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Abstract  
Acute myeloid leukemia (AML) is characterized by malignant myeloid precursors that span a cellular 
hierarchy from dedifferentiated leukemic stem cells to mature blasts. While the diagnostic and prognostic 
importance of AML blast maturation is increasingly recognized, personalized therapies are currently not 
tailored to a patients individual makeup of this cellular hierarchy. In this study, we use multiplexed image-
based ex vivo drug screening (pharmacoscopy) to systematically quantify the drug sensitivity across the 
cellular hierarchy of AML patients. We analyzed 174 prospective and longitudinal patient samples from 
44 newly diagnosed AML patients, which indicated that differences in the AML hierarchy significantly 
identified poor responses to first-line therapy, outperforming European LeukemiaNet (ELN) criteria. 
Critically, drug response profiling across the AML hierarchy of each patient improved the accuracy of 
predicting patient response to first-line therapy (AUC 0.91), and revealed alternative individualized 
treatment options targeting the complete AML hierarchy of non-responding patients. We confirmed these 
findings in an independent cohort of 26 relapsed/refractory AML patients, for whom pan-hierarchy 
response profiling improved response predictions post hoc. Overall, our results quantify the clinical 
importance of therapeutically targeting the complete cellular hierarchy of newly diagnosed AML, and 
identify multiplexed image-based ex vivo drug screening to enable quantification and targeting of the AML 
maturation hierarchy for improved personalized treatment.  
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Introduction 
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy, in which complex 
combinations of chromosomal aberrations and somatic mutations lead to the rapid clonal expansion of 
immature myeloid cells 1–3. AML is characterized by the presence of a cellular hierarchy comprising 
multiple malignant cellular phenotypes reflecting varying levels of differentiation: Leukemias comprised 
of more mature blasts correlate with better prognosis and responses to treatment 4–7, whereas leukemias 
with minimal maturation are afflicted with lower overall survival 4–11.  

AML treatment remains challenging due to drug resistance and relapse, which are often caused 
by the persistence of the most immature AML population, the leukemic stem cells (LSCs). Traditional AML 
treatment regimes struggle to eliminate LSCs and an incomplete eradication of these highly treatment-
resistant cells can contribute to increased disease complexity, further complicating subsequent 
therapeutic efforts 12,13. Despite the inherent heterogeneity of AML, most patients receive similar 
standard-of-care treatments, since only a small proportion of AML patients have targetable mutations 
that can be treated with small molecules 1. This contributes to inconsistent treatment outcomes and 
varying overall survival rates 14. This underscores the need for personalized treatment approaches that 
target both LSCs and the leukemic bulk, while taking into account the distinct genetic and phenotypic 
variations present in each patient's disease. By tailoring therapy to these characteristics, clinicians may be 
able to achieve long-term remission, improve treatment success and ultimately enhance patient survival 
15. 

In recent years, there has been a growing interest in identifying and targeting molecular 
vulnerabilities unique to individual AML patients. Genomic testing uses recurrent genetic patterns to 
stratify AML patients into subgroups characterized by distinct clinical outcomes 16. However, genomic 
testing as performed in clinical routine often falls short, in part due to its inability to quantify the 
intratumoral heterogeneity related to blast differentiation 17. Ex vivo drug response profiling, also called 
functional precision medicine, complements such genomic associations by providing a direct functional 
characterization of the patient’s disease. Pioneering studies have already shown the clinical applicability 
of these functional assays to guide treatment selection 18–25. For example, we have developed 
pharmacoscopy, a high-throughput ex vivo drug sensitivity screening platform with single-cell resolution, 
which showed promising potential to guide treatment selection leading to improved overall survival in 
AML patients 18,19,23,26. Few studies have started to address the intra-patient functional heterogeneity of 
diverse AML populations in response to ex vivo drug perturbations 22,27. However, it still remains uncertain 
if, and to what extent, drug testing across the cellular AML hierarchy improves clinical response 
predictions and functional precision medicine for AML. 
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Results  

Multiplexed imaging and deep-learning of AML cell heterogeneity 
To assess the functional impact of AML cell maturation heterogeneity on response to first line therapy 
(3+7, cytarabine plus daunorubicin), we collected a total of 174 samples from 44 newly diagnosed AML 
patients (Figure 1A, Table 1 and Table S1). Specifically, we prospectively collected bone marrow (BM) and 
peripheral blood samples at three different time points per patient: Prior to first-line induction 
chemotherapy, after hematopoietic recovery of the first and second induction cycle (Figure 1A & B). All 
samples were processed directly on the same day of biopsy and stained after 24 hours of incubation with 
drugs and control compounds. The patient cohort spanned a diverse set of WHO subclassifications (Table 
1) and underlying molecular entities (Table S2). The median age of the study population was 57 years and 
the sex distribution was 64% male vs. 36% female. According to ELN 2022 risk categories 28, 20% of the 
patients were classified as favorable, 36% intermediate and 43% adverse. 77% of the patients achieved a 
complete remission after the second induction cycle of which 41% still had detectable minimal residual 
disease (Table 1 & Figure S1A). 

To characterize different functionally divergent AML subpopulations and associated non-
malignant immune populations, we adapted our recently developed high-content multiplexed 
immunofluorescence approach 29. This new workflow enables the simultaneous integration of high-
throughput drug screening with multiplexed single-cell phenotyping and associated molecular 
measurements in a single round of staining and imaging. To identify differentiation stages of AML blasts, 
we stained for the surface markers CD34, CD117 (c-kit) and CD33 (Figure 1C). CD34 is known to be 
expressed on undifferentiated AML blasts, including leukemic stem cells. CD117 is expressed on less 
differentiated AML blasts at different stages of early lineage commitment, while CD33 is present on more 
mature cells. As myeloid differentiation occurs, CD33 expression levels typically increase, while CD34 and 
CD117 expression decreases 30,31. In our multiplexed workflow, we additionally stained for CD3 to capture 
the T-cell population, furthermore allowing us to probe the inflammatory state via morphological T-cell 
profiling 29,32 and to assess off-target drug effects (Figure 1C). 

We employed deep learning to identify putative AML cells and classify their maturation-
associated marker profile. Specifically, we used a convolutional neural network with an adapted ResNet 
architecture (Figure S2A), as has been previously used in this context with high accuracy 19,29, to classify 
each cell into six mutually exclusive and marker-defined cell populations: Putative AML cell classes 
included CD34+ single-positive cells (referred to as AML class H0), CD34+ double-positive cells expressing 
CD33+ and/or CD117+ (AML class H1), CD34- and CD117+ cells optionally expressing CD33+ (AML class 
H2), and CD33+ single-positive cells (AML class H3). We furthermore classified CD3+ T-cells, and cells 
negative for all stained markers (Negs) (Figure 1D).  

The Convolutional neural network (CNN) was trained and tested across 60,000 manually curated 
example images from across patients, samples, and timepoints, and achieved a classification accuracy of 
96.7% in a ten-fold cross validation setting (Figure 1E & S2B, dataset available at: 
https://doi.org/10.3929/ethz-b-000680077 ). T-cells were additionally evaluated for distinct polarization 
and activation-associated phenotypes, as previously established (Figure S2C & 1D) 29,32–34. We further 
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applied a ‘clean-up’ CNN analyzing DAPI and brightfield phenotypes, which was used to filter out dead 
cells, cell debris, segmentation errors, and other artifacts (Figure S2D). After clean-up, remaining cells 
showed limited levels of apoptosis in validation experiments (Figure S2E). We also included non-
multiplexed control stains on each plate, allowing us to evaluate false-positive class assignments. This 
revealed no signs of systematic misclassification (Figure S2F) and highlighted the excellent technical 
reproducibility within control wells and across drug conditions (average correlation between replicates: 
0.99) (Figure S3 A & B). Lastly, we analyzed the robustness of the approach by screening samples from 
three independent patients with both a 24- and 48-hour drug incubation. The longer incubation only 
showed minor impacts on baseline population abundances and associated drug screening results (Figure 
S3C).  

