TITLE: We Are on the Verge of Breakthrough Cures for Type 1 Diabetes, but Who Are the 2 Million Americans Who Have It?

AUTHORS: Rebecca Smith¹, Samara Eisenberg¹, Aaron Turner-Pfifer², Jacqueline Le Grand², Sarah Pincus², Yousra Omer², Fei Wang², Bruce Pyenson¹

¹ Milliman, Inc., New York, NY, USA

² Breakthrough T1D, Washington, D.C., USA

ABSTRACT:

Two million Americans have Type 1 Diabetes. Innovative treatments have standardized insulin delivery and improved outcomes for patients, but patients' access to such technologies depends on social determinants of health, including insurance coverage, proper diagnosis, and appropriate patient supports. Prior estimates of US prevalence, incidence, and patient characteristics have relied on data from select regions and younger ages and miss important determinants. By contrast, our research leveraged nationally representative administrative claims datasets to build a nuanced picture of the population with T1DM. Our work also supports future policy and research efforts with 2024, 2029, and 2033 projections of demographic and insurance coverage for people with T1DM.

KEYWORDS: Type 1 Diabetes, population health, diabetes forecast, continuous glucose monitor, insulin pump, administrative claims

INTRODUCTION

The 2022 publication of global statistics for type 1 diabetes mellitus (T1DM) highlights the need for better statistics on the two million Americans with the condition.¹ Recent technological advancements that customize T1DM therapies on a minute-by-minute patient basis produce improved outcomes for people with T1DM, and research points to potential cures.² Better care will need to overcome stereotypes, such as T1DM's legacy as "juvenile diabetes," confusion with the more common Type 2 diabetes mellitus (T2DM), and incomplete demographic profiles based on limited registry information. Furthermore, US demographic and insurance coverage changes will affect population health efforts to reach people with T1DM. This paper fills gaps in US T1DM information with 2024, 2029, and 2033 projections of demographic and insurance coverage for people with T1DM.

The isolation of insulin in 1921 marked a transformative moment for what is now known as T1DM, turning it from a tragic and rapidly fatal childhood disease into a survivable chronic condition, although one with significant comorbidities and excess mortality.^{3,4} Recent progress has led to broad adoption of continuous glucose monitors (CGM), portable electronic devices that track and monitor glucose levels in real time, and wearable insulin pumps, which have reduced comorbidity burdens and increased survival rates for people with T1DM.⁵ Soon, we may have treatments to delay, prevent and even reverse the autoimmune processes that cause T1DM.²

Diabetes refers to several illnesses involving the body's metabolization of sugar via insulin, a pancreatic enzyme. This paper focuses on T1DM, where the pancreas stops making insulin.⁶ T1DM becomes fatal quickly without regular injections of insulin.

Because T1DM was primarily diagnosed in children, it was originally called, "juvenile diabetes." Type 2 diabetes, which is more prevalent and often associated with obesity, occurs when the pancreas produces insufficient insulin or ineffectively uses insulin for sugar metabolism. In both forms of diabetes, fluctuations in blood sugar (poor glycemic control) are associated with comorbidities. Although T1DM and T2DM are very different diseases, many information sources do not distinguish between the conditions; patient diagnoses may be miscoded, and patients' forms of diabetes may not be obvious from their treatments.^{7,8}

About 2 million Americans have T1DM—much lower than the nearly 30 million with T2DM.⁹ Diabetes is the 8th leading cause of death in the US with about 9% of deaths coming from T1DM.¹⁰ T1DM is predominantly diagnosed in children and young adults but similarly across sexes.⁶ Patients with T1DM have mortality rates 3-18 times higher than standard.¹¹ Innovative treatments and technologies have helped standardize insulin delivery and improve outcomes for patients. A variety of automated devices are in use, such as continuous glucose monitors (CGMs) and insulin pumps, but patients' access to such devices depends on insurance coverage, proper diagnosis, and appropriate patient supports, all of which are affected by social determinants of health.¹² Our use of real-world data, which includes some key socioeconomic drivers, provides important public health information about the 2 million Americans with T1DM. Historically, estimates of T1DM prevalence and incidence have come from epidemiological, clinic-based, population-based, prospective birth, case cohort, and cross-sectional studies.¹³ By contrast, we used several large, nationwide payer-based administrative datasets combined with estimates of incidence changes and US

demographic projections by region and ethnicity to produce 5- and 10-year forecasts. We found that the number of T1DM patients is higher than other estimates, with important regional and socioeconomic differences, some of which are expected to widen over time. Finally, we replicated others' findings of significant T1DM incidence among older adults, including those covered by Medicare.¹⁴

We hope forecasting the demographic details of America's population with T1DM will help public health, payer, and advocates' efforts to spread best practices and, optimistically, future cures.

DATA AND METHODS

This study utilized real-world administrative claims data (which insurers and others collect when they process bills from healthcare providers during their payments for covered services, devices, and drugs,) to create estimates of the US T1DM population in 2019, segmented by type of insurance coverage (e.g., commercial, Medicaid, Medicare, uninsured, etc.).

Claims Analysis

We analyzed 2018 to 2020 data from several large administrative databases (Appendix Exhibit A1).^{15–17} Patients were required to have at least 1 month of enrollment between January 2018 and December 2020, except for the Medicare Advantage (MA) population for which data were available through December 2019.

Insulin-using patients were identified using 3+ distinct claims for insulin, insulin pumps, or insulin-related supplies on separate dates, at least 30 to 120 days apart (Appendix Exhibit A2-A3). Patients with T1DM were identified from among the insulin-using

population using a claims-based algorithm (Appendix Exhibit A2-A4). Patients' index dates were set to the date of their first claim with a T1DM diagnosis. Patients with evidence of drug combinations specific to T2DM at any time during the study were excluded (Appendix Exhibit A5).⁸ Additionally, patients with evidence of only long-acting insulin prescriptions (Appendix Exhibit A2-A3) were excluded; patients using pre-mixed insulin formulations including a short- or intermediate-acting insulin (Appendix Exhibit A2-A3) were included.

Patients were flagged as newly diagnosed with T1DM ("incident") if there was no evidence of a T1DM diagnosis (Appendix Exhibit A4) or use of insulin, insulin-related durable medical equipment (DME), or an insulin pump (Appendix Exhibit A2-A3) within 6 months of their index date. This identification approach is similar to other published and validated algorithms.^{8,18}

Patient counts were compiled for each dataset based on insurance coverage (Commercial (COM), Medicaid (MCD), Medicare fee-for-service (FFS), MA), age, sex, geographic region, and metropolitan statistical area (MSA) status. For the Medicare populations, additional variables were captured, including race/ethnicity and dual-Medicare-Medicaid eligibility status, the latter indicating low-income beneficiaries.

Patients were grouped into five-year age bands, with wider bands for the youngest and oldest ages. We used four geographic regions (Appendix Exhibit A6) and split residence into MSA (urban) or not (rural). Sex was captured from enrollment data, and race/ethnicity categories tabulated included African American, Hispanic, non-Hispanic white, and all other races (available only for Medicare).

Extrapolation of Claims Data to National Estimates

Prevalence rates were determined for each of the coverages analyzed and extrapolated to national counts for 2019. (Appendix Exhibits A1 and A7).^{19–24} In addition to the four coverage types directly examined via claims, we developed prevalence rates for Veterans Affairs (VA), Uninsured, and Other Medicare (individuals with either only Medicare Part A or only Part B). The commercial prevalence rate was used for the VA population, the Managed MCD prevalence rate for all MCD populations and the Uninsured, and the FFS prevalence rate for the Other Medicare population.

