfort (29). This leave-in conditioner contains insulating ingredients, so there is no risk of electrical
bridging, and has not been found to disrupt the EEG signal during testing (unpublished data).
Conditioning hair in this way allows for nets to lay closer to the scalp for curly/coily hair types and makes
for more comfortable net removal at the end of testing.

The Visual-Evoked Potential (VEP) taski was presented using Eprime 3.0 software (Psychology Software
Tools, Pittsburgh, PA) on a Lenovo desktop computer with an external monitor 19.5 inches on the
diagonal facing the infant (with monitor approximately 65 cm away from the infant). A standard phase-
reversal VEP was induced with a black and white checkerboard (1cm x 1 cm squares within the board)
stimulus that alternated presentation (black squares became white, white squares became black) every
500 milliseconds for a total of 100 trials. Participant looking was monitored by video and by an assistant
throughout data collection. If the participant looked away during the VEP task, the task was rerun.

EEG Data Pre-Processing
VEP data were exported from native Netstation .mff format to .raw format and then pre-processed using
the HAPPE+ER pipeline within the HAPPE v3.3 software, an automated open-source EEG processing
software validated for infant data (30). A subset of the 128 channels were selected for pre-processing that
excluded the rim electrodes as these are typically artifact-laden (channels excluded from pre-processing
included in Table S4). The HAPPE pre-processing pipeline was run with user-selected specifications
outlined in Table S4.

Pre-processed VEP data were considered usable and moved forward to VEP extraction if HAPPE pre-
processing ran successfully, at least 15 trials were retained following bad trial rejection, and at least one
good channel was kept within the visual ROI. Note that channels marked bad during pre-processing had
their data interpolated as part of standard preprocessing pipelines for ERPs (30). Interpolated channels
were included in analyses here as is typically done in developmental samples, and given the low overall
rates of interpolation present (e.g., an average of between 4 to 5 of 5 possible good channels in the
region of interest were retained at each visit time point).

Visual-Evoked Potentials (VEPs)
VEP waveforms were extracted and quantified using the HAPPE+ER v3.3 GenerateERPs script (30).
Electrodes in the occipital region were selected as a region of interest (i.e., E70, E71, E75, E76, E83).
The VEP waveform has three main components to be quantified: a negative N1 peak, a positive P1 peak,
and a negative N2 peak. Due to normative maturation of the waveforms as infants age, one set of user-
specified windows for calculating component features was used for visit-1 and 2 and another was used
for visit-3. For visits 1 and 2, the window for calculating features for the N1 component was 40-100 ms,
75-175 ms for the P1 component, and 100-325 ms for the N2 component. For visit-3, the window for
calculating features for the N1 component was 35-80 ms, 75-130 ms for the P1 component, and 100-275
ms for the N2 component. HAPPE+ER parameters used in extracting the ERPs are summarized in Table
S5.

To correct for the potential influence of earlier components on later components, corrected amplitudes
and latencies were calculated and used in all analyses. Specifically, the P1 amplitude was corrected for
the N1 amplitude (corrected P1 amplitude = P1 - N1 amplitude), the P1 latency was corrected for the N1
latency (corrected P1 latency = P1 - N1 latency), the N2 amplitude was corrected for the P1 amplitude
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(corrected N2 amplitude = N2 - P1 amplitude), and the N2 latency was corrected for the P1 latency
(corrected N2 latency = N2 - P1 latency).

All VEPs were visually inspected to ensure that the automatically extracted values were correct and were
adjusted if observable peaks occurred outside the automated window bounds. Participants were
considered to have failed this visual inspection and were subsequently removed from the data set if their
VEP did not produce three discernible peaks. VEP waveforms of included participants by time point are
included in Figure 1E. 97 infants provided usable VEP data at visit-1, 130 infants provided usable VEP
data at visit-2, and 131 infants provided usable VEP data at visit-3. For included participants, EEG data
quality metrics are summarized in Table S6. T-tests for data quality metrics (i.e., number of trials
collected, number of trials retained, number of channels retained in the ROI, Pearson’s r for data pre- vs.
post-wavelet thresholding at 5, 8, 12, and 20 Hz) were run between each visit combination (i.e., visit-1 vs.
visit-2, visit-1 vs. visit-3, visit-2 vs. visit-3). For visits that differed in data quality, follow-up post hoc
correlations were run for the data quality measure with each VEP feature at each visit in the T-test. In no
case did the data quality metric relate to VEP features at multiple visits, making it highly unlikely the data
quality difference contributed to results.

Biospecimens and sequencing

Sample Collection
Stool samples (n=315) were collected in the clinic by the research assistant directly from the diaper,
transferred to Zymo DNA/RNA ShieldTM Fecal collection Tubes (#R1101, Zymo Research Corp., Irvine,
USA) and immediately frozen at −80 ˚C. Stool samples were not collected if the participant had taken
antibiotics within the two weeks prior to sampling.