To validate our image-based deep learning workflow, we compared the results with sample-
matched flow cytometry performed as part of the clinical routine. Population comparisons were possible 
for 27 samples at diagnosis with matched CD34, CD117, and CD33 staining. We employed two 
complementary flow cytometry gating strategies: one replicating the CNN-matched marker-based 
populations on all cells, and the other analyzing marker expression specifically within the commonly used 
CD45dim blast populations (Figure S4A). At diagnosis, the vast majority of CD34, CD117, or CD33 
expressing cells were part of the CD45dim blast gate (90%, 95%, and 92%, respectively), and only 3% of 
CD45dim blasts were not captured by these markers (Figure S4B). Furthermore, we observed high 
correlations between the cell population abundances quantified by our image-based approach and flow 
cytometry across the 27 patient samples (average Pearson correlation:0.61; Figure S4C & D). Thus, our 
image-based approach accurately captured the majority of AML cells present in these samples at 
diagnosis. 

In summary, through combining single-cell microscopy of AML patient samples with multiplexed 
immunofluorescence and cell-based CNNs, we have developed an efficient method able to robustly and 
rapidly profile cellular phenotypes in high-throughput imaging of AML biopsies. 

Phenotypic profiling quantifies the AML cell hierarchy across patients 
We next analyzed the heterogeneity in hierarchical profiles and clinical associations across the 

patient cohort. We observed a high level of heterogeneity in the AML cell-type composition of AML 
patient biopsies (Figure 2A): CD34 expressing populations (H0 + H1) showed an inverse correlation with 
CD33 (H3) (Figure S5A). CD34 expression (all CD34+) was associated with fewer myeloid marker-positive 
cells but more with marker-negative cells, whereas CD33 (H3) expression was strongly linked to the overall 
abundance of blasts (Figure S5A). To investigate the differential contributions of sampling time, tissue 
type, patient age and sex to population heterogeneity and marker expression variations, we conducted 
an analysis of variance (ANOVA) (Figure S5B). As expected, general subpopulation composition was mainly 
influenced by the sampling stage during first-line induction therapy, reflecting the response to treatment. 
Sampling bone marrow or peripheral blood showed no systematic influence on the cancer subpopulation 
composition, with only T-cell and marker-negative cells significantly differing between tissues. While 
patient sex did not influence population composition, age was associated significantly with tumor burden, 
with older patients having more AML cells relative to T-cells and marker negative cells, consistent with 
their known poorer prognosis (Figure S5B).  
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Van Galen et al. recently identified gene expression patterns for six distinct cell types in AML along 
their maturation axis using single-cell sequencing. This included hematopoietic stem cell (HSC)-like, 
progenitor-like, granulocyte-monocyte progenitor (GMP)-like, promonocyte-like, monocyte-like and 
conventional dendritic cell (cDC)-like types 31. To transcriptionally characterize our image-based AML 
maturation stages, we performed bulk RNA sequencing on 103 matched samples (Figure S6A-D), and 
correlated cell type scores, derived from the gene sets previously published 31, for each sample with the 
image-based sample composition (Figure 2B). Globally, the bulk transcriptome at diagnosis reflected the 
abundance of different maturation states: as anticipated, the fraction of CD34-expressing populations (H0 
and H1) demonstrated the strongest correlation with the HSC and progenitor-like cell signatures. With the 
loss of CD34 expression, the population loses its transcriptional HSC association, and with decreased 
CD117 expression, the progenitor stage as well. The CD33+ H3 population was primarily associated with 
GMP, pro-mono and monocyte-like cell type associations (Figure 2B). Furthermore, we correlated the 
image-based subpopulation abundances with a previously reported transcriptional AML stemness 
signature, the LSC17 score 11. Again, CD34 single-positive cells (H0) exhibited a mild but significant positive 
correlation with the LSC17 stemness score, followed by the H1 population, while CD34-negative 
populations (H2 & H3) showed no significant association (Figure S6E). Thus, the image- and marker-based 
strategy classified AML maturation stages in line with previously reported transcriptional maturation 
signatures. 

We next sought to investigate therapeutic resistance to drugs by investigating the known 
relationship between Tumor necrosis factor alpha (TNF-α) and the maintenance thus chemoresistance of 
LSCs 35. We therefore treated cells from three AML patients at diagnosis with increasing concentrations 
of TNF-α in vitro, and analyzed results by image-based profiling (Figure S7A). Following 48 hours of 
treatment, we observed a significant increase in the CD34+ (H0) abundance (Figure S7A) and a decrease 
in CD117CD33 (H2) cells. While prolonged ex-vivo exposure to cytarabine resulted in a significant 
reduction of the CD34+ population, the presence of high levels of TNF-α substantially increased their 
chemoresistance (Figure S7B), supporting the notion that CD34+ cells represent a stem cell-like population 
with the TNF-α pathway as a potential target in AML management.  

Our combined findings therefore confirm that the identified populations represent distinct stages 
of AML blast differentiation. The most immature, stem cell-like H0 population is marked by CD34 single-
positive cells, followed by the H1 population. The more differentiated H2 cells precede the most mature 
H3 CD33+ single-positive cells, illustrating a clear progression in AML blast maturation in our population 
definition (Figure 2B). 

AML cell maturation and sample composition predicts clinical outcome 
LSCs hold significant prognostic importance due to their unique properties which render them 

resistant to standard treatments 36. We therefore investigated whether our image-based AML maturation 
profiling could stratify the clinical outcomes across the cohort. Utilizing principal component analysis of 
patient sample composition, we observed that patients were clustered according to their response to 
first-line treatment (Figure 2C). In line with previous reports, AML blast maturation was a strong clinical 
predictor of treatment response, progression-free survival and overall survival, whereby high abundance 
of CD34 expressing cells prior to treatment strongly predicted poor treatment response (Figure 2D-E and 
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Figure S8A-C)  6,8–10,36. Furthermore, a high fraction of H0 stem cells in blood at diagnosis was a significant 
stratifier of progression free and overall survival, notably better than the ELN risk score within this cohort 
(Figure 2E and Figure S8D). For patients who achieved complete remission (CR) after the first round of 
treatment, we observed a significant relative reduction of cells with immature phenotypes. On the other 
hand, persistent immature cell phenotypes were observed in patients experiencing treatment failure to 
the first induction chemotherapy (Figure S9A). At the end of the second cycle, we noted an increase in H3 
cells, in patients who achieved CR compared to patients which did not respond, likely indicating a recovery 
of the healthy hematopoietic environment (Figure S9B). Finally, we aimed to determine whether our 
findings could be replicated using standard diagnostic flow cytometry. While the correlation between the 
H0 population and our readout was modest (Figure S4C & D), the relative abundance of this population 
within all marker-positive groups prior to treatment initiation remained a significant predictor of first-line 
treatment response when assessed by flow cytometry (Figure S10). 

Using a recently developed tool to profile T cell activation via morphological polarization 29, we 
investigated whether additional AML clinical parameters could be predicted. An interesting side-
observation was that T-cell morphology appeared predictive of several AML relevant clinical parameters. 
Onset of neutropenic enterocolitis (NE), a critical complication that is associated with higher mortality, 
was associated with the inflammatory morphological signature of T-cells. Although patients which 
developed NE showed an overall higher amount of T-cells prior to treatment initiation, we observed that 
those T-cells showed a significantly lower inflammatory morphological signature compared to patients 
who did not develop NE (Figure S11A). Furthermore, in patients with remaining minimal residual disease 
(MRD), we observed a significant increase in the inflammatory T-cell subset compared to pre-treatment 
levels (Figure S11B). This persisted even after hematopoietic recovery following the second induction 
cycle, distinguishing MRD+ patients from those who achieved a CR (Figure S11C). 

In summary, our high-content, image-based profiling of the AML cellular hierarchy effectively 
stratifies patients based on clinical outcomes including treatment response, neutropenic enterocolitis, 
progression-free survival, and overall survival. Importantly, CD34 single positive H0 abundance could 
serve as an accessible diagnostic marker for chemoresistance to cytarabine and anthracycline-based first-
line induction treatment. 