For modeling, claims-derived patient counts were used to calculate agent weights for each combination of demographic factors within each insurance coverage.

T1DM incidence rates were computed across coverage-specific age, sex, demographic, and geographic cohorts. For rates of T1DM device use, patients in each cohort were categorized based on their usage of CGMs, insulin pumps, both CGMs and pumps, or neither device. T1DM age distributions, incidence rates by age, and device use rates by age were smoothed by fitting curves to initially developed rates derived from the data.

10-year Projections

Events within a given year, such as device uptake or death, were modeled in a probabilistic manner. We developed mortality loads for the T1DM population relative to standard population mortality separately for ages 0-64 and for 65+ using FFS data. We examined raw counts and compared actual deaths to those implied by standard mortality tables from CDC WONDER (Appendix Exhibits A8-A9).²⁵

We note that our method of using Medicare-based mortality loads for commercial or Medicaid T1DM patients may overstate expected deaths because under-65 Medicare T1DM patients may suffer from disabling conditions such as end-stage renal disease. The number of new cases of T1DM in the model were calibrated to produce a baseline, steady state model by age, which considered mortality and age progression. The baseline model maintained consistency in demographics for the T1DM population over the 10-year projection. Population growth was then incorporated into that model using US population growth projections²⁶ (Appendix Exhibits A10-A11) and T1DM diabetes

incidence growth from the Global Burden of Disease Study 2017.²⁷

Mortality for patients newly starting on CGMs or insulin pump devices reflected the mortality-reducing impacts of these technologies.^{28–31} For patients using both devices, excess T1DM mortality over standard mortality was reduced by 50% (Appendix Exhibit A12). This improvement was applied in the first year of new device use and all subsequent years. For patients exclusively using CGMs, a 40% reduction was applied. For those exclusively using pumps, a 10% mortality reduction was applied. The model also assumed 85% of the population would use devices by Model Year 3, compared to approximately 78% in 2019.

RESULTS

2024 Baseline

We estimated 2.07 million T1DM patients nationally across all insurance coverages in our 2024 baseline model year – 1.79 million adults (20+) and 0.28 million children (Exhibit 1 Table 1). This represents a US T1DM prevalence rate of 617 per 100,000

(Exhibit 2 Figure 1) with an average age of 47. The majority of patients (68%) were classified as Non-Hispanic White, and the largest proportion were covered by COM (47%), followed by Medicare (FFS, MA, and Other Medicare populations totaling 29%) and Medicaid (15%) insurance coverage (Exhibit 4 Table 2). We observed 78% of patients with CGMs and/or insulin pump devices.

Incident patients were approximately 2.6% of the total patient population, an incidence rate of 0.016%. About 14% of the incident population over the projection period were \geq 65 years old (Exhibit 3 Figure 2). Regionally, the Midwest and Northeast exhibited the highest baseline incidence rates at 20 and 18 per 100,000, respectively (Exhibit 2 Figure 1). These rates are 25-35% higher than observed incidence rates in the South and the West (15 and 14 per 100,000, respectively). About 47% of incident patients were covered under commercial insurance followed by Medicare (21%) and Medicaid (20%) (Exhibit 4 Table 2).

Claims-derived mortality among patients with T1DM were roughly three times those of the overall population. However, after incorporating mortality improvement associated with device use, T1DM mortality decreased to around twice that of the overall population.

10-Year Projection

By 2033, we project the US population with T1DM will grow by about 10%, reaching approximately 2.29 million patients from 2.07 in 2024. This growth is attributed to a nearly 50% increase in the number of incident patients over the next decade coupled with improved survival from use of devices. Over the decade, the average age of patients is expected to increase from 47 to 49, and the number of patients over age 65

is projected to increase by 33% (Exhibit 1 Table 1). The over 65 growth is primarily influenced by the aging of the US population rather than by increases in T1DM incidence among older Americans.

The largest growth in T1DM incidence is expected in the Northeast. However, due to expected US population growth patterns, T1DM prevalence in the West will increase most (17%).

The racial and ethnic composition of the T1DM population is expected to align with overall US trends. The Hispanic population with T1DM is projected to grow by 18% and the African American population with T1DM by nearly 13%. Although Non-Hispanic White patients will continue to constitute the majority of the US T1DM population, that share is projected to decrease from 68% to 66%, and 10-year growth among Non-Hispanic White patients with T1DM will be less than 10%, the lowest among all racial and ethnic groups modeled (Exhibit 1 Table 1).

MA and MCD are expected to undergo the most substantial increases in T1DM growth over the next decade, with patient populations growing by 25% and 30% respectively. Projected growth in T1DM among MA-covered patients reflects ongoing, known shifts in Medicare coverage from FFS to MA (Exhibit 1 Table 1).

DISCUSSION

Our analysis produces somewhat different results than other studies. The most detailed estimates of T1DM among US youth derive from the SEARCH for Diabetes in Youth studies, which examined populations in 10 states.³² Northeast states were not included in SEARCH. However, our nationwide approach found the Northeast has the highest

T1DM incidence. This is one reason our estimated T1DM population is larger than others'. Large regional variation in incidence has been observed in international studies. For example, a 2020 study by Mobasseri et al. found America had the highest incidence compared to Asia, Africa, and Europe.^{33 31} Another study among children aged 0-4 found western European regions had the highest incidence compared to other world regions in this age group.³⁴ We combined US regional incidence differences with population forecasts that include regional and socioeconomic factors. The results show important differences across regions, payers, and ethnic groups. We found T1DM prevalence tends to vary by income, which is consistent with several international studies that found more developed countries observe higher incidence and prevalence than less developed countries.^{1,33} It is possible that higher patient income is associated with more accurate coding in clinical or administrative data.

Much existing literature on T1DM prevalence and incidence is based on epidemiological, clinic-based, population-based, prospective birth, case cohort, and cross-sectional studies.¹³ These studies may have limitations such as inadequate representation for the full population, insufficient detail on potential additional contributing factors, limited sample sizes, challenges in control selection, and bias in self-reported data, particularly in survey-based methodologies. By contrast, our study used real-world data from claims to determine T1DM estimates. Advantages of claims studies include data quality and consistency, clinical validity, ability to link demographic variables, and broad data availability, but we recognize other limitations.³⁵ For example, we identified individuals with T1DM using various fields including diagnosis, procedure, and drug codes. These fields may be underreported or misreported. Payment for drugs

or devices does not guarantee actual patient use. Indeed, our estimates of device use were based on claims for these devices, but we did not assess adherence, so our estimates may overstate actual, ongoing utilization.

Distinguishing between T1DM and T2DM poses challenges both clinically and epidemiologically. T1DM is the less common condition, and many T1DM cases may be coded as T2DM. Adult onset T1DM may be especially subject to miscoding due to the incorrect perception that adult cases are rare.

CGMs and insulin pumps have become the standard of care under US and other clinical guidelines^{36,37}, and use is increasing.³¹ Their adoption is associated with decreased complications including hypoglycemia, diabetic ketoacidosis, and diabetes-related emergency visits.³¹ Our model incorporated projected increases in uptake for devices over time to reflect their clinical value and recent trends. As device use increases, we anticipate a reduction in complications and, consequently, projected deaths. However, each payer may implement specific coverage criteria or requirements, which can limit or delay access.