DNA Extraction
DNA extraction was performed at Medical Microbiology, University of Cape Town, South Africa, from stool
samples collected in DNA/RNA Shield™ Fecal collection tube using the Zymo Research Fecal DNA
MiniPrep kit (# D4300, Zymo Research Corp., Irvine, USA) following manufacturer’s protocol. To assess
the extraction process’s quality, ZymoBIOMICS® Microbial Community Standards (#D6300 and #D6310,
Zymo Research Corp., Irvine, USA) were incorporated and subjected to the identical process as the stool
samples. The DNA yield and purity were determined using the NanoDrop® ND −1000 (Nanodrop
Technologies Inc. Wilmington, USA).

Sequencing
Shotgun metagenomic sequencing was performed on all samples at the Integrated Microbiome Research
Resource (IMR, Dalhousie University, NS, Canada). A pooled library (max 96 samples per run) was
prepared using the Illumina Nextera Flex Kit for MiSeq and NextSeq from 1 ng of each sample. Samples
were then pooled onto a plate and sequenced on the Illumina NextSeq 2000 platform using 150+150 bp
paired-end P3 cells, generating 24M million raw reads and 3.6 Gb of sequence per sample (31).

Statistics / computational analysis

Age-Related Changes in VEP Features
To determine age-related changes in VEP features, six linear mixed models with each VEP feature as the
outcome (i.e., N1 amplitude/latency, P1 amplitude/latency, N2 amplitude/latency) were run using the lme4
package (32) in R with age in months as the predictor of interest and number of retained trials as a
covariate.
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Metagenome processing
Raw metagenomic sequence reads (2.5 x 107 ± 1.4 x 107 reads/sample) were processed using tools
from the bioBakery as previously described (17,33). Briefly, KneadData v0.10.0 was used with default
parameters to trim low-quality reads and remove human sequences (using reference database hg37).
Next, MetaPhlAn v3.1.0 (using database mpa_v31_CHOCOPhlAn_201901) was used with default
parameters to map microbial marker genes to generate taxonomic profiles. Taxonomic profiles and raw
reads were passed to HUMAnN v3.7 to generate stratified functional profiles.

Microbial community analysis
Principal coordinates analysis was performed in the julia programming language (34) using the
Microbiome.jl package (35). Bray-Curtis dissimilarity (Distances.jl) was calculated across all pairs of
samples, filtering for species-level classification. Classical multidimensional scaling was performed on the
dissimilarity matrix (MultivariateStats.jl), and axes with negative eigenvalues were discarded.

Feature Set Enrichment Analysis (FSEA)
Potentially neuroactive genesets were extracted from Supplementary Dataset 1 from (5). Gut-brain
modules provide Kegg Orthologue IDs (KOs) (36,37), which were mapped to UniRef90 IDs using the
utility mapping file provided with HUMAnN v3.1 (33). For each stool/VEP pair, logistic regression (LR)
was performed, linking the presence or absence of that UniRef in a sample with each VEP feature (i.e.,
N1, P1, and N2 latencies and amplitudes), controlling for the age at which the stool sample was
collected, the number of retained VEP trials, and the difference in age between the stool collection and
VEP measurement. For concurrently collected stool and VEP comparisons (Figure 2), participants whose
stool collection and VEP measurements were more than two months apart were excluded.

UniRef ∼ vep + age_months + n_trials + age_diff

FSEA was performed on each geneset that had at least five members in each comparison group
according to the procedure set out in Subramanian et. al. (2005) (38). Briefly, enrichment scores (ES) are
calculated based on the rank order of z-statistics from the LR for each UniRef. A permutation test was
then performed where the ES for 5000 random samples of ranks of the same length as the gene set are
calculated, and the pseudo-p value is the fraction of permutations where the permutation ES has a
greater absolute value than the true ES.

Benjamini-Hochberg FDR correction was performed separately on all concurrently tested geneset/VEP
feature combinations and all longitudinal geneset/VEP feature combinations. Corrected p-values (q-
values) less than 0.2 were considered statistically significant.

For longitudinal comparisons, all participants that had a stool sample collected at one visit and a VEP
assessment at a subsequent visit were included (visit-1 stool → visit-2 VEP, N = 84; v1 → v2, N = 76; v2
→ v3, N = 69). A total of 95 geneset/VEP features were significant when using an FDR-corrected p-value
cutoff of q < 0.2. To ensure the robustness of these findings, we randomly permuted participant IDs
between the stool and VEP assessments and repeated the analysis. Over 10 random permutations, a
mean of 19.5 significant associations were identified, suggesting that FDR correction is correctly
calibrating the false-positive rate.