AML drug response profiles are mainly determined by the degree of maturation 

To gain deeper insights into intra-patient drug response heterogeneity in relation to AML 
maturation stages, we screened a set of 80 unique drugs and selected drug combinations (Figure 3A & 
Supplementary Table 3). This drug panel includes not only common first-line AML treatments but also a 
variety of FDA-approved blood cancer drugs, such as tyrosine kinase and immune checkpoint inhibitors. 
To quantify chemo sensitivities across the cellular maturation hierarchy, we calculated relative blast 
fractions (RBFs) as previously described and clinically validated 18,19,23,26, for all four AML cell maturation 
classes within a sample. Here, positive scores indicate a higher chemosensitivity of this population 
compared to others, whilst negative scores denote relative ex vivo chemoresistance. Clustering the 
complete profiles revealed substantial drug response heterogeneity among cancer subpopulations and 
patient samples (Figure 3A), with the drug response of an AML blast population being strongly influenced 
by its maturation stage (Figure B). Notably, within-sample drug response differences following the degree 
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of maturation strongly outweighed between-sample drug response differences (Figure 3). Furthermore, 
different drugs were strongly clustered by mode-of-action and class, demonstrating a high degree of 
technical robustness of this dataset and enabling mode-of-action investigation of less well characterized 
drugs (Figure 3A & B). 

To estimate a drug's general effectiveness against different blast populations, we calculated the 
fraction of patient samples displaying a significant on-target effect across all samples for each population 
(Figure S12A&B). While the more mature H1, H2 and H3 populations exhibited high sensitivities to 
common first-line treatments across the majority of samples, such as anthracyclines, anti-metabolites, or 
selected protein kinase inhibitors, stem cell-like H0 cells generally displayed ex-vivo chemoresistance, 
including to first-line treatments cytarabine and daunorubicin (Figure 3C & S12A&B). We thus probed the 
dataset for drugs specifically targeting the CD34 LSC-like cells. The only compounds with limited general 
activity against the CD34 population were Plerixafor (relative chemosensitive in 21% of H0 populations) 
and dexamethasone (relative chemosensitive in 24% of H0 populations) 37. Dexamethasone (Dex) is a 
synthetic corticosteroid medication with potent immunosuppressive properties, and is often used in 
supportive care during AML treatment. Intriguingly, both treatments have been shown to exhibit activity 
against CXCR4 37–39, a chemokine critical for the maintenance of leukemia cells within the bone marrow. 
Although we did not identify a universally effective treatment against the H0 stem cell compartment, we 
found at least one drug per patient that the H0 population was sensitive to ex vivo (defined by an absolute 
reduction of the population) for the majority (65%) of patients. 

We further investigated the differential impact of patient age, sampling time point, and sampling 
location (tissue) on drug response for each population by ANOVA (Figure S13A). Elderly patients, who are 
known to have a lower tolerability to first-line induction chemotherapy, showed a significantly reduced 
ex vivo response to nucleoside analogs cytarabine, cladribine, clofarabine, and fludarabine (Figure 
S13B&C). In contrast, the immunomodulator pomalidomide demonstrated improved on-target scores in 
elderly patients, potentially providing a better-tolerated treatment regimen for this demographic (Figure 
S13B). However, both pomalidomide and lenalidomide exhibited significant compartment-dependent 
differences, with weakened responses against cells from bone marrow compared to blood (Figure S13D 
&E). In contrast, gilteritinib showed stronger on-target responses in bone marrow samples, possibly 
indicating a higher sensitivity to FLT3 inhibition in this tissue context (Figure S13D). 

Lastly, we evaluated to what degree drugs activated T-cells ex vivo. Venetoclax was recently 
shown to directly activate T-cells and enhance T-cell-mediated antileukemic activity 40. Consistently, in 
our screen, venetoclax also emerged as one of the top activators of T-cell activity but surprisingly 
midostaurin and kinase inhibitors alvocidib and crenolanib emerged as very potent activators of T-cell 
activity, revealing a potential new anticancer mechanism of these drugs (Figure S13F). 

In summary, we systematically analyzed the drug response heterogeneity and sensitivity profiles 
of various AML maturation stages, revealing maturation to be an extremely strong determinant of drug 
sensitivity. This high dimensional dataset, featuring differential population, time and tissue resolution will 
be made accessible to the community. 
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Predictive power of pharmacoscopy for clinical response in newly diagnosed AML 
and identification of personalized treatments 
We next evaluated the power of pharmacoscopy-based drug testing to predict clinical response of   newly 
diagnosed AML patients to their first line treatment. To account for the vast heterogeneity observed 
across donors, we developed a 'mean maturation score' (MMS), which is calculated as the average 
response of each AML subpopulation as well as the all marker positive class and the total cell number 
readout (Figure 4A & S14A). Drug responses were included into the MMS only for AML subpopulations 
that were present in at least 0.5% of all nucleated cells in a sample in control conditions. The MMS score 
also considers the unwanted reduction of the T-cell population, thereby penalizing off-target cytotoxicity.  
 
As an example, Patient AML008 demonstrated significant on-target ex vivo effects for a broad panel of 
antineoplastic agents, including first-line treatments cytarabine and daunorubicin (Figure 4B left). 
Subsequent treatment with the standard '7+3' regimen led to a complete remission for this patient. In 
contrast, Patient AML015 showed strong off-target effects for both agents ex vivo, and subsequently no 
clinical response to the chemotherapy combination of cytarabine and daunorubicin (Figure 4B, right). 
However, ex vivo drug testing identified sensitivity to both the protein translation inhibitor omacetaxine 
and immune checkpoint inhibition, suggesting an alternative personalized treatment regimen might have 
yielded better clinical outcomes for this patient. To evaluate the predictive power of pharmacoscopy in 
our whole AML cohort, we integrated the MMS drug responses for each individual chemotherapy 
treatment a patient received (on average 3.8 drugs per patient) (Figure 4C). We next related the response 
to the first induction round with the average integrated MMS response across both patient bone marrow 
and blood samples at diagnosis. The integrated drug sensitivity score successfully distinguished non-
responders from responders with an area under the ROC curve of 0.91 (Figure 4C&D, S13A), highlighting 
the predictive power of our ex vivo functional drug testing platform. Furthermore, systematic comparison 
of the AUCs for different drug response readouts showed that considering the cellular AML hierarchy is 
the most accurate pharmacoscopy-based response prediction for this cohort, while bulk cell death 
performed barely above random (Figure 4E). Interestingly, we observed that the predictive accuracy of 
our readout improved when we also considered the drug responses of the marker-negative population as 
a target, indicating the presence of potential malignant cells or other cancer-associated cells within that 
class (Figure 4E). 

In light of the accurate predictions of first-line treatment response, we were interested in 
determining if we could identify alternative treatments that might have been effective for non-responding 
patients (n=13; NR to 1st cycle). While cytarabine had a minimal MMS for these patients, we could 
additionally identify on-target treatments for every non-responding patient. Here, the most effective 
individual agents identified in our screen demonstrated significantly higher on-target MMS values than 
cytarabine (Figure S14B). These individual compounds varied considerably between patients, and included 
omacetaxine, panobinostat, ipilimumab, a combination of cytarabine and fludarabine, and alvocidib 
(Figure S14C). Furthermore, we ranked the drugs based on their effectiveness per patient at diagnosis to 
identify treatments that consistently ranked highly across the entire cohort (Figure S14D). In this analysis, 
alvocidib emerged as a top-performing drug with favorable ex vivo drug scores. Alvocidib is a CDK9 kinase 
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inhibitor 41 and currently in clinical trials with initial promising results and could provide an additional 
complementary candidate for more effective first-line treatments 42. Also Omacetaxine, cladribine, 
clofarabine, crenolanib, venetoclax, and azacytidine demonstrated promising ex vivo drug rankings across 
the donor cohort (Figure S14D). Interestingly, Venetoclax is already in use in combination with other 
agents, such as the hypomethylating agent azacitidine, which led to improved response rates compared 
to previous regimens 43,44. In conclusion, our study showcases the potential of pharmacoscopy in 
predicting treatment response in AML patients, allowing for more personalized approaches to therapy. 
By taking into account the targeted reduction of the entire AML cellular hierarchy, our method accurately 
distinguishes between responders and non-responders in a prospective observational setting. The 
identification of alternative treatments that might have been effective for non-responding patients 
highlights the potential for optimizing treatment strategies for AML patients, ultimately improving clinical 
outcomes. With agents such as alvocidib and venetoclax demonstrating promising results, there is 
potential for developing more effective first-line treatment options for AML patients in the future. 