Commercially insured patients comprised the largest portion of our model, followed by Medicare and Medicaid. According to the Medicare Local Coverage Determination (LCD) which determines the "reasonable and necessary" criteria for CGM coverage³⁸, CGMs are only covered when the following criteria are met:

1) The beneficiary has diabetes based on ICD-10 codes

2) The beneficiary is administered insulin 3+ times daily

3) The beneficiary's treatment requires regular adjustment

4) Within six months prior to ordering the CGM, the beneficiary must have an inpatient visit with their treating practitioner confirming (1-3) are met

5) The beneficiary must have an in-person follow-up every six months to assess adherence.

FFS patients who meet the above criteria are eligible for coverage of their devices with few restrictions based on brand or cost. But access to therapies among commercial insurance plans can differ significantly. Commercial insurance plans may categorize insulin on different formulary tiers, resulting in varying coverage and out-of-pocket costs. Additionally, devices may be subject to insurer approval based on medical necessity criteria.

The mortality loads developed from claims data for patients with T1DM were nearly three times those of the general population, consistent with published findings.³⁹ T1DM death counts produced by our model were also consistent with previously published mortality studies.¹ Our modeling explored the expected life years gained based on mortality improvement from device use over the 10-year projection. We estimate this improvement will result in nearly 360,000 additional life years, a 2% increase, compared to the baseline scenario. While literature suggests that device use may improve risk factors for comorbidities, there is limited literature available on the quantitative impact that devices may have on mortality.

A recent study published identified a global increase of 60-107% in T1DM prevalence from 2021 to 2040.⁴⁰ In contrast, our study suggests a 10% US increase from 2024 to 2033. Our study was limited to the US, a more developed country. Prevalence of T1DM is higher in more developed countries, but growth in prevalence tends to be higher in

less developed countries.¹ As technology for diagnosing and treating T1DM becomes more widely available, we expect developing countries to show greater T1DM growth. Our study found lower incidence rates in middle age compared to children and young adults, consistent with prior research.⁴⁰ However, when viewed as a whole, we observed substantial incidence across middle and older age brackets. As new-onset T1DM is more commonly misdiagnosed as T2DM in adults than in children⁴¹, our findings suggest there are public health implications to missing older individuals when considering how best to identify, treat, and support patients with this disease.

Our Year 1 (2024) T1DM population size is based on observed rates from 2019 data. Trending the data to 2024 introduces uncertainties, partly because of the disruption caused by the COVID-19 pandemic. Indeed, all population forecasts involve uncertainty because of economic, demographic, and clinical changes. By example, there have likely been changes in patient outcomes and mortality since 2019 due to the entrance and increased use of closed loop insulin delivery systems which combine CGM and pump.

Race and patients' dates of death were available only in the FFS data set. The race field is self-reported, introducing potential inaccuracies. Mortality loads for all ages and payers were developed using FFS data, and while these loads are akin to those reported in literature, they may not be appropriate for other coverages. Of course, models are simplifications of reality, and assumptions applied for modeling purposes will likely differ from future experience.

Finally, the commercial databases we used are comprised of claims primarily from patients covered by large, self-insured employer-sponsored health plans with relatively rich benefits compared to Medicare or Medicaid. These data are recorded for the

purpose of payment, not clinical intent, and thus are imperfect when clinical assumptions are applied. Additionally, MA data was available only through 2019, so our initial T1DM identification period was shorter for that market. Finally, we could not access data for certain populations, such as the Medicaid FFS, VA, and Uninsured populations, so we used proxies. Analyses using different years, data sources, methodologies may produce different results.

CONCLUSION

T1DM impacts two million people in the US. Despite advances in technology and care management, these patients face high comorbidity and mortality risks, and T1DM prevalence continues to grow. But today also sees rapid evolution in our understanding and ability to treat T1DM. Clinicians can now screen for future risk of developing T1DM via blood test; multiple human clinical trials are underway for cell therapies that could end T1DM patients' reliance on external insulin, and in 2022 the FDA approved the first disease-modifying therapy delaying T1DM onset. Given this rapidly changing landscape, data about the T1DM community is essential to ensure informed decisions by key stakeholders. This study represents a step toward a detailed understanding of the future composition of the T1DM population.

ENDNOTES

- Gregory GA, Robinson TIG, Linklater SE, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. *Lancet Diabetes Endocrinol*. 2022;10(10):741-760. doi:10.1016/S2213-8587(22)00218-2
- American Diabetes Association. Recent Advances. Accessed December 29, 2023. https://www2.diabetes.org/about-us/research/research-impact/recentadvances
- Karamanou M, Protogerou A, Tsoucalas G, Androutsos G, Poulakou-Rebelakou
 E. Milestones in the history of diabetes mellitus: The main contributors. *World J Diabetes*. 2016;7(1):1-7.
- DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. *Lancet*.
 2018;391(10138):2449-2462.
- National Institute of Diabetes and Digestive and Kidney Diseases. Managing Diabetes. Published 2016. Accessed December 29, 2023. https://www.niddk.nih.gov/health-information/diabetes/overview/managingdiabetes
- Centers for Disease Control and Prevention. What is Type 1 Diabetes? Published 2023. Accessed December 27, 2023. https://www.cdc.gov/diabetes/basics/whatis-type-1-diabetes.html
- 7. Forouhi NG, Wareham NJ. Epidemiology of diabetes. *Med*. 2014;42(12):698-702.
- 8. Campione J, Nooney J, Kirkman M, et al. Validated Models Using EHRs or Claims Data to Distinguish Diabetes Type among Adults. *Adv Diabetes*

Endocrinol. 2023;7(1):4.

- Centers for Disease Control and Prevention. Type 2 Diabetes. Published 2023.
 Accessed December 29, 2023. https://www.cdc.gov/diabetes/basics/type2.html
- Centers for Disease Control and Prevention. National Diabetes Statistics Report,
 2020: Estimates of Diabetes and Its Burden in the United States. Published 2020.
 https://www.cdc.gov/diabetes/data/statistics-report/index.html
- 11. National Institutes of Health. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/
- American Diabetes Association. *The Cost of Access to Diabetes Technologies*.;
 2022. https://diabetes.org/sites/default/files/2023-09/ADA-CGM-Utilization-White-Paper-Oct-2022.pdf
- Leslie RD, Evans-Molina C, Freund-Brown J, et al. Adult-Onset Type 1 Diabetes: Current Understanding and Challenges. *Diabetes Care*. 2021;44(11):2449-2456. doi:https://doi.org/10.2337/dc21-0770
- Fang M, Wang D, Echouffo-Tcheugui JB, Selvin E. Age at Diagnosis in U.S.
 Adults With Type 1 Diabetes. *Ann Intern Med*. 2023;176(11):1567-1568.
- Milliman Inc. Milliman Consolidated Health Cost Guidelines[™] Sources Database (CHSD). Published 2021. https://us.milliman.com/en/health/life-sciences/dataassets
- Research Data Assistance Center (ResDAC). RIF Medicare Quarterly Data. Accessed December 29, 2023. https://resdac.org/articles/rif-medicare-quarterlydata
- 17. Merative. Merative MarketScan Research Databases.

https://www.merative.com/documents/brief/marketscan-explainer-general

- Teltsch D, Fazeli Farsani S, Swain R, et al. Development and validation of algorithms to identify newly diagnosed type 1 and type 2 diabetes in pediatric population using electronic medical records and claims data. *Pharmacoepidemiol Drug Saf.* 2019;28(2):234-243.
- 19. CMS Chronic Condition Warehouse. *MDCR ENROLL AB 9 in CMS PROGRAM STATISTICS*.; 2019.