Data and code availability
Code for initial processing of data and for analyses performed in this manuscript are available on github
and archived on Zenodo (39). Input data will be archived on Dryad and downloadable via included scripts
in analysis code upon publication.
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Results

The brain and microbiome develop rapidly in the first months of life
To investigate the co-development of the gut microbiome and visual neurodevelopment, we collected
stool and the VEP in a longitudinal cohort of 194 children in South Africa during the first 18 months of life
(Figure 1A, B, Table 1; visit-1, N = 119, age 3.6 ± 0.7 months, visit-2, N = 144, age 8.7 ± 1.4 months,
visit-3, N = 130, age 14.2 ± 1.0 months). As expected for children at this age (40–42), microbial
composition was developmentally dependent, with the first principal coordinate axis for both taxonomic
profiles (Figure 1C; variance explained = 15.1%; R = −0.50) and functional profiles (Figure 1D; variance
explained = 12.9%; R = −0.57) driven strongly by the age of the participant at the time of collection.
Similarly, both amplitude and latency VEP features were strongly correlated with age, as expected
(18,41) That is, as infants got older, N1 amplitude became more negative (N1: b=-0.07, p<.05), corrected
P1 amplitude became smaller (P1: b=-0.50, p<.05), corrected N2 amplitude became smaller (N2: b=0.52,
p<.05), and all latencies became shorter (N1: b=-0.79, p<.05; P1: b=-1.21, p<.05; N2: b=-4.10, p<.05)
(Figure 1E).

Microbial genes with neuroactive potential are associated with concurrently measured visual
development
To test whether microbial metabolic potential was related to early life brain activity, we performed feature
set enrichment analysis (FSEA) using previously-defined groups of potentially neuroactive microbial
genes and the concurrently measured VEP amplitude and latency features (17,5). For each gene set that
had at least 5 genes represented in a given comparison group, logistic regression was performed using
VEP features as predictors and the presence or absence of each microbial gene in the metagenome as
the response to determine concurrent associations (see Methods). Z statistics for in-set genes were
compared to all genes using a permutation test to determine significance of the associations as
described in Subramanian et. al., (2005) (38).

Of the 35 genesets assessed, 19 had sufficient representation to test, and of those, 18 were significantly
associated with at least one EEG feature during at least one visit within the 18-month window, after
correcting for false discovery rate (Benjamini-Hochberg, q < 0.2; Figure 2, Table S2). Microbial genes
involved in synthesis or degradation of molecules with neuroactive potential across all categories
considered (i.e., neurotransmitters, amino acid metabolism, SCFAs, other) were associated with both
VEP amplitudes and latencies at each visit, demonstrating widespread associations between early life gut
microbiome and visual cortex neurodevelopment. The number of these associations increased over time
(visit-1 had 6 associations, visit-2 had 24, and visit-3 had 37). To differentiate whether this cross-sectional
finding indicated the early microbiome (~4 months) was sparsely related to visual cortical development at
4 months only or more broadly at all subsequent time points, longitudinal analyses were performed
(results below).

Specifically, across the gene sets involved in neurotransmitter synthesis and degradation, glutamate
synthesis/degradation and GABA synthesis showed associations with all VEP features, primarily at the
2nd and 3rd visit (mean ages 8.6 and 14.1 months, respectively; Table S2). Gene sets involved in
tryptophan metabolism and associated pathways (i.e., quinolinic acid) were also strongly concurrently
related to VEP development. Specifically, tryptophan metabolism genes were associated with VEP
latencies just after each VEP component showed its greatest window of developmental change
(components emerge sequentially as follows: P1, N1, N2), that is, of P1 at visit-1, N1 and P1 at visit-2,
and N2 at visit-3.

Several short-chain fatty acid (SCFA)-metabolizing gene sets were also found to have multiple
associations with VEP features. Specifically, acetate synthesis was strongly associated with almost all
VEP features (Table S2). Butyrate synthesis was associated with P1 and N2 amplitudes and latencies
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around the end of the first year of life (visits 2 and 3), when the visual cortex is most actively undergoing
myelination. Lastly, propionate synthesis/degradation was significantly associated with VEP latencies at
every visit over the 18-month window (N1 at visits 1 and 2, and both P1 and N2 at visit-3). These SCFA
metabolizing genes showed almost double the concurrent associations with VEP latencies than
amplitudes (11 associations with latencies, 6 associations with amplitudes).

Finally, within the remaining gene sets tested, we observed robust associations in particular between
menaquinone (Vitamin K2) gene sets and the VEP features over this infancy window. This is an expected
relationship, as vitamin K2 specifically is posited to promote healthy vision, both outside of the brain
through effects on the retina, and within the brain where it can protect neural circuits from oxidative stress
(43).

Notably, across significant gene set associations with VEP features, the P1 and N2 component
amplitudes and latencies were consistently the most sensitive to these microbial gene sets. Both P1 and
N2 components are known to show the most dramatic changes with development during the first year of
life (44) and may best reflect underlying visual learning and plasticity at this stage (Table S1).