Improving response prediction and treatment selection in resistant/relapsed AML 

Lastly, we aimed to validate our findings in a relapsed/refractory (r/r) AML setting. We recently 
established that pharmacoscopy can be employed for therapy selection in rr-AML patients with no 
registered treatment options and demonstrated clinical benefit in heavily pretreated and frail patients 23. 
We now evaluated whether we could retrospectively improve response predictions for this rr-AML cohort 
in a post hoc analysis. Most patient samples were analyzed by pharmacoscopy utilizing a CD33, CD34 & 
CD3 antibody staining panel and we therefore attempted to define relevant AML hierarchy populations 
based on combinations of the different blast markers used. Similar to the drug response calculation in the 
newly diagnosed AML cohort, we then calculated the average response scores across all present 
populations.  

In this analysis a relative reduction of marker-positive cancer cells across all subsequently received 
treatments showed promising but not statistically significant trends. On the other hand, the integrated 
mean maturation score (MMS) significantly stratified patients achieving complete remission from those 
with progressive disease (Figure S15A). In contrary to newly diagnosed AML, we realized that in this r/r 
AML cohort, very small populations were less meaningful, and the most optimal separation was achieved 
by taking into account only more abundant AML subpopulations as well as the all marker-positive cell drug 
responses and the total cell number drug responses (Figure S15B). These findings highlight the importance 
of considering functionally different populations also in an r/r AML setting, as it has a significant impact 
on response predictions. In light of our findings, we highlight the case of patient P31 who received a 
pharmacoscopy-guided treatment with Cladribine, Cytarabine, and Venetoclax, and achieved a complete 
remission. Although cytarabine and cladribine induced a reduction in the overall cancer marker-positive 
population, including the CD33-expressing population, they did not effectively target the CD34 
population. In contrast, venetoclax demonstrated strong ex vivo results against this specific population, 
emphasizing the importance of subpopulation resolution in personalized treatment selection (Figure 
S15C). 
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Discussion 
Although the diagnostic significance of AML blast maturation is becoming increasingly apparent, it is not 
yet considered in personalized treatment recommendations. In this study, we developed a high-
dimensional single-cell drug testing platform as a new tool to screen and investigate differential 
chemoresistance of functionally diverse AML populations within patient samples. In line with recent 
research 22,27, we demonstrated that the AML cell differentiation spectrum, specifically leukemic stem cell-
like H0, influences patient progression and drug sensitivity. While LSCs are typically defined as CD34+ and 
CD38- cells, a marker combination we did not assess, our findings demonstrated that our H0 CD34+ 
CD117- CD33- population definition exhibits gene expression signatures and functional behavior similar 
as those described for leukemic stem cells. Our results are thus in line with previous literature regarding 
the negative prognostic significance of leukemic stem cells and the CD34 marker. Consequently, we 
propose the abundance of the CD34 single-positive population as an accessible diagnostic marker for 
chemoresistance to cytarabine and anthracycline treatment, which can also be detected using standard 
diagnostic flow cytometry. 
These results highlighted the efficacy of our screening technology in simultaneously evaluating drug 
effects on functionally distinct and clinically meaningful populations. This allows us to achieve several 
objectives: First, our platform offers a unique tool for high-dimensional characterization of drug effects in 
AML. Common drug testing tools either assess drug effects on AML cell lines (distant from patients) or 
examine drug impacts in a bulk fashion on all cells. In contrast, our technology offers a deeper insight into 
the mode of action of tested compounds, including their potential to target small but relevant populations 
or activate healthy immune cells. For instance, our screen revealed partial activity of dexamethasone 
against LSCs, an effect which would be hidden by bulk measurements. Additionally, we demonstrated that 
common AML treatments like midostaurin have previously unknown effects on the T-cell compartment, 
revealing new anti-cancer mechanisms. 
Second, by integrating the response of AML in different maturation stages our technology improves 
response predictions and allows for better treatment recommendations. These findings underscore the 
importance of considering maturation stages in newly diagnosed AML for personalized therapeutic 
strategies and optimal patient outcomes, highlighting the need for increased attention in future studies 
and personalized treatment plan development for AML patients. We also observed the positive impact of 
assessing functionally distinct populations in an independent relapsed AML cohort. Here, however, 
addressing very small populations diminished prediction accuracies, in contrast to newly diagnosed AML, 
where even small populations favored positive prediction accuracies. This discrepancy could be explained 
by a strong clonal evolution induced by multiple treatment rounds experienced by relapsed AML patients 
which could disrupt maturation hierarchies. Nevertheless, drug response prediction improved when 
considering more than one functionally diverse population, supporting the concept. To evaluate this, 
future studies could monitor patients over time to determine whether the maturation spectrum changes 
and how this relates to functional responses across patients. 
Lastly, our technology enables the recommendation of personalized treatment plans for each patient. 
Alvocidib emerged as the most generally effective treatment. Alvocidib is currently in clinical trials with 
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initial promising results, and future results in larger cohorts will determine if it serves as a more general 
first-line treatment option than cytarabine or anthracyclines. 
Despite the prospective character of this non-interventional study, limitations include the relatively small 
patient cohort, which may not capture the full spectrum of AML heterogeneity, encompassing various 
maturation patterns. The small cohort resulted in a limited number of non-responders after the second 
induction cycle, restricting robust statistical analysis and focusing our attention primarily on samples at 
diagnosis and after response to cycle 1. Future studies with larger cohorts would enable associations 
between specific mutations, chromosomal aberrations, and single-cell drug response patterns, providing 
valuable insights. 
In conclusion, our high-dimensional single-cell drug testing platform offers a promising approach to 
address the challenges of AML heterogeneity and optimize personalized treatment strategies. Our 
findings underscore the need for greater attention to maturation stages in the development of 
personalized treatment plans for AML patients, with the goal of improving patient care and outcomes. 
Further research involving larger patient cohorts and longitudinal tracking of maturation spectrum 
changes would provide additional insights and refine our understanding of AML blast maturation's role in 
personalized medicine.  

Methods 

Study design and participants 
For this prospective, non-interventional, single-center study, samples and clinical data were collected 
from patients with newly diagnosed acute myeloid leukemias undergoing intensive induction 
chemotherapy. The samples were taken at three timepoints: prior to induction, after regeneration of the 
first chemotherapy cycle and after hematopoietic recovery following the two cycles. Patients were eligible 
for inclusion if newly diagnosed or with relapsed AML who have not been given systemic chemotherapy 
within the past 12 months prior to inclusion; the patient was over 18 years of age; the patient was 
receiving intensive induction chemotherapy; the patient was able and willing to provide written informed 
consent and to comply with the study protocol procedures. The recruitment of patients occurred through 
the project leader or the team of treating physicians of the Department of Medical Oncology and 
Hematology of the University Hospital Zurich (USZ) during daily clinical practice, when patients were 
hospitalized for diagnostic leukemia work-up and initiation of induction chemotherapy. Inclusion of 
patients strictly occurred before the start of induction chemotherapy. Clinical responses were measured 
by the remission state in the bone marrow sampled after regeneration of the hematopoietic system 
(about 28 days after start of chemotherapy). Here, blast persistence resulting from bone marrow cytology 
and histology were used as indication of treatment response. If patients displayed persistent blasts in the 
bone marrow at the prior aplasia control (a bone marrow puncture about 14-16 days after start of 
chemotherapy), a second induction cycle was induced without waiting for hematological recovery, 
resulting in no response data. Furthermore, the lack of response data in other incidences is a result of 
patients dropping out of or discontinuing in this study. The research project was carried out in accordance 
with the research plan and with principles enunciated in the current version of the Declaration of Helsinki 
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(DoH), the Principles of Good Clinical Practice (GCP), the Swiss Law and Swiss regulatory authority’s 
requirements as applicable. Ethical approval was granted by the Ethics Committee of the Kanton Zurich 
(CEC Zurich, BASEC-Nr: 2018-01547).  
 