https://www.cms.gov/files/document/2019cpsmdcrenrollab9.pdf-0

- Ochieng N, Biniek JF, Freed M, Damico A, Neuman T. Medicare Advantage in 2023: Enrollment Update and Key Trends.; 2023. https://www.kff.org/medicare/issue-brief/medicare-advantage-in-2023-enrollmentupdate-and-key-trends/
- 21. Centers for Medicare and Medicaid Services. Medicare Enrollment Charts. Chronic Conditions Data Warehouse. Accessed December 27, 2023. https://www2.ccwdata.org/web/guest/medicare-charts/medicare-enrollmentcharts#:~:text=The number of people enrolled in Medicare varied by state,million Medicare beneficiaries in 2019
- 22. Cohen RA, Cha AE, Martinez ME, Terlizzi EP. *Health Insurance Coverage: Early Release of Estimates From the National Health Interview Survey, 2019.*; 2020. https://www.cdc.gov/nchs/data/nhis/earlyrelease/insur202009-508.pdf
- Centers for Medicare and Medicaid Services. Medicaid and CHIP Scorecard.
 Published 2023. Accessed December 27, 2023. https://www.medicaid.gov/stateoverviews/scorecard/who-enrolls-medicaid-chip/index.html

- Veterans Health Administration. *Vision Plan.*; 2020.
 https://www.va.gov/VHASTRATEGY/Docs/VHA_Vision_Plan_December_2020_FI
 NAL.pdf
- 25. CDC WONDER. *Multiple Cause of Death, 1999-2020 Request.* https://wonder.cdc.gov/controller/datarequest/D77
- U.S. Census Bureau Population Division Projections Branch. Population
 Projections: United States by State, Age and Sex, for the years 2004 2030.
 Published 2019. http://wonder.cdc.gov/wonder/help/PopulationProjections.html
- Liu J, Ren ZH, Qiang H, et al. Trends in the incidence of diabetes mellitus: results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. *BMD Public Heal*. 2020;20:1415. doi:10.1186/s12889-020-09502-x
- Steineck I, Cederholm J, Eliasson B, et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. *BMJ*. 2015;350:h3234. doi:10.1136/bmj.h3234
- Rotondi MA, Wong O, Riddell M, Perkins B. Population-Level Impact and Costeffectiveness of Continuous Glucose Monitoring and Intermittently Scanned Continuous Glucose Monitoring Technologies for Adults With Type 1 Diabetes in Canada: A Modeling Study. *Diabetes Care*. 2022;45(9):2012-2019. doi:10.2337/dc21-2341
- Wan W, Skandari MR, Minc A, et al. Cost-effectiveness of Continuous Glucose Monitoring for Adults With Type 1 Diabetes Compared With Self-Monitoring of Blood Glucose: The DIAMOND Randomized Trial. *Diabetes Care*.

2018;41(6):1227-1234. doi:10.2337/dc17-1821

- Pauley ME, Tommerdahl KL, Snell-Bergeon JK, Forlenza GP. Continuous Glucose Monitor, Insulin Pump, and Automated Insulin Delivery Therapies for Type 1 Diabetes: An Update on Potential for Cardiovascular Benefits. *Curr Cardiol Rep.* 2022;24(12):2043-2056.
- SEARCH for Diabetes in Youth. What is the SEARCH Study? Published 2023.
 Accessed December 29, 2023. https://www.searchfordiabetes.org/dspAbout.cfm
- Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. *Heal Promot Perspect*. 2020;10(2):98-115. doi:10.34172/hpp.2020.18
- 34. Adeloye D, Chan KY, Thorley N, et al. Global and regional estimates of the morbidity due to type I diabetes among children aged 0-4 years: a systematic review and analysis. *J Glob Heal*. 2018;8(2):021101.
- 35. Research Data Assistance Center (ResDAC). Strengths and Limitations of CMS Administrative Data in Research. Accessed December 29, 2023. https://resdac.org/articles/strengths-and-limitations-cms-administrative-dataresearch
- American Diabetes Association. Standards of Care in Diabetes—2023 Abridged for Primary Care Providers. *Clin Diabetes*. 2023;41(1):4-31.
- 37. International Diabetes Federation. Global IDF/ISPAD Guideline for Diabetes in Childhood and Adolescence.; 2011. https://idf.org/aboutdiabetes/resources/?type=276&audience=361

- 38. Centers for Medicare & Medicaid Services. LCD L33822: Glucose Monitors.
 Published 2021. Accessed April 8, 2024.
 https://localcoverage.cms.gov/mcd_archive/view/lcd.aspx?lcdInfo=33822:41
- Schofield J, Ho J, Soran H. Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes Ther. 2019;10(3):773-789. doi:https://doi.org/10.1007/2Fs13300-019-0612-8
- 40. Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C.
 Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. *Lancet*. 2022;10(10):741-760.
 doi:https://doi.org/10.1016/S2213-8587(22)00218-2
- 41. Lucier J, Weinstock RS. Type 1 Diabetes. In: *StatPearls [Internet]*. StatPearls Publishing; 2023.

EXHIBIT LIST

Exhibit 1 – United States Model Years 1, 5, and 10 - T1DM patient count projections for each

demographic group and estimated device use

Exhibit 2 – Variation of incident and prevalent T1DM by geographic region in model years 1, 5,

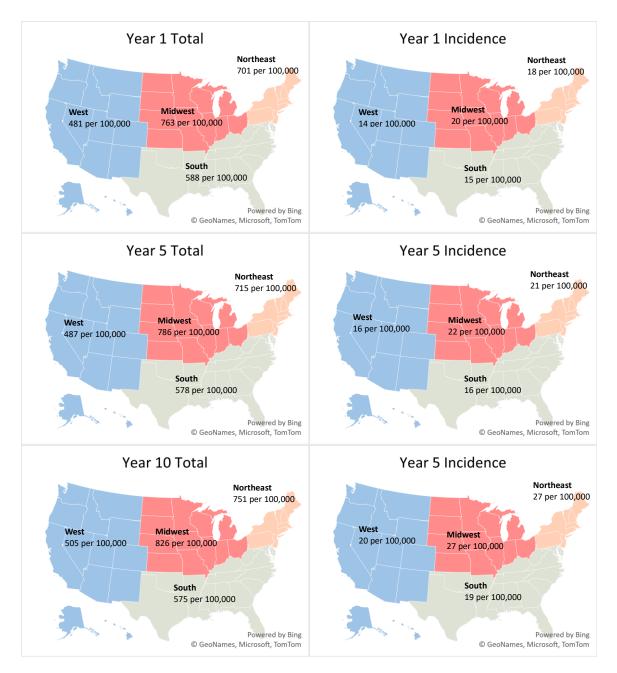
and 10

Exhibit 3 – Distribution of total T1DM and incident T1DM populations by age band in model

years 1, 5, and 10

Exhibit 4 – United States Model Year 1 T1DM patient count projections and distribution by age and sex within each insurance market

EXHIBIT 1 (Table 1)


Caption: United States Model Years 1, 5, and 10 - T1DM patient count projections for each demographic group and estimated device use