Microbial metabolic potential predicts future brain development in infancy Given that differences in
metabolic potential of the early life microbiome may exert their effects over time, we sought to determine
whether microbial genes at early time points were associated with subsequent VEP development. To
investigate this, we performed FSEA on stool samples collected at visit-1 with visit-2 VEP (age at stool
collection = 3.6 ± 0.8 months, age at VEP = 8.6 ± 1.5 months) or visit-3 VEP (age at stool collection = 3.7
± 0.7 months, age at VEP = 14.1 ± 1.1 months), as well as visit-2 stool samples with visit-3 VEP (age at
stool collection = 8.9 ± 1.5 months, age at VEP = 14.3 ± 1.0 months; Table S3) (Figure 3A).

All gene sets except those involved in the synthesis of 3,4-dihydroxyphenylacetic acid (DOPAC), a
metabolite of dopamine, that had a significant hit with concurrently measured VEP were also significantly
associated with at least one future VEP feature (Figure 3B, Tables 2-5). Notably, the quantity of those
associations increased substantially for all longitudinal comparisons compared to concurrent
comparisons. For example, only 6 visit-1 microbial gene sets were associated with visit-1 VEP, and each
of those was only associated with a single concurrently measured VEP feature. By contrast, these
longitudinal analyses revealed that visit-1 microbial gene sets show a much richer pattern of associations
with future VEP feature development. Specifically, 13 visit-1 gene sets were associated with visit-2 VEP
features, and 11 were associated with visit-3 VEP features, the majority (9/13 for visit-2, 8/11 for visit-3)
were associated with at least 2 VEP features, and nearly half (6/13 for visit-2, 5/11 for visit-3) were
associated with more than 2 future VEP features.

Longitudinally, the early microbiome (visit-1) was related to VEP features at visit-2 and visit-3 fairly evenly
(12/28 visit-1 microbiome associations to visit-3 VEP latencies, 15/30 associations to visit-3 amplitudes),
suggesting early microbiome metabolism in the first 6 months of life is associated with visual
neurodevelopment over the next year. Microbiome metabolism from visit-2 was associated with similar
numbers of visit-3 VEP features as visit-1 microbiome (17 visit-3 latency features, 18 visit-3 amplitude
features), suggesting continued co-development of these systems over the first postnatal year.
Neurotransmitters GABA and glutamate, tryptophan metabolism (tryptophan and quinolinic acid), SCFAs
including acetate, butyrate, and propionate, as well as menaquinone (Vitamin K2) were again all
significantly associated with multiple VEP features across multiple longitudinal comparisons.

Importantly, the nature and identity of the longitudinal associations varied over development for many
gene sets, indicating temporal specificity to these associations. With respect to the neurotransmitter-
related pathways, amongst the associations between GABA synthesis genes and future VEP features,
GABA genes specifically from visit-1 showed the greatest number of associations with future VEP
features (5/6 GABA associations) at visits 2 and 3 equally, and the majority of these associations were
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VEP amplitudes (reflecting development of neurotransmission including excitatory/inhibitory balance). To
a lesser extent, glutamate metabolism genes followed a similar temporal pattern (8/13 glutamate
associations involved visit-1 genes) but did not relate to amplitudes or latencies differentially like GABA.
This pattern of results suggests early (within the first 6 postnatal months) microbiome GABA/glutamate
dynamics, especially GABA, are most relevant for changes to visual cortex function over the following
year.

Tryptophan-related pathway genes (responsible for generating serotonin, amongst other products) from
visit-1 were also responsible for the majority of associations with future VEP features (tryptophan: 6/8
associations; quinolinic acid: 6/9 associations). In contrast to GABA but similar to glutamate, tryptophan-
related gene associations were largely shorter-term associations with VEP features at the visit
immediately following gene set measurement (approximately 5 months later; 12/17 associations),
indicating dynamic co-development over the first 18 months of life. Across neurotransmitter-related gene
set associations (GABA, glutamate, tryptophan/serotonin), there was thus a clear pattern whereby early
(~4 months old) microbiome gene sets showed the largest number of associations with subsequent VEP
feature development.

SCFAs showed a different developmental pattern of associations with future VEP features. Specifically,
propionate and butyrate metabolism genes from both visit-1 and visit-2 showed associations with future
VEP features, but here the effects were almost entirely observed for VEP features at visit-3 (10/10
propionate and 7/8 butyrate associations). Moreover, acetate and butyrate metabolism genes were
doubly associated with future VEP latencies compared to amplitude features.

Finally, menaquinone (Vitamin K2) metabolism genes followed a similar pattern to the SCFAs in that
genes from visit-1 and visit-2 were largely associated with future VEP features at visit-3 (8/9
menaquinone associations). This indicates persistent associations of this early microbiome gene set with
individual differences in VEP features early in the second year of life.