Pharmacoscopy 
Bone marrow aspirate or peripheral blood tubes were provided by the team of treating physicians of the 
Department of Medical Oncology and Hematology of the University Hospital Zurich. To isolate MNCs, the 
samples were diluted in PBS (Gibco) + 2 mM EDTA (Sigma-Aldrich) and were purified using a Lymphoprep 
density gradient (STEMCELL Technologies) according to the manufacturer’s instructions. The resulting 
MNCs at the interface were collected, washed once with PBS+EDTA and resuspended in RPMI 1640 + 
GlutaMax medium (Gibco) supplemented with 10 % human serum (Chemie Brunschwig). The single-cell 
suspension of immune cells were seeded (2*104 cell/well with 50 μl/well) in CellCarrier 384 Ultra, clear-
bottom, tissue-culture-treated plates (PerkinElmer) containing  antineoplastic agents (see Supplementary 
Table 3) and incubated overnight (24 h at 37 °C and 5 % CO2). Cell number and viability was determined 
by use of a Countess II Cell Counter (Thermo Fisher).  

For all the patients, the drug screen library included 80 single drugs and drug combinations with 
two to six technical replicates in total (see Supplementary Table 3). The assay was stopped by fixing and 
permeabilizing the cells with 20 μl/well of a solution containing 0.5 % (w/v) Formaldehyde (Sigma-Aldrich), 
0.05 % (v/v) Triton X-100 (Sigma-Aldrich), 10 mM Sodium(meta)periodate (Sigma-Aldrich) and 75 mM L-
Lysine monohydrochloride (Sigma-Aldrich). After 20 minutes incubation at room temperature (RT), the 
fixative-containing media was aspirated by use of a HydroSpeed plate washer (Tecan). The cells were then 
blocked (50 μl/well) with PBS supplemented with 5 % fetal bovine serum (FBS, Gibco) and photobleached 
for 4 h to 24 h (at 4 °C) to reduce background fluorescence by illuminating the fixed cells with conventional 
white light LED panels.  

Multiplexed immunostaining and imaging 
All fluorescent primary antibodies used to identify the target blast population were used at a dilution of 
1:300 in PBS and included CD3, CD117, CD33, CD34 (see Supplementary Table 4). For nuclear detection, 
all antibody cocktails contained 2 µg/mL DAPI (4',6-Diamidino-2-Phenylindole, Biolegend). Before the 
immunofluorescence staining, the blocking solution was removed, 20 µl/well of the antibody cocktail 
added and the imaging plate was incubated for 1 h in the dark (at RT). Thereafter, the staining solution 
was removed and PBS was added (70 µL/well). Each plate contained both multiplexed and staining control 
wells, the latter of which, located at each of the corners of the plate, had a reduced number of antibodies 
to serve the evaluation of antibody functionality and generation of the CNN-training data (see below). The 
384-well plates were imaged by use of a PerkinElmer Opera Phenix High-Content automated spinning-
disk confocal microscope. At 20x magnification with 5x5 non-overlapping images, covering the whole well 
surface, each well of the plate was imaged. The images were taken respectively from the brightfield (650-
760 nm), DAPI/Nuclear signal (435-480 nm), GFP/FITC/Green signal (500-550 nm), PE/Orange signal (570-
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630 nm) and APC/Red signal (650-760 nm) channels. For further analysis, the raw .tiff images from the 
microscope were used. 
 

Casp3 experiment 
To examine cell viability on the grounds of apoptosis, additionally isolated peripheral blood mononuclear 
cells (PBMCs) from three samples were used (see Figure S2E). For a full description on the workflow for 
this experiment see paragraph “Pharmacoscopy” above. Immunostaining and imaging were performed as 
described above (paragraph “Multiplexed immunostaining and imaging”). Here, the staining panel for two 
of the samples (AML046 blood T1 and AML051 blood T1) included CD117, CD33, Cleaved Caspase 3 and 
CD34, while the other (AML044 blood T1) was stained with CD38, CD34 and Cleaved Caspase 3 (see 
Supplementary Table 3). Cells were identified by maximum correlation thresholding on the DAPI channel 
as described below in more detail.  
 

TNF-α experiment  
A treatment with TNF-α (Peprotech) and cytarabine (Sigma-Aldrich) was used for the induction and 
suppression of the CD34 single positive phenotype (H0). This experiment was performed on previously 
isolated (for a full description on the workflow see paragraph “Pharmacoscopy” above) PBMCs of three 
AML patients at diagnosis that were frozen as cell suspension with 10 % dimethyl sulfoxide (DMSO) upon 
isolation and stored at -80 °C. After thawing the samples, approximately 10*106 cells were recovered, 
washed with RPMI 1640 + GlutaMax medium (Gibco) supplemented with 10 % human serum (Chemie 
Brunschwig), seeded (2*104 cells/well with 50 μl/well) in duplicate in CellCarrier 384 Ultra, clear-bottom, 
tissue-culture-treated plates (PerkinElmer) and incubated for 48 h at 37 °C and 5 % CO2. Cell number and 
viability was determined by use of a Countess II Cell Counter (Thermo Fisher). The 384-well plates 
contained an increasing concentration of TNF-α (1 ng, 10 ng, 100 ng), cytarabine in 10 µM concentration 
and a combination (TNF-α in 100 ng; cytarabine in 10 µM) of such, each in two technical replicates 
(resulting in four technical replicates per sample per condition). As control for TNF-α treatment, PBS was 
used, while DMSO acted as control for the cytarabine treatment. Following incubation, the plates were 
fixed, blocked, stained and imaged as described in detail above (see paragraphs “Pharmacoscopy” and 
“Multiplexed immunostaining and imaging”). 

RNA sequencing 
For RNA sequencing, approximately 2*107 cells were washed with PBS+EDTA prior to resuspension and a 
10 minute incubation (at RT)  in 1 x RBC lysis buffer (Biolegend). The resulting RBC-free immune cells were 
then washed once in PBS+EDTA prior to being split in two technical replicates. The cells of the two 
replicates were each resuspended in 350 µl TRIzol reagent (Invitrogen) and then frozen (at -80 °C) until 
further processing. RNA extraction was performed with a Quick-RNA MiniPrep Kit by Zymo according to 
the manufacturer's instructions. RNA sequencing was performed by the Functional Genomics Center 
Zurich (FGCZ). In brief, cDNA libraries were obtained as described here: 45. Illumina library was obtained 
via tagmentation using Illumina Nextera Kit. All samples were sequenced in a single run on a NovaSeq6000 
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(single read, 100bp, depth 20 Mio reads per sample). Illumina adapters, sequences of poor quality as well 
as polyA and polyT sequences were removed from the raw reads using TrimGalore v.0.6.0 with cutadapt 
v.2.0 prior to alignment. Reads were then aligned to the human reference genome GRCh38, v93 (Ensembl) 
using STAR v. 2.5.3a. Read per genes were counted with featureCounts v1.5.0. Gene counts below a 
threshold of 20 raw counts were filtered and raw counts were normalized (DESeq2 46). Only transcripts 
annotated as ‘protein coding’ or ‘long non-coding RNA’ were considered in the subsequent analysis. In 
total 108 samples were sequenced (of which three samples are batch controls). Samples with more than 
5% of counts assigned to hemoglobin and no detectable blasts were excluded (n=6).  

Cell detection and single cell feature extraction 

CellProfiler v2 47 was used for single-cell image analysis. Single cell detection and nuclear segmentation 
was performed by maximum correlation thresholding on the DAPI channel. To extract cytoplasmic 
measurement, cellular outlines were estimated by a circular expansion of 8 pixels around the nucleus. To 
measure the local intensity background around each single cell, a second larger expansion of 30 pixels was 
performed. Standard CellProfiler raw fluorescent intensities were extracted, log10 transformed and 
normalized towards the local cellular background as described in Vladimer et. al., 48. 