T1DM Patients		Model Years		Cumul	ative % C	hange
Population Group	1	5	10	Years 1-5	Years 5-10	Years 1-10
Total (N)						
Total Population	2,072,557	2,148,483	2,289,197	3.7%	6.5%	10.5%
By Payer (N)						
Commercial	973,020	983 <i>,</i> 365	1,008,562	1.1%	2.6%	3.7%
Medicaid	311,021	345,386	404,094	11.0%	17.0%	29.9%
Medicare Fee-for-		256 919	250 742	1 60/	0.00/	0.00/
Service	362,655	356,818	359,743	-1.6%	0.8%	-0.8%
Medicare Advantage	210,443	230,923	262,413	9.7%	13.6%	24.7%
Veterans Affairs	23,883	24,423	26,494	2.3%	8.5%	10.9%
Uninsured	157,063	171,856	189,568	9.4%	10.3%	20.7%
Medicare Part A Only or Part B only	34,472	35,713	38,322	3.6%	7.3%	11.2%
By Sex (N)						
Female	1,031,497	1,075,807	1,152,395	4.3%	7.1%	11.7%
Male	1,041,060	1,072,676	1,136,802	3.0%	6.0%	9.2%
By Age Band (N)						
<10	56,280	60,787	77,708	8.0%	27.8%	38.1%
10-14	96,241	99,259	108,754	3.1%	9.6%	13.0%
15-19	129,387	131,059	135,831	1.3%	3.6%	5.0%
20-24	140,183	140,724	142,202	0.4%	1.1%	1.4%
25-29	144,392	144,962	146,677	0.4%	1.2%	1.6%
30-34	148,645	149,347	151,345	0.5%	1.3%	1.8%
35-39	152,902	153,776	156,162	0.6%	1.6%	2.1%
40-44	157,155	158,236	161,089	0.7%	1.8%	2.5%
45-49	161,402	162,811	166,477	0.9%	2.3%	3.1%
50-54	165,348	167,217	171,791	1.1%	2.7%	3.9%
55-59	162,579	164,825	170,394	1.4%	3.4%	4.8%
60-64	159,402	163,020	171,854	2.3%	5.4%	7.8%
65+	398,640	452,461	528,914	13.5%	16.9%	32.7%
By Region (N)						
Midwest	529,932	548,840	581,709	3.6%	6.0%	9.8%
Northeast	400,337	410,041	432,965	2.4%	5.6%	8.2%
South	749,807	772,540	814,895	3.0%	5.5%	8.7%

West	392,481	417,063	459,627	6.3%	10.2%	17.1%
By Race (N)						
African-American	327,663	344,542	370,007	5.2%	7.4%	12.9%
Hispanic	268,984	286,829	317,191	6.6%	10.6%	17.9%
Non-Hispanic White	1,403,788	1,438,405	1,513,058	2.5%	5.2%	7.8%
All Other Race	72,122	78,707	88,940	9.1%	13.0%	23.3%
By Dual Status (N)						
Dual	160,448	170,590	187,326	6.3%	9.8%	16.8%
Non-Dual	447,122	452,864	473,152	1.3%	4.5%	5.8%
By MSA Status						
MSA	1,880,100	1,954,650	2,091,173	4.0%	7.0%	11.2%
Non-MSA	192,457	193,833	198,024	0.7%	2.2%	2.9%
Average Age	47.2	48.1	48.9	1.8%	1.7%	3.5%

Source: Authors' analysis based on Milliman's Consolidated Health Cost Guidelines Sources Database (CHSD), IBM MarketScan[®], and the Centers for Medicare and Medicaid Services (CMS) 100% Research Identifiable Files (RIF). Notes: This exhibit shows projected T1DM patient counts under each insurance type, gender, age band, region, race, dual status (for Medicare patients), and metropolitan statistical area (MSA) status and in total. The three columns on the far right represent the percent change over the specified time interval. Growth in each demographic group tends to speed up in the later model years.

EXHIBIT 2 (Figure 1) Caption: Variation of incident and prevalent T1DM by geographic region in model years 1, 5, and 10

Source: Authors' analysis based on Milliman's Consolidated Health Cost Guidelines Sources Database (CHSD), IBM MarketScan[®], the Centers for Medicare and Medicaid Services (CMS) 100% Research Identifiable Files (RIF) and CDC Wonder. Notes: This exhibit shows projected incident and prevalent T1DM patient counts and rates per 100,000 in each geographic region along with the cumulative percent change in each over 10 years. Notes (if Maps are used): This exhibit shows projected incident and prevalent T1DM rates per 100,000 in each geographic region in model years 1, 5, and 10. Each population and year has a gradient scale from light green to dark blue with the lowest rate per 100,000 being green and the highest being blue. We developed regional rates per 100,000 and assigned all states falling in a given region the rate per 100,000 to allow the map to recognize the geographic locations.

Figure data

Caption: Data for rates per 100,000 by region in model years 1, 5, and 10.

T1DM Patients		Model Years		
Population Group	1	5	10	Years 1-10
Total				
Total T1DM Population	2,072,557	2,148,483	2,289,197	10.5%
Incident T1DM Population	54,454	63,605	79,914	46.8%
T1DM Rate per 100,000	617.19	619.78	634.64	2.8%
T1DM Incidence Rate per 100,000	16.22	18.35	22.15	36.6%
T1DM Population Counts				
Midwest	529,932	548,840	581,709	9.8%
Northeast	400,337	410,041	432,965	8.2%
South	749,807	772,540	814,895	8.7%
West	392,481	417,063	459,627	17.1%
Incident T1DM Population Counts				
Midwest	13,642	15,598	19,198	40.7%
Northeast	10,333	11,999	15,524	50.2%
South	18,927	21,995	27,366	44.6%
West	11,552	14,013	17,826	54.3%
T1DM Rate per 100,000				
Midwest	762.98	785.51	826.38	8.3%
Northeast	700.68	714.99	751.45	7.2%
South	587.76	578.11	575.43	-2.1%
West	480.73	486.70	504.87	5.0%
T1DM Incidence Rate per 100,000				
Midwest	19.64	22.32	27.27	38.8%
Northeast	18.08	20.92	26.94	49.0%

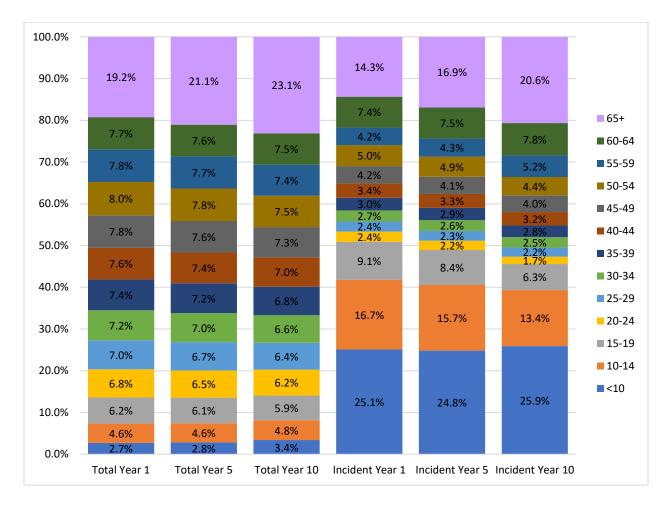
South	14.84	16.46	19.32	30.2%
West	14.15	16.35	19.58	38.4%

Category	Region	State	Year	Rate per 100,000
Total	West	Alaska	1	480.73
Total	South	Alabama	1	587.76
Total	South	Arkansas	1	587.76
Total	West	Arizona	1	480.73
Total	West	California	1	480.73
Total	West	Colorado	1	480.73
Total	Northeast	Connecticut	1	700.68
Total	South	District of Columbia	1	587.76
Total	South	Delaware	1	587.76
Total	South	Florida	1	587.76
Total	South	Georgia	1	587.76
Total	West	Hawaii	1	480.73
Total	Midwest	lowa	1	762.98
Total	West	Idaho	1	480.73
Total	Midwest	Illinois	1	762.98
Total	Midwest	Indiana	1	762.98
Total	Midwest	Kansas	1	762.98
Total	South	Kentucky	1	587.76
Total	South	Louisiana	1	587.76
Total	Northeast	Massachusetts	1	700.68
Total	South	Maryland	1	587.76
Total	Northeast	Maine	1	700.68
Total	Midwest	Michigan	1	762.98
Total	Midwest	Minnesota	1	762.98
Total	Midwest	Missouri	1	762.98
Total	South	Mississippi	1	587.76
Total	West	Montana	1	480.73
Total	South	North Carolina	1	587.76
Total	Midwest	North Dakota	1	762.98
Total	Midwest	Nebraska	1	762.98
Total	Northeast	New Hampshire	1	700.68
Total	Northeast	New Jersey	1	700.68
Total	West	New Mexico	1	480.73