It is possible that extrinsic factors related to development mutually influence both the gut microbiome and
neural development, though we additionally tested whether VEP features were associated with microbial
metabolism at a future visit, and found substantially fewer associations (29 total associations, compared
with 95 when analyzing early stool samples with future VEP). While this does not prove a causal
relationship, it is consistent with the hypothesis that microbial metabolism influences brain development.

Discussion
The past decade has seen a remarkable growth in our understanding of the relationships between the
developmental changes of the gut microbiome and the brain. However, a great deal of that investigation
has focused on adult populations or neuropsychiatric disorders, limiting the potential to explain how these
associations emerge during early development. Here, we address this key open question by leveraging a
rich longitudinal dataset over the first year of life, which is the time of greatest developmental change for
both the microbiome and brain given the unfolding of foundational sensory neurodevelopment. Our data
revealed that microbial genes involved in the metabolism of neuroactive molecules are associated with
concurrent and subsequent visual cortical neurodevelopment. These pathways included those for the
neurotransmitters GABA and glutamate, the amino acid tryptophan, and short-chain fatty acids involved
in myelination, including acetate and butyrate.

Specifically, we have shown a robust, prospective relationship between microbial genes involved in the
metabolism of neuroactive compounds and the development of visual cortical function as measured by
the VEP electrophysiological response. We found that microbial metabolism is more strongly associated
with future measures of the VEP than those collected concurrently. While not dispositive, this would be
the predicted outcome if microbial genes are causally influencing brain development. As additional
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evidence for this interpretation, we did not observe the same rich set of associations in the converse
analyses examining whether VEP related to future microbiome properties. Microbial metabolism within
the first 6 months shows the most associations with subsequent visual neurodevelopment, suggesting
the early postnatal microbiome may play a particularly important role in the co-development of these
systems. This interpretation is also supported by prior research showing that associations of the
microbiome with behavioral readouts of neurocognition are stronger prospectively than concurrently (45).
Moreover, specific associations between gene sets and VEP features showed temporal specificity within
the 18-month developmental window assessed, suggesting that the impact of early microbial metabolism
on the brain is developmentally dependent.

Notably, the gene sets most highly associated with visual functional neurodevelopment over infancy are
for the metabolism of molecules with known links to developmental neuroplasticity (46–48). Specifically,
we observed associations for gene sets related to glutamate and GABA, neurotransmitters that are
central to regulating excitatory/inhibitory (E/I) cortical balance. Developmental changes in E/I balance
modulate the degree of neuroplasticity in the mammalian cortex, including regulating the start and
progression of critical period neuroplasticity mechanisms in the visual cortex (47,46,49,50). Our observed
pattern of results suggests early (within the first 6 postnatal months) microbiome GABA/glutamate
dynamics, especially GABA, are most relevant for changes to visual cortex function over the following
year. Gut production of GABA may influence cortical GABA levels via active transport from bloodstream
to brain (51–53). Recent evidence suggests gut-derived glutamate may also influence brain levels and
function (8–10) and can operate via indirect mechanisms (either transformation into GABA or via
regulating glutamate levels in the bloodstream that impact glutamate transfer from brain to bloodstream).

Tryptophan related pathway genes were also identified here that are responsible for generating serotonin
as well as other neuroactive molecules such as kynurenic acid (an SMDAR antagonist) (12). Both
serotonin and kynurenic acid are implicated in early neuroplasticity and neurotransmitter regulation, and
serotonin has potent effects for visual cortex plasticity in particular (54,55). While quinolinic acid is part of
the kynurenine pathway and is a neurotoxin that can cause neuronal dysfunction, it may also play a role
in glutamate uptake in the brain (56,57). Specifically, tryptophan metabolism genes were associated with
VEP latencies just after each VEP component showed its greatest window of developmental change
(components emerge sequentially as follows: P1, N1, N2), that is, of P1 at visit-1, N1 and P1 at visit-2,
and N2 at visit-3. This pathway may thus relate to processes stabilizing the neural circuitry (i.e.
downregulating neuroplasticity) underlying each VEP component, an account consistent with recently
observed effects of serotonin within the visual cortex in rodents (58). Importantly, nearly all of the body’s
serotonin is produced in the gut by enterochromaffin cells, and this biosynthesis is regulated by microbes
(59,60), making this pathway an especially promising candidate intervention target for further research in
development.