CNN dataset generation and normalization   

The curated dataset used for the 6 class cancer CNN was generated as described in 29. In brief, 48x48 pixel 
wide single cell subimages were generated across all five measured channels. Single cell images were then 
manually curated for their respective class using custom Matlab scripts and included cells from all 
patients, both tissues and three timepoints. In total a dataset of 62318 hand selected images were 
generated. All intensity values as input for the 6-class Resnet were log10 transformed. 
The T-cell morphology CNN dataset was generated in the same manner, creating a total of 3545 (20078 
all) TACT cells and 10596 (65918 all) TCON cells. 

Convolutional neural network (CNN) architecture, training and data augmentation  

A 6-class 71-layer deep convolutional neural network with an adapted ResNet architecture (Figure S2A) 49 
was implemented using MATLAB’s Neural Network Toolbox of Version R2021a. 48x48 pixel and 5 channel 
input images were used. The complete training and test dataset contained a total of 60000 cells with 
10000 cells per class. To evaluate CNN performance the full dataset was randomly split into a training set 
and a test set (Test data with 10% of data; 1000 cells per class). The 6-class CNN was trained using 
randomly initialized weights and biases and the adaptive learning rate optimization ‘ADAM’.  The network 
was trained for 20 epochs with an initial learning rate of 0.001 which was dropped every 5 epochs with a 
factor of 0.1. Furthermore, a mini batch size of 512 images and L2 regularization with 0.001 was applied. 
To further strengthen generalization, input images were augmented in each iteration. Here, images were 
randomly rotated in 45-degree steps with an additional possibility to be also flipped vertically or 
horizontally. 
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T-cell polarization  

The T-cell morphology CNN was trained to classify fixed and permeabilized human T-cells as TP or TO cells 
via DAPI, Brightfield and CD3 48x48 pixel (14.4µm x 14.4µm) single cell crops. The training set comprised 
3301 (16777 all) TP and 9805 (56113 all) TO cells, derived from primary human samples. Testing was 
performed on 244 (1363 all) TP and 791 (4638 all) TO cells (approximately 10% of the training set). The 
network employed a 39-layer CNN based on an adapted ResNet architecture. Training was performed 
using the same parameters as described for the 6-class network. The network was trained five times to 
assess training robustness, and the most accurate network was selected for downstream analysis. These 
CNNs were used to classify individual T-cell crops into their output classes.  

The fraction of TP  cells was normalized towards the absolute fraction of T-cells to represent the relative 
polarization of T-cells. 

Quality control and cellular cleanup 

For quality control, we applied a custom small ‘Cleanup CNN’, which evaluated each individual cell for 
correct segmentation, contaminants or artifacts. Also here an adapted ResNet architecture was used 
(Figure S2A). The cleanup CNN was trained for 30 epochs, with a minibatch size of 512 images utilizing 
adaptive learning rate optimization ‘ADAM’. The training was started with an initial learning rate of 0.001 
which was dropped every 5 epochs with a factor of 0.1. L2 regularization of 0.001 was employed. The 
hand-curated training and validation dataset (10% of the data) consisted of 60000 individual, 48x48 pixel 
and 2 channel (DAPI and brightfield) images. During training images were randomly rotated by 45-degrees 
and mirrored vertically or horizontally per iteration. In all CNN classifications, 48x18 pixel sub-images 
around each nuclei-center were generated. Cells closer than 25 pixels to the border of an image were 
excluded from all classifications.  

Drug response analysis & response prediction 
 
Relative blast fractions (RBFs) were calculated as the fraction of cells of population X (identified by the 
CNN) after drug treatment divided by the average fraction of population X cells measured in control wells. 
Antibody-based treatments were normalized towards their respective isotype control whereas all other 
drugs were normalized towards DMSO. For calculation of ex vivo drug responses, all RBF values per sample 
were averaged over technical replicates, and subsequently zero-centered (1–RBF). Thus, a positive score 
represents a relative reduction of that population (on-target effect). If a drug eradicates all cells of this 
population without reducing other populations, the RBF score will be equal to 1. A RBF negative score 
indicates relative ex vivo chemoresistance of that population and killing all non-target cells, the score goes 
to negative infinity however values will be capped at -1. If a drug destroys both target and non-target cell 
populations at an equal proportion or has no effect on either population, the score becomes 0.  
Mean maturation scores were calculated by averaging the RBF values of all present target cell populations. 
A cell population was defined as being present in a sample if it had a fraction higher than 0.005. 
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Specifically, RBF values of the H0, H1, H2, H3, Negs, All marker+, T-cell and the total cell number reduction 
were taken into account. To punish the reduction of the healthy T-cell population, T-cell RBF were sign 
changed before averaging (hence reducing the T-cell population will negatively affect the score). The 
rationale behind this score is to screen for compounds which specifically kill all the malignant target cell 
populations, irrespective of their relative abundances while largely sparing healthy non-target cells, 
because even small malignant populations can negatively affect treatment outcome. A positive score 
favors drugs which relatively reduce all target populations whereas a negative score indicates incomplete 
target populations reduction.  

Statistical analysis and visualizations 
Statistical analysis and visualization of data was performed using RStudio (v4.1.0) and Matlab R2021a. If 
not stated otherwise, all p-values were calculated based on wilcoxon rank sum test. The distribution of 
overall and event-free survival in the different subgroups was estimated using the Kaplan-Meier method 
and p-values for the survival analysis were calculated with the Gehan-Breslow-Wilcoxon Test.  

Data availability statement 
CNN training and test datasets are available at: https://doi.org/10.3929/ethz-b-000680077. RNA-seq 
measurements used in the study are available at the GEO repository at: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE272681. The ex vivo response data will be 
made available upon request. Additional data generated in this study are not publicly available due to 
information that could compromise patient privacy or consent but are available upon reasonable 
request from the corresponding author. 
 

Figure legends 

Main figures 
 
Figure 1.  
A, Circos plot overview of the newly diagnosed AML prospective patient cohort (174 samples from 44 
patients). Concentric circles from outermost to innermost show the disease subtype, the ELN risk 
classification, the tissue type of each sample, patient sex, time point of sampling, clinical patient response 
after the first and second induction cycle, if a sample was sequenced and patient age at sampling. See 
Table 1 and Supplementary Table 1&2 for more cohort information. B, Workflow integrating  ex vivo drug 
sensitivity screening (pharmacoscopy) with multiplexed single cell phenotyping, clinical data and direct 
molecular associations. Patient blood and bone marrow samples of newly diagnosed acute myeloid 
leukemia (AML) patients are taken over three time points and mononuclear cells are isolated and purified. 
Cells are seeded in 384-well plates, containing an indication-specific drug library. After 24h incubation, 
cells are fixed and stained with a multiplexed antibody panel and imaged by automated confocal 
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microscopy. A deep learning pipeline consisting of several convolutional neural network (CNNs), classify 
each cell into debris, 4 cancer populations, T-cells or negative stained cells. T-cells get additionally 
evaluated for polarized or round morphologies indicating their activation status. Finally, ex vivo drug 
response prediction and a multi-omics analysis are calculated to identify optimal treatment options and 
clinically relevant subpopulations. C, Example image of multiplexed staining immunofluorescence on a 
AML sample at diagnosis. Green: CD3, CD117; Orange: CD34; Red: CD117, CD33; Blue: DAPI. Imaged at 
20x resolution. D, Representative example images of curated cells for AML blast populations (CD34+ and 
CD33+ single positive cells (H0 and H3), combinations of CD33+/-CD117+ (H2) or CD33+CD34+ +/- CD117 
(H1) marker positive cells, activated T-cells (TP) and conventional T-cells (TO) as well as cells negative for 
all stained markers (Negs). The size of crops is 48x48 pixels (14.4x14.4µm). E, Confusion matrix of CNN 
performance across 1000 test cells per class. 
 