Total	West	Nevada	1	480.73
Total	Northeast	New York	1	700.68
Total	Midwest	Ohio	1	762.98
Total	South	Oklahoma	1	587.76
Total	West	Oregon	1	480.73
Total	Northeast	Pennsylvania	1	700.68
Total	Northeast	Rhode Island	1	700.68
Total	South	South Carolina	1	587.76
Total	Midwest	South Dakota	1	762.98
Total	South	Tennessee	1	587.76
Total	South	Texas	1	587.76
Total	West	Utah	1	480.73
Total	South	Virginia	1	587.76
Total	Northeast	Vermont	1	700.68
Total	West	Washington	1	480.73
Total	Midwest	Wisconsin	1	762.98
Total	South	West Virginia	1	587.76
Total	West	Wyoming	1	480.73
Incidence	West	Alaska	1	14.15
Incidence	South	Alabama	1	14.84
Incidence	South	Arkansas	1	14.84
Incidence	West	Arizona	1	14.15
Incidence	West	California	1	14.15
Incidence	West	Colorado	1	14.15
Incidence	Northeast	Connecticut	1	18.08
Incidence	Couth	District of	1	14.04
Incidence	South	Columbia	1	14.84
Incidence	South	Delaware	1	14.84
Incidence	South	Florida	1	14.84
Incidence	South	Georgia	1	14.84
Incidence	West	Hawaii	1	14.15
Incidence	Midwest	lowa	1	19.64
Incidence	West	Idaho	1	14.15
Incidence	Midwest	Illinois	1	19.64
Incidence	Midwest	Indiana	1	19.64
Incidence	Midwest	Kansas	1	19.64
Incidence	South	Kentucky	1	14.84
Incidence	South	Louisiana	1	14.84
Incidence	Northeast	Massachusetts	1	18.08
Incidence	South	Maryland	1	14.84

Incidence	Northeast	Maine	1	18.08
Incidence	Midwest	Michigan	1	19.64
Incidence	Midwest	Minnesota	1	19.64
Incidence	Midwest	Missouri	1	19.64
Incidence	South	Mississippi	1	14.84
Incidence	West	Montana	1	14.15
Incidence	South	North Carolina	1	14.84
Incidence	Midwest	North Dakota	1	19.64
Incidence	Midwest	Nebraska	1	19.64
Incidence	Northeast	New Hampshire	1	18.08
Incidence	Northeast	New Jersey	1	18.08
Incidence	West	New Mexico	1	14.15
Incidence	West	Nevada	1	14.15
Incidence	Northeast	New York	1	18.08
Incidence	Midwest	Ohio	1	19.64
Incidence	South	Oklahoma	1	14.84
Incidence	West	Oregon	1	14.15
Incidence	Northeast	Pennsylvania	1	18.08
Incidence	Northeast	Rhode Island	1	18.08
Incidence	South	South Carolina	1	14.84
Incidence	Midwest	South Dakota	1	19.64
Incidence	South	Tennessee	1	14.84
Incidence	South	Texas	1	14.84
Incidence	West	Utah	1	14.15
Incidence	South	Virginia	1	14.84
Incidence	Northeast	Vermont	1	18.08
Incidence	West	Washington	1	14.15
Incidence	Midwest	Wisconsin	1	19.64
Incidence	South	West Virginia	1	14.84
Incidence	West	Wyoming	1	14.15
Total	West	Alaska	5	486.70
Total	South	Alabama	5	578.11
Total	South	Arkansas	5	578.11
Total	West	Arizona	5	486.70
Total	West	California	5	486.70
Total	West	Colorado	5	486.70
Total	Northeast	Connecticut	5	714.99
Total	South	District of Columbia	5	578.11
Total	South	Delaware	5	578.11

Total	South	Florida	5	578.11
Total	South	Georgia	5	578.11
Total	West	Hawaii	5	486.70
Total	Midwest	lowa	5	785.51
Total	West	Idaho	5	486.70
Total	Midwest	Illinois	5	785.51
Total	Midwest	Indiana	5	785.51
Total	Midwest	Kansas	5	785.51
Total	South	Kentucky	5	578.11
Total	South	Louisiana	5	578.11
Total	Northeast	Massachusetts	5	714.99
Total	South	Maryland	5	578.11
Total	Northeast	Maine	5	714.99
Total	Midwest	Michigan	5	785.51
Total	Midwest	Minnesota	5	785.51
Total	Midwest	Missouri	5	785.51
Total	South	Mississippi	5	578.11
Total	West	Montana	5	486.70
Total	South	North Carolina	5	578.11
Total	Midwest	North Dakota	5	785.51
Total	Midwest	Nebraska	5	785.51
Total	Northeast	New Hampshire	5	714.99
Total	Northeast	New Jersey	5	714.99
Total	West	New Mexico	5	486.70
Total	West	Nevada	5	486.70
Total	Northeast	New York	5	714.99
Total	Midwest	Ohio	5	785.51
Total	South	Oklahoma	5	578.11
Total	West	Oregon	5	486.70
Total	Northeast	Pennsylvania	5	714.99
Total	Northeast	Rhode Island	5	714.99
Total	South	South Carolina	5	578.11
Total	Midwest	South Dakota	5	785.51
Total	South	Tennessee	5	578.11
Total	South	Texas	5	578.11
Total	West	Utah	5	486.70
Total	South	Virginia	5	578.11
Total	Northeast	Vermont	5	714.99
Total	West	Washington	5	486.70


Total	Midwest	Wisconsin	5	785.51
Total	South	West Virginia	5	578.11
Total	West	Wyoming	5	486.70
Incidence	West	Alaska	5	16.35
Incidence	South	Alabama	5	16.46
Incidence	South	Arkansas	5	16.46
Incidence	West	Arizona	5	16.35
Incidence	West	California	5	16.35
Incidence	West	Colorado	5	16.35
Incidence	Northeast	Connecticut	5	20.92
Incidence	South	District of Columbia	5	16.46
Incidence	South	Delaware	5	16.46
Incidence	South	Florida	5	16.46
Incidence	South	Georgia	5	16.46
Incidence	West	Hawaii	5	16.35
Incidence	Midwest	lowa	5	22.32
Incidence	West	Idaho	5	16.35
Incidence	Midwest	Illinois	5	22.32
Incidence	Midwest	Indiana	5	22.32
Incidence	Midwest	Kansas	5	22.32
Incidence	South	Kentucky	5	16.46
Incidence	South	Louisiana	5	16.46
Incidence	Northeast	Massachusetts	5	20.92
Incidence	South	Maryland	5	16.46
Incidence	Northeast	Maine	5	20.92
Incidence	Midwest	Michigan	5	22.32
Incidence	Midwest	Minnesota	5	22.32
Incidence	Midwest	Missouri	5	22.32
Incidence	South	Mississippi	5	16.46
Incidence	West	Montana	5	16.35
Incidence	South	North Carolina	5	16.46
Incidence	Midwest	North Dakota	5	22.32
Incidence	Midwest	Nebraska	5	22.32
Incidence	Northeast	New Hampshire	5	20.92
Incidence	Northeast	New Jersey	5	20.92
Incidence	West	New Mexico	5	16.35
Incidence	West	Nevada	5	16.35
Incidence	Northeast	New York	5	20.92
Incidence	Midwest	Ohio	5	22.32