We further found that gene sets for short-chain fatty acids important in downregulating neuroinflammation
and promoting myelination within the brain were robustly related to visual neurodevelopment. Myelination
is important for down-regulating plasticity in neural circuitry over development by stabilizing and
protecting circuits that have been shaped by early experience (61). Specifically, we observed
associations between acetate, butyrate, and proprionate genes with VEP development. Acetate is a
critical component required for the increased lipid synthesis that happens during postnatal myelination in
the brain (62). Circulating butyrate also increases myelination (63), and though propionate’s relation to
myelinating oligodendrocytes remains unclear, it is known to protect myelinating Schwann cells outside of
the brain from oxidative stress (64). Acetate, butyrate, and propionate are all also widely regarded as
neuroprotective by promoting healthy microglial development and downregulating neuroinflammation that
interferes with myelination (65). VEP latency features reflect myelination (50,66,67), and accordingly,
these SCFAs showed more associations with VEP latency features prospectively, especially VEP latency
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features in vsit 3. This pattern of results is consistent with these SCFA roles’ in myelination occurring over
the second half of the developmental window studied. SCFAs including acetate, butyrate, and propionate
can pass the blood-brain barrier to directly influence myelination-related processes within the brain.
Taken together, the pattern of results across GABA, glutamate, tryptophan, and SCFA gene sets
suggests early postnatal microbiome-derived metabolites relate to key neuroplasticity regulation
processes within the cortex.

Our study is a substantial advancement over prior work on the microbial-gut-brain axis in early life due to
the sequencing method, the large number of participants, the longitudinal study design, and the inclusion
of participants from a previously under-represented region of the world. The use of shotgun metagenomic
sequencing enables direct interrogation of microbial metabolic potential. Prior research primarily used
amplicon (16S rRNA gene) sequencing, which enables lower-resolution taxonomic identification and is
restricted to inferring metabolic potential based on taxonomy. Moreover, while several studies in infancy
have inferred gut-brain associations by linking microbiome measures to subsequent neurodevelopmental
measures using behavioral assessments (e.g., Bayley Scales of Infant Development), noting
associations with visually-mediated cognition (45), this study assessed the development of the visual
cortex directly using the VEP. The VEP is advantageous because features reflect largely
neurotransmission-related (via amplitudes) or structural (i.e., myelination, via latencies) changes over this
developmental window, facilitating some specificity in the observed associations. Moreover, the VEP can
be indexed with fidelity from birth, providing a continuous measure of visual cortical function across the
study age-range. Additionally, this study involved a large number of participants (194) contributing dense
longitudinal data, with up to three time points, all taken in the first 18 months of an infant’s life. While prior
work focused on single time point measures of microbiome and neurodevelopment (68), longitudinal
associations allowed us to investigate the changing relation between gut microbial metabolism and the
development of visual neurocircuitry over time.

One limitation of this study is the fact that we are only able to observe the genomic composition of the
microbiome, rather than the concentration of metabolites themselves. This prevents us from determining
the concentration of these molecules in the gastrointestinal tract, blood, and brain, as the abundance of
these genes does not provide information about their activity, their interactions with other metabolic
pathways (including those of the host), or absorption by colonic epithelial cells. Moreover, the relationship
between gene abundance and molecule concentration may be counterintuitive, since the relationship
between degradation and synthesis of metabolites occurs both at the individual organism level and at the
community level. For example, genes for breaking down a molecule may be prevalent if that molecule is
at high concentrations, or the molecules may be rapidly degraded by other members of the community
the moment they are produced. Furthermore, it may be that the relation between metabolite and brain
development remains stable over time, but the relation between molecules and microbial selection
changes at different stages of life. Addressing these limitations in humans is challenging, even if looking
at stool metabolites, because overall exposure throughout the gastrointestinal tract is not necessarily
reflected in the final concentration of those molecules in stool. Therefore, metabolites from blood plasma
could provide more accurate systemic concentrations of molecules, but challenges remain on how to
interpret them in humans (69,70).

Given that the VEP is evolutionarily conserved in mammals and can be accurately measured during
development, the hypotheses generated in humans in this study are readily testable mechanistically
using in vivo models in future research. For example, VEP could be assessed in germ-free or defined-
microbiome animals (Wymore Brand et al. 2015; Kennedy, King, and Baldridge 2018) and may be
supplemented with specific molecules such as SCFAs, or colonized with microbial species lacking or
providing specific metabolic pathways. Furthermore, molecule concentrations in tissues from the gut to
the brain can be directly assessed in these models. Uncovering relations between microbial metabolism
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and specific molecules may also generate hypotheses that can be confirmed in human data. This study,
therefore, provides a foundation for deep investigation of the link between the human gut microbiome and
brain development.
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Table 1: Overall Demographic Information

Overall
(N=194)

Mean (SD) Age at EEG Data Collection (months)

Visit 1 (N=97) 3.7 (0.85)

Visit 2 (N=129) 8.6 (1.46)

Visit 3 (N=130) 14.1 (1.03)

Mean (SD) Age at Stool Data Collection (months)

Visit 1 (N=119) 3.6 (0.76)

Visit 2 (N=105) 8.8 (1.43)

Visit 3 (N=91) 14.0 (1.24)

Maternal Place of Birth

South Africa 191 (98.5%)

In the African Continent (not South Africa) 3 (1.5%)

Primary Spoken Language

Xhosa Language 187 (96.4%)

Sotho Language 2 (1.0%)

Zulu Language 1 (0.5%)