Figure 2 
A, Deep learning-assisted phenotyping of all samples. Heatmap shows the mean population fractions 
across DMSO treated wells per sample. H0, H1, H2, H3, all CD34+ population fractions were normalized 
towards the absolute AML abundance. Samples are annotated with additional clinical annotations, as 
presented in the legend. B, Correlation of population abundance at diagnosis and AML cell type scores. 
AML cell types scores were calculated as defined by Van Galen et al. 31 and correlated to absolute 
population abundances for each sequenced sample. C, Principal component analysis of population 
fractions of all samples shown in A colored by clinical response to the first induction round. Shapes 
indicate response to the second induction round. D, Population abundance in relation to treatment 
outcome. Violin plots display the distributions of different population fractions measured before clinical 
treatment response (first or second round). CR=complete remission. MRD=minimal residual disease. 
NR=non responder. Samples with no response were excluded from analysis. Like in A, AML population 
fractions were normalized towards the absolute AML abundance. E, Blood CD34 single positive abundance 
(H0) at diagnosis-based stratification of progression-free (PFS) and overall survival (OS) (n=42 patients) 
plotted as Kaplan-Meier survival curves. Two patients were excluded because no sample at diagnosis was 
available. H0 high population is defined as an absolute fraction higher than 0.083. P Value asterisks are 
defined as following:  *p<0.05, **p<0.01, ***p<10-3. 
 
Figure 3  

A, Overview of the pan-maturation drug screen. Individual data points represent relative blast fraction 
scores (1-RBF) of a sample specific population per single drug. Low abundant populations (fraction below 
0.05) were excluded. Values were standardized (z-scored) within each treatment (n=80). Columns of the 
heatmap were grouped into five individual clusters (C1-C5) and the donut plots show the proportion of 
populations within each group. B, t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of all 
drug responses shown in A per individual tested treatment. C, Principal component analysis of AML 
population drug responses of all samples colored either by population ID or drug response to cytarabine, 
daunorubicin or plerixafor. 

 

Figure 4 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.24310768doi: medRxiv preprint 

https://paperpile.com/c/kzFpR8/371mi
https://doi.org/10.1101/2024.07.24.24310768
http://creativecommons.org/licenses/by-nd/4.0/


Page 18 of 27 

A, Cytarabine response at diagnosis. Top: Heatmap shows cytarabine response (1-RBF) for all samples at 
diagnosis split by population. Responses for low abundant populations (fraction below 0.05) are plotted 
in gray and crossed out. Columns of heatmap are sorted by the average response calculated across all 
populations, referred to as the mean maturation score (MMS), for more details see methods. Bottom: 
Sample MMS scores plotted as matching bar graphs. B, MMS all screened drugs for two selected patients, 
with corresponding patient numbers, clinical outcome, timepoint and screened tissue. Bar graphs show 
drugs ranked by the MMS. C, Violin plot shows the integrated MMS at diagnosis stratified by treatment 
response (n=34). Integrated MMS score was calculated by summing all MMS scores for every individual 
chemotherapy a patient was treated with. If multiple tissues (blood and bone marrow) were measured 
per patient, the average score across both samples was calculated per patient. Measurements were taken 
before a patient was treated. Patients without T1 samples (n=2), clinical response annotation (n=5) or 
patients which received drugs not in the screening panel (n=3) were excluded from this analysis. 
CR=complete remission. MRD=minimal residual disease. NR=non responder. D, Receiver operating 
characteristic (ROC) curve plot based on the integrated AUC values from responding and non-responding 
patients shown in A. The ROC curve shows the trade-off between sensitivity and specificity for the optimal 
MMS cutoff stratifying responders from non-responders. The area under the curve (AUC) is 0.91. E, 
Comparison of AUC rankings for different drug response readouts. AUC values were calculated based on 
ROC curves generated from different integrated drug response measurements of responding and non-
responding patients. The AUC values ranged from 0.5 to 0.92, with the highest AUC value indicating the 
most accurate drug response readout in distinguishing between responding and non-responding patients.  

Supplementary figure legends 

Figure S1  

A, Progression to first line treatment responses over time. Flow diagram shows the clinical response to 
the first and the subsequent second induction chemotherapy for each patient (n=44). CR=complete 
remission. MRD=minimal residual disease. NR=non responder. N/A no response available. 

 

Figure S2. 

A, Schematic of the adapted ResNet architecture utilized in this study. B, Confusion matrix of the 6-class 
CNN performance across 1000 test cells per class. CNN was trained and tested 10 times with a random 
set of test cells (10% of dataset). Left shows the network with the best training & test performance which 
was used in this study. Right shows the average accuracies for all 10 runs. C, Confusion matrix of the T-
cell morphology network across 3000 test cells per class. CNN was trained and tested 5 times. Left shows 
the network with the best training & test performance which was used in this study. Right shows the 
average accuracies for all 5 runs. D, Left: Confusion matrix of cleanup CNN. CNN was tested on 6000 cells 
per class (10% of data). Right: Representative example images of curated cells for cell and non-cellular 
object. The size of image crops is 48x48 pixels (14.4x14.4um). E, Percentage of apoptotic cells after 
cleanup. Bar Graph shows the average percentage of Casp3+ positive cells after cleanup by the ‘Cleanup 
CNN’ across a full drug plate for three individual patients. F, False-positive classification of the 6-class CNN 
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on non-multiplexed test cells. Each datapoint in the boxplot diagram represents one sample (n=174). False 
positive score is calculated as 1-(fraction of misclassified cells per control per sample).  

 

Figure S3. 

A, Technical reproducibility per sample. The pairwise correlation of mean population fractions across all 
technical replicates per sample per control is calculated. All calculated correlations are depicted as 
boxplots. B, Technical reproducibility per drug. The average pairwise correlation of mean population 
fractions per individual drug in each sample is calculated. Boxplots depict correlations for all 174 samples. 
C, Correlation of 24h treatment vs 48h treatment across all population drug responses for three individual 
patients at diagnosis. For all boxplots the black dot indicates the median. Bottom and top edges of the 
black box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme 
data points not considered outliers whereas the outliers are plotted in red. 

 

Figure S4. 

A, Gating strategy for matching population definitions by flow cytometry. 27 samples at diagnosis with 
matched CD34, CD117, and CD33 staining were analyzed. B, Upper: Violin plots showing fraction of CD117, 
CD33 and CD34 marker positive cells which fall within the CD45dim (blast) gate. Lower: Violin plot showing 
the fraction of CD117-CD33-CD34- triple negative cells which fall within the CD45dim (blast) gate. 
Measurements were conducted by flow cytometry at diagnosis. C, Pearson correlation of populations 
abundances measured at diagnosis measured by either flow cytometry or Imaging/Pharmacoscopy. D, 
Scatter plot correlating population abundances measured by either flow cytometry or imaging. The blue 
line represents a linear model fit, with p-value and Rsq value from the linear regression indicated. P Value 
asterisks are defined as following:  *p<0.05, **p<0.01, ***p<10-3. 

 

Figure S5. 

A, Correlation of population abundances at baseline. Mean population fractions were pearson correlated 
across all samples (n=174). All shown fractions were obtained from DMSO treated control wells. B, 
Heatmap overview of individual influences on population composition. Significance of influence was 
calculated by analysis of variance based on population abundances shown in Figure 2A. P-values were 
log10 transformed and multiplied by the sign of change. For all calculations H0, H1, H2, H3, all CD34+ 
population fractions were normalized towards the absolute AML abundance. P-value asterisks are defined 
as following:  *p<0.05, **p<0.01, ***p<10-3. 

 

Figure S6. 

A, Top: Bar graphs indicated the sum of transcript counts after DESeq2 normalization 46. Color indicates 
the sequencing batch. n=108 samples. Bottom: Bar graphs indicated the percent of transcript count 
assigned to hemoglobin. Samples above a threshold of 5% of hemoglobin (and with a lower gene count 
than 14000 or a lower minimal count than = 106) were excluded from analysis (total of 4 samples). B, 
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Scatter plot of selected normalized transcript expression values per sample against the fraction of all 
marker positive AML cells. Color by tissue origin of sample. C, Principal component analysis of normalized 
transcript values of all samples colored by the fraction of marker positive AML cells. Shapes indicate batch. 
D, Principal component analysis of normalized and corrected transcript values of all samples colored by 
tissue origin of sample. Transcript values were corrected for the fraction of all marker positive AML cells. 
Shapes indicate time point. E, Scatter plot of the LSC17 stemness score calculated per sample against AML 
population fraction of each sample. Blue line indicates the fit of a linear model. P-value and Rsq of the 
linear regression are shown. All marker positive AML cells are defined to be either CD33, CD34 or CD117 
positive. BM = bone marrow.  