Incidence	South	Oklahoma	5	16.46
Incidence	West	Oregon	5	16.35
Incidence	Northeast	Pennsylvania	5	20.92
Incidence	Northeast	Rhode Island	5	20.92
Incidence	South	South Carolina	5	16.46
Incidence	Midwest	South Dakota	5	22.32
Incidence	South	Tennessee	5	16.46
Incidence	South	Texas	5	16.46
Incidence	West	Utah	5	16.35
Incidence	South	Virginia	5	16.46
Incidence	Northeast	Vermont	5	20.92
Incidence	West	Washington	5	16.35
Incidence	Midwest	Wisconsin	5	22.32
Incidence	South	West Virginia	5	16.46
Incidence	West	Wyoming	5	16.35
Total	West	Alaska	10	504.87
Total	South	Alabama	10	575.43
Total	South	Arkansas	10	575.43
Total	West	Arizona	10	504.87
Total	West	California	10	504.87
Total	West	Colorado	10	504.87
Total	Northeast	Connecticut	10	751.45
		District of		
Total	South	Columbia	10	575.43
Total	South	Delaware	10	575.43
Total	South	Florida	10	575.43
Total	South	Georgia	10	575.43
Total	West	Hawaii	10	504.87
Total	Midwest	lowa	10	826.38
Total	West	Idaho	10	504.87
Total	Midwest	Illinois	10	826.38
Total	Midwest	Indiana	10	826.38
Total	Midwest	Kansas	10	826.38
Total	South	Kentucky	10	575.43
Total	South	Louisiana	10	575.43
Total	Northeast	Massachusetts	10	751.45
Total	South	Maryland	10	575.43
Total	Northeast	Maine	10	751.45
Total	Midwest	Michigan	10	826.38
Total	Midwest	Minnesota	10	826.38

Total	Midwest	Missouri	10	826.38
Total	South	Mississippi	10	575.43
Total	West	Montana	10	504.87
Total	South	North Carolina	10	575.43
Total	Midwest	North Dakota	10	826.38
Total	Midwest	Nebraska	10	826.38
Total	Northeast	New Hampshire	10	751.45
Total	Northeast	New Jersey	10	751.45
Total	West	New Mexico	10	504.87
Total	West	Nevada	10	504.87
Total	Northeast	New York	10	751.45
Total	Midwest	Ohio	10	826.38
Total	South	Oklahoma	10	575.43
Total	West	Oregon	10	504.87
Total	Northeast	Pennsylvania	10	751.45
Total	Northeast	Rhode Island	10	751.45
Total	South	South Carolina	10	575.43
Total	Midwest	South Dakota	10	826.38
Total	South	Tennessee	10	575.43
Total	South	Texas	10	575.43
Total	West	Utah	10	504.87
Total	South	Virginia	10	575.43
Total	Northeast	Vermont	10	751.45
Total	West	Washington	10	504.87
Total	Midwest	Wisconsin	10	826.38
Total	South	West Virginia	10	575.43
Total	West	Wyoming	10	504.87
Incidence	West	Alaska	10	19.58
Incidence	South	Alabama	10	19.32
Incidence	South	Arkansas	10	19.32
Incidence	West	Arizona	10	19.58
Incidence	West	California	10	19.58
Incidence	West	Colorado	10	19.58
Incidence	Northeast	Connecticut	10	26.94
		District of		
Incidence	South	Columbia	10	19.32
Incidence	South	Delaware	10	19.32
Incidence	South	Florida	10	19.32
Incidence	South	Georgia	10	19.32
Incidence	West	Hawaii	10	19.58

Incidence	Midwest	lowa	10	27.27
Incidence	West	Idaho	10	19.58
Incidence	Midwest	Illinois	10	27.27
Incidence	Midwest	Indiana	10	27.27
Incidence	Midwest	Kansas	10	27.27
Incidence	South	Kentucky	10	19.32
Incidence	South	Louisiana	10	19.32
Incidence	Northeast	Massachusetts	10	26.94
Incidence	South	Maryland	10	19.32
Incidence	Northeast	Maine	10	26.94
Incidence	Midwest	Michigan	10	27.27
Incidence	Midwest	Minnesota	10	27.27
Incidence	Midwest	Missouri	10	27.27
Incidence	South	Mississippi	10	19.32
Incidence	West	Montana	10	19.58
Incidence	South	North Carolina	10	19.32
Incidence	Midwest	North Dakota	10	27.27
Incidence	Midwest	Nebraska	10	27.27
Incidence	Northeast	New Hampshire	10	26.94
Incidence	Northeast	New Jersey	10	26.94
Incidence	West	New Mexico	10	19.58
Incidence	West	Nevada	10	19.58
Incidence	Northeast	New York	10	26.94
Incidence	Midwest	Ohio	10	27.27
Incidence	South	Oklahoma	10	19.32
Incidence	West	Oregon	10	19.58
Incidence	Northeast	Pennsylvania	10	26.94
Incidence	Northeast	Rhode Island	10	26.94
Incidence	South	South Carolina	10	19.32
Incidence	Midwest	South Dakota	10	27.27
Incidence	South	Tennessee	10	19.32
Incidence	South	Texas	10	19.32
Incidence	West	Utah	10	19.58
Incidence	South	Virginia	10	19.32
Incidence	Northeast	Vermont	10	26.94
Incidence	West	Washington	10	19.58
Incidence	Midwest	Wisconsin	10	27.27
Incidence	South	West Virginia	10	19.32
Incidence	West	Wyoming	10	19.58

EXHIBIT 3 (Figure 2) Caption: Distribution of total T1DM and incident T1DM populations by age band in model years 1, 5, and 10

Source: Authors' analysis based on Milliman's Consolidated Health Cost Guidelines Sources Database (CHSD), IBM MarketScan[®], the Centers for Medicare and Medicaid Services (CMS) 100% Research Identifiable Files (RIF). Notes: This exhibit shows the percentage breakdown of the total and incident T1DM population by age band in model years 1, 5, and 10. While the adult populations make up a larger portion of the total T1DM population, younger patients make up the largest portion of newly diagnosed patients.

EXHIBIT 3 (figure data) – Caption: Data for Distribution of total T1DM and incident T1DM populations by age band in model years 1, 5, and 10

Population Group	ulation Group Total Year 1		Total Year 10	Incident Year 1	Incident Year 5	Incident Year 10
Total						
Total						
Population	2,072,557	2,148,483	2,289,197	54,454	63 <i>,</i> 605	79,914
By Age Band						
<10	2.7%	2.8%	3.4%	25.1%	24.8%	25.9%
10-14	4.6%	4.6%	4.8%	16.7%	15.7%	13.4%
15-19	6.2%	6.1%	5.9%	9.1%	8.4%	6.3%
20-24	6.8%	6.5%	6.2%	2.4%	2.2%	1.7%
25-29	7.0%	6.7%	6.4%	2.4%	2.3%	2.2%
30-34	7.2%	7.0%	6.6%	2.7%	2.6%	2.5%
35-39	7.4%	7.2%	6.8%	3.0%	2.9%	2.8%
40-44	7.6%	7.4%	7.0%	3.4%	3.3%	3.2%
45-49	7.8%	7.6%	7.3%	4.2%	4.1%	4.0%
50-54	8.0%	7.8%	7.5%	5.0%	4.9%	4.4%
55-59	7.8%	7.7%	7.4%	4.2%	4.3%	5.2%
60-64	7.7%	7.6%	7.5%	7.4%	7.5%	7.8%
65+	19.2%	21.1%	23.1%	14.3%	16.9%	20.6%