English Language 2 (1.0%)

Ndebele Language 1 (0.5%)

Afrikaans Language 1 (0.5%)

Maternal Age at Infant Birth (years)

Mean (SD) 29.2 (5.63)

Median [Min, Max] 29.0 [18.0, 41.0]

Missing 1 (0.5%)

Maternal Educational Attainmentᵃ

Completed Grade 6 (Standard 4) to Grade 7 (Standard 5) 4 (2.1%)

Completed Grade 8 (Standard 6) to Grade 11 (Standard 9) i.e., high school without matriculating 78 (40.2%)

Completed Grade 12 (Standard 10) i.e., high school 88 (45.4%)

Part of university/ college/ post-matric education 13 (6.7%)

Completed university/ college/ post-matric education 11 (5.7%)

Maternal Monthly Incomeᵇ (South African Rand/ZAR)

Less than R1000 per month 97 (50.0%)

R1000 - R5000 per month 76 (39.2%)

R5000 - R10,000 per month 16 (8.2%)

More than R10,000 per month 0 (0%)

Unknown 5 (2.6%)

Infant Biological Sex

Female 91 (46.9%)

Male 103 (53.1%)

ᵃThe South African Educational System was formerly divided into years called standards, similarly to the way the United States
Educational System is divided into grades. The equivalent in terms of standards is provided in parentheses next to each
mentioned grade. “University/College/Post-Matric Education” refers to tertiary or post-secondary education as defined by the
World Bank.

ᵇAt the time of writing (1/16/24), 1 US Dollar = 18.87 South African Rand (ZAR).
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Table 2: Longitudinal FSEA, visit-1 stool ⇨ visit-2 VEP

Gene set Feature Component Enrichment Q value

P1 −0.398729884 0.080789189
GABA synthesis amplitude

N2 0.366103605 0.112944828

N1 −0.282915658 0.04452
latency

P1 0.262506611 0.080789189Glutamate synthesis

amplitude P1 0.231653804 0.102313043

P1 0.336966501 0.159815385
latency

N2 0.325268237 0.180080899Glutamate degradation

amplitude P1 0.3256632 0.176009302

N1 −0.221130346 0.027257143

P1 0.167147007 0.080789189latency

N2 0.19001832 0.048457143
Tryptophan synthesis

amplitude N2 −0.163072333 0.102313043

Quinolinic acid synthesis amplitude N1 −0.273526842 0.160915663

P1 0.197973559 0.102313043
Quinolinic acid degradation latency

N2 0.195068231 0.111888889

N1 −0.219089592 0.029353846

P1 0.192652389 0.061153846latency

N2 0.215744459 0.0318

P1 0.186013239 0.0742

Acetate synthesis

amplitude
N2 −0.196033217 0.054927273

Butyrate synthesis amplitude N1 −0.31934762 0.169849412

latency N1 0.271100718 0.122307692

N1 0.241218831 0.180080899Isovaleric acid synthesis
amplitude

P1 −0.240952289 0.160915663

Menaquinone synthesis latency N1 −0.139349027 0.159815385

amplitude N1 −0.429526827 0.180430435
Inositol synthesis

latency N1 −0.421912686 0.183435789

N1 −0.366578927 0.182593548

P1 0.452086746 0.101457143p-Cresol synthesis amplitude

N2 −0.516450705 0.04452

17-beta-Estradiol degradation latency N2 0.355044972 0.180080899
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Table 3: Longitudinal FSEA, visit-1 stool ⇨ visit-3 VEP

Gene set Feature Component Enrichment Q value

latency P1 0.434338693 0.04452

P1 0.409900164 0.0742GABA synthesis
amplitude

N2 −0.506575916 0.02544

latency N1 −0.303501108 0.029353846
Glutamate synthesis

amplitude N1 −0.234405478 0.111888889

latency N1 −0.187530614 0.04452
Tryptophan synthesis

amplitude P1 −0.217612428 0.0159

P1 −0.186280973 0.109392
latency

N2 −0.262447851 0.183435789Quinolinic acid degradation

amplitude P1 −0.168943012 0.160915663

Acetate synthesis latency N1 −0.172876999 0.080789189

Propionate synthesis amplitude P1 0.358659876 0.080789189

N1 −0.509754961 0.109392
latency

P1 0.534551664 0.088061538

P1 0.738806805 0
Propionate degradation

amplitude
N2 −0.666912201 0.027257143

N1 0.337326194 0.122307692
latency

N2 −0.323276487 0.149852055Butyrate synthesis

amplitude P1 0.368868764 0.101457143

latency P1 0.15826763 0.087031579

N1 −0.141748648 0.139740845

P1 0.148803868 0.113186441
Menaquinone synthesis

amplitude

N2 −0.156702017 0.102313043

Inositol synthesis amplitude N2 −0.453803843 0.121045161

latency N1 −0.283505043 0.180430435

P1 −0.328420633 0.112944828ClpB
amplitude

N2 0.35858587 0.080012903
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Table 4: Longitudinal FSEA, visit-2 stool ⇨ visit-3 VEP

Gene set Feature Component Enrichment Q value

GABA synthesis latency N1 −0.376215897 0.107325

N1 −0.16762197 0.160915663
latency

P1 0.297968912 0.0159Glutamate synthesis

amplitude P1 0.23424529 0.03816

latency P1 0.317418013 0.14045
Glutamate degradation

amplitude N2 0.282946442 0.187555102

N1 −0.155489037 0.060834783
Tryptophan synthesis amplitude

P1 0.186539112 0.029353846

N1 −0.31863828 0.061056
latency

P1 0.333137823 0.043725Quinolinic acid synthesis

amplitude P1 0.257761121 0.139182609

N1 −0.16732426 0.061056

P1 0.257469673 0latency

N2 −0.137377692 0.152983784
Acetate synthesis

amplitude P1 0.146955492 0.121045161

Propionate synthesis amplitude P1 0.299415199 0.126236364

N1 −0.550397358 0.0742
latency

N2 0.449253743 0.160915663

P1 0.50881464 0.111888889
Propionate degradation

amplitude
N2 −0.422998998 0.187555102

N1 −0.331642845 0.080789189

P1 0.333561852 0.0742latency

N2 −0.290812478 0.122307692
Butyrate synthesis

amplitude N2 0.306668162 0.111888889

latency P1 0.231685269 0.155652632
Isovaleric acid synthesis

amplitude P1 0.246936789 0.112944828

latency N1 0.152879564 0.121045161

N1 −0.164433164 0.107325

P1 0.201456836 0.029353846
Menaquinone synthesis

amplitude

N2 −0.163403497 0.112167273

N1 −0.638125991 0.029353846
latency

P1 0.532338179 0.101457143Inositol degradation

amplitude P1 0.641392999 0.029353846

P1 0.311879942 0.139740845
latency

N2 −0.31528647 0.139182609p-Cresol synthesis

amplitude N1 −0.303976467 0.165814286

N1 −0.222889447 0.155652632
S-Adenosylmethionine synthesis amplitude

P1 0.229572468 0.13479403

17-beta-Estradiol degradation amplitude P1 0.281861389 0.187555102

ClpB latency P1 0.268785756 0.180430435
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Figures
Figure 1: The gut microbiome and VEP both develop over the first 18 months of life.
(A) Study design; participants (N=194) were seen up to 3 times over the first 18 months of life. Stool samples and EEG data were
collected, generating microbial functional profiles (stool) and VEP waveforms (EEG) used in subsequent analyses. (B) Longitudinal
sampling of study participants; Density plots (top) for stool and EEG collection show the ages represented in each visit. The scatter
plot (bottom) shows individual participant visits. Dotted lines connect separate visits for the same participant. When stool and EEG
data were collected for the same visit (purple) but not on the same day, dot represents the median age of collection, and vertical
bars in blue and red represent stool and EEG collections respectively. (C) Principal coordinate analysis (PCoA) by multidimensional
scaling (MDS) on Bray-Curtis dissimilarity of taxonomic profiles; percent variance explained (fraction of positive eigenvalues) by
each of the first two axes are indicated on the x and y axes respectively. (D) PCoA of microbial functional profiles (UniRef90s). (E)
Average (solid lines) ± standard deviation (dotted lines) for VEP waveforms at each visit.

Figure 2: Concurrent feature set enrichment analysis of microbial neuroactive genes and VEP for three visits. FSEA results
for all genesets where at least one visit had a significant hit (q < 0.2) with at least one VEP latency (A) or amplitude (B). Dots
indicate the Z-statistic from logistic regression for each gene in a gene set. Vertical bars indicate the median Z-statistic for the gene
set as a whole. Y-axis position for each gene set indicates visit number. Visit 1 for inositol degradation and DOPAC synthesis were
not tested, since there were fewer than 5 genes from those genesets present in the sample (See Methods).

Figure 3: Gut microbial genes predict future VEP latencies and amplitudes. (A) Age distributions for stool samples (left) and
VEP (right) for each longitudinal comparison (same individual) tested, V1 stool →V2 VEP, V1 stool →V3 VEP, and V2 stool →V3
VEP. As in Figure 2, (B) and (C) show FSEA results for all genesets where at least one visit had a significant hit (q < 0.2) with at
least one VEP latency or amplitude respectively. Dots indicate the Z-statistic from logistic regression for each gene in a gene set.
Vertical bars indicate the median Z-statistic for the gene set as a whole. The Y-axis position for each gene set indicates longitudinal
comparison. V1 → V2 and V1 → 3 for inositol degradation and DOPAC synthesis were not tested, since there were fewer than 5
genes from those genesets present in the sample (See Methods).
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