EXHIBIT 4 (Table 2)

Caption: United States Model Year 1 T1DM patient count projections and distribution by age and sex within each insurance market

Sex	Age Band	Total	сом	MCD	FFS	MA	VA	UNI	Other MCR
Male									
Total	All Ages	1,041,060	520,423	150,344	170,579	94,792	12,774	75,920	16,228
		29,460	14,777	9,529	0	0	365	4,789	0
Male	<10	(2.8%)	(2.8%)	(6.3%)	(0.0%)	(0.0%)	(2.9%)	(6.3%)	(0.0%)
		48,713	26,639	14,239	0	0	655	7,180	0
Male	10-14	(4.7%)	(5.1%)	(9.5%)	(0.0%)	(0.0%)	(5.1%)	(9.5%)	(0.0%)
		69,069	40,238	18,501	0	0	988	9,342	0
Male	15-19	(6.6%)	(7.7%)	(12.3%)	(0.0%)	(0.0%)	(7.7%)	(12.3%)	(0.0%)
		72,562	50,412	13,685	284	2	1,237	6,915	27
Male	20-24	(7.0%)	(9.7%)	(9.1%)	(0.2%)	(0.0%)	(9.7%)	(9.1%)	(0.2%)
		71,822	47,610	14,484	1,075	64	1,168	7,319	102
Male	25-29	(6.9%)	(9.1%)	(9.6%)	(0.6%)	(0.1%)	(9.1%)	(9.6%)	(0.6%)
		75 <i>,</i> 361	47,265	15 <i>,</i> 356	3 <i>,</i> 095	435	1,160	7,759	292
Male	30-34	(7.2%)	(9.1%)	(10.2%)	(1.8%)	(0.5%)	(9.1%)	(10.2%)	(1.8%)
		78,344	48,249	14,230	5,691	1,263	1,184	7,190	537
Male	35-39	(7.5%)	(9.3%)	(9.5%)	(3.3%)	(1.3%)	(9.3%)	(9.5%)	(3.3%)
		82,206	49,947	13,392	7,759	2,383	1,226	6,767	732
Male	40-44	(7.9%)	(9.6%)	(8.9%)	(4.5%)	(2.5%)	(9.6%)	(8.9%)	(4.5%)
		85,192	51,497	11,736	9,913	3,916	1,264	5 <i>,</i> 930	935
Male	45-49	(8.2%)	(9.9%)	(7.8%)	(5.8%)	(4.1%)	(9.9%)	(7.8%)	(5.8%)
		86 <i>,</i> 850	51 <i>,</i> 399	10,118	11,874	5 <i>,</i> 965	1,261	5,112	1,120
Male	50-54	(8.3%)	(9.9%)	(6.7%)	(7.0%)	(6.3%)	(9.9%)	(6.7%)	(6.9%)
		83 <i>,</i> 780	47,310	8,763	12,948	7,951	1,161	4,428	1,219
Male	55-59	(8.0%)	(9.1%)	(5.8%)	(7.6%)	(8.4%)	(9.1%)	(5.8%)	(7.5%)
		80,550	45 <i>,</i> 079	6,312	13,648	9 <i>,</i> 930	1,106	3,188	1,287
Male	60-64	(7.7%)	(8.7%)	(4.2%)	(8.0%)	(10.5%)	(8.7%)	(4.2%)	(7.9%)
		177,152	0	0	104,290	62 <i>,</i> 883	0	0	9,978
Male	65+	(17.0%)	(0.0%)	(0.0%)	(61.1%)	(66.3%)	(0.0%)	(0.0%)	(61.5%)
Female									
Total	All Ages	1,031,497	452,597	160,677	192,076	115,651	11,109	81,143	18,244
		26,820	13,240	8,821	0	0	327	4,433	0
Female	<10	(2.6%)	(2.9%)	(5.5%)	(0.0%)	(0.0%)	(2.9%)	(5.5%)	(0.0%)
		47,529	24,593	14,845	0	0	605	7,486	0
Female	10-14	(4.6%)	(5.4%)	(9.2%)	(0.0%)	(0.0%)	(5.4%)	(9.2%)	(0.0%)

		60,318	34,872	16,339	0	0	856	8,251	0
Female	15-19	(5.8%)	(7.7%)	(10.2%)	(0.0%)	(0.0%)	(7.7%)	(10.2%)	(0.0%)
		67,621	42,569	15,852	132	1	1,044	8,010	12
Female	20-24	(6.6%)	(9.4%)	(9.9%)	(0.1%)	(0.0%)	(9.4%)	(9.9%)	(0.1%)
		72,570	43,374	18,052	843	36	1,064	9,122	80
Female	25-29	(7.0%)	(9.6%)	(11.2%)	(0.4%)	(0.0%)	, (9.6%)	(11.2%)	(0.4%)
		73,284	41,256	18,076	3,100	413	1,012	9,134	293
Female	30-34	(7.1%)	(9.1%)	(11.2%)	(1.6%)	(0.4%)	(9.1%)	(11.3%)	(1.6%)
		74,558	42,739	15,700	5,129	1,525	1,049	7,933	484
Female	35-39	(7.2%)	(9.4%)	(9.8%)	(2.7%)	(1.3%)	(9.4%)	(9.8%)	(2.7%)
		74,949	41,913	14,142	7,335	2,694	1,028	7,146	691
Female	40-44	(7.3%)	(9.3%)	(8.8%)	(3.8%)	(2.3%)	(9.3%)	(8.8%)	(3.8%)
		76,211	43,223	11,684	9,117	4,363	1,061	5,904	859
Female	45-49	(7.4%)	(9.5%)	(7.3%)	(4.7%)	(3.8%)	(9.5%)	(7.3%)	(4.7%)
		78 <i>,</i> 497	44,027	10,164	10,865	6,201	1,080	5 <i>,</i> 135	1,024
Female	50-54	(7.6%)	(9.7%)	(6.3%)	(5.7%)	(5.4%)	(9.7%)	(6.3%)	(5.6%)
		78,799	41,505	9,323	12,547	8 <i>,</i> 513	1,018	4,711	1,181
Female	55-59	(7.6%)	(9.2%)	(5.8%)	(6.5%)	(7.4%)	(9.2%)	(5.8%)	(6.5%)
		78,852	39,286	7,679	14,287	11,410	964	3,879	1,346
Female	60-64	(7.6%)	(8.7%)	(4.8%)	(7.4%)	(9.9%)	(8.7%)	(4.8%)	(7.4%)
		221,488	0	0	128,720	80,494	0	0	12,274
Female	65+	(21.5%)	(0.0%)	(0.0%)	(67.0%)	(69.6%)	(0.0%)	(0.0%)	(67.3%)

Source: Authors' analysis based on Milliman's Consolidated Health Cost Guidelines Sources Database (CHSD), IBM MarketScan[®], the Centers for Medicare and Medicaid Services (CMS) 100% Research Identifiable Files (RIF). Notes: This exhibit shows the count and percentage age band breakdown of T1DM patients within each sex for each insurance market and in total. COM represents Commercial, MCD represents Medicaid, FFS represents Medicare Fee-for-Service, MA represents Medicare Advantage, VA represents Veterans Affairs, UNI represents Uninsured, and Other MCR represents the Other Medicare population.