 

Figure S7. 

Induction and suppression of the H0 phenotype with TNF-α and cytarabine treatment. Plotted are the log2 
fold changes of the H0 fraction across three individual AML patients at diagnosis compared to control 
treatments. A, Increasing concentrations of TNF-α treatment for 48h. Values were normalized against a 
PBS control. B, Combinations of cytarabine (10um) and TNF-α (100ng) against matching controls. P-values 
were calculated based on a two-tailed Student's t-test. 

 

Figure S8. 

A, Population abundance in relation to treatment outcome. Violin plot displaying the distribution of 
different population fractions measured before clinical treatment response (first or second round). B, 
Violin plot displaying the distribution of different absolute population fractions measured before clinical 
treatment response (first or second round). C, Violin plot displaying the distribution of different 
population fractions measured at diagnosis. Population fractions were normalized towards the absolute 
AML abundance. D, ELN Risk score stratification (n=42 patients) plotted as Kaplan-Meier survival curves. 
Samples with no response were excluded from analysis. CR=complete remission. MRD=minimal residual 
disease. NR=non responder. 

 

Figure S9. 

A, Population composition over time. Box plot displaying the fraction of different population abundances 
measured before and after the first round of treatment stratified by patient response. Grey lines connect 
matching samples from the same patient and tissue. AML populations were normalized towards the 
absolute AML abundance. B, Violin plot displaying the distribution of different population fractions 
measured at timepoint 3 (after second cycle). CR=complete remission. MRD=minimal residual disease. 
NR=non responder. *p<0.05, **p<0.01, ***p<10-3. 

 
Figure S10. 

A, Population composition at diagnosis measured by flow cytometry. 27 samples at diagnosis with 
matched CD34, CD117, and CD33 staining were analyzed. Violin plot displaying the distribution of different 
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AML population abundances. AML populations were normalized towards the absolute AML abundance. 
CR=complete remission. MRD=minimal residual disease. NR=non responder.  

 

Figure S11. 

A, T-cell population abundance stratified by the emergence of neutropenic enterocolitis. Violin plot 
displaying the distribution of the absolute T-cell fraction measured at T1 & T3.B, T-cell population 
composition over time. Box plot displaying the fraction of different population abundances measured 
before and after the first round of treatment stratified by patient response. Grey lines connect matching 
samples from the same patient and tissue. C, Violin plot displaying the distribution of T-cell population 
fractions measured at timepoint 3 (after second cycle). CR=complete remission. MRD=minimal residual 
disease. NR=non responder. TP were normalized towards the absolute T-cell abundance.  

Figure S12. Drug response heterogeneity in relation to AML maturation stage. Heatmaps display the 
fraction of samples with a significant reduction in the target population in a given treatment. A, Fraction 
of significant relative abundance changes within the population (1-RBF) B, Fraction of significant absolute 
abundance changes within the population (fold change). N=80 treatments.  

 

Figure S13. 

A, Heatmap overview of individual influences on drug responses stratified by population. Significance of 
influence was calculated by analysis of variance (ANOVA). P-values were log10 transformed and multiplied 
by the sign of change. *p<0.05, **p<0.01, ***p<10-3. B, Identification of the Top 10 drugs exhibiting the 
most pronounced age-dependent responses. Age-dependent response is quantified as the summed p-
values (directed -log10(p)) of age scores calculated in A, across various cell populations, including H0-H3 
stages, negative controls (Negs), all blast cells, and all CD34+ progenitor cells. Positive values indicate 
responses with higher on-target scores with increased age. C, Scatter plot of the H3 population response 
to cytarabine 10uM in relation to patient age stratified by tissue. Only samples at diagnosis were 
considered. Line indicates the fit of a linear model. p value and Rsq of the linear regression are shown per 
tissue. D, Identification of the Top 10 drugs exhibiting the most pronounced tissue-dependent responses. 
Tissue-dependent response is quantified as the summed p-values (directed -log10(p)) of scores calculated 
in A, across various cell populations, including H0-H3 stages, negative controls (Negs), all blast cells, and 
all CD34+ progenitor cells. Positive values indicate responses with higher on-target scores in bone marrow 
samples. E, Scatter plot of the H3 population response to pomalidomide (10uM) in relation to patient age 
stratified by tissue. Only samples at diagnosis were considered. Line indicates the fit of a linear model. P-
value and Rsq of the linear regression are shown per tissue. F, Quantification of drug-induced T-cell 
activation. The ranked bar plot presents the average log2 fold changes of the TP population calculated 
across all samples per drug. Only positive scores are shown.  

 

Figure S14. 

A, Stratification of responders and non-responders to first line treatment by mean maturation scores with 
varying factions thresholds. Mean maturation scores were calculated by averaging the RBF values of all 
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present target cell populations. A cell population was defined as being present in a sample if it had a 
fraction higher than the specified threshold (x-axis). Negs were including the neg as a target population 
(see methods). Left y axis (blue): Area under curve of the ROC curve for the optimal MMS cutoff at a given 
fraction threshold stratifying responders from non-responders. Right y axis (red) average number of 
populations included in the MMS across all samples with a given fraction threshold. B, Stratification of 
MMS Scores at diagnosis by the ex vivo response to cytarabine and the single treatment with the highest 
MMS score per sample. Violin plot illustrates the distribution of MMS scores measured at the point of 
diagnosis, categorized according to the patients' clinical response to first line treatment. Measurements 
were taken before a patient was treated. Patients without clinical response annotation were excluded 
from this analysis. CR=complete remission. MRD=minimal residual disease. NR=non responder. C, Best 
scoring treatments in non-responding patients at diagnosis. D, General drug performance at diagnosis. 
Scatter plot showing the median drug rank across patients vs the average MMS score. Drugs were ranked 
by their average MMS within each patient (with 1 being the rank of best performing drug in a given 
sample). If multiple tissues (blood and bone marrow) were measured per patient, the average MMS score 
across both samples was calculated first. 

 

Figure S15. 

A, DARTT-1 post-hoc analysis. Violin plot shows the integrated ex vivo RBF and MMS scores stratified by 
the clinical treatment response. Integrated MMS score was calculated by summing all MMS scores for 
every individual chemotherapy a patient was treated with. Measurements were taken before a patient 
was treated. CR=complete remission. PD=progressive disease. PR: Partial response. SD: Stable disease. B, 
Stratification of patient samples achieved a complete remission (CR) or faced a progressive disease (PD) 
treatment by MMS with varying fractions thresholds. Mean maturation scores were calculated by 
averaging the RBF values of all present target cell populations. A cell population was defined as being 
present in a sample if it had a fraction higher than the specified threshold (x-axis). Negs were including 
the neg as a target population (see methods). Left y axis (blue): Area under curve of the ROC curve for the 
optimal MMS cutoff at a given fraction threshold stratifying responders from non-responders. Right y axis 
(red) average number of populations included in the MMS across all samples with a given fraction 
threshold. C, Example screening results of DART 1 patient 31. Heatmap is ranked by MMS score. 
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Figure S15
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Table 1

Patients % % sequenced
Patients w 

seq samples
1 2 100 1
9 20 89 8

23 52 87 20
11 25 64 7
28 64 75 21
16 36 94 15
13 30 69 9
4 9 50 2

27 61 93 25
12 27 75 9
14 32 93 13
13 30 77 10
5 11 80 4

20 45 90 18
14 32 79 11
2 5 100 2
8 18 63 5
9 20 78 7

16 36 88 14
19 43 79 15
3 7 33 1

11 25 73 8
2 5 100 2

24 55 88 21
4 9 100 4

42 95 60 25
29 66 72 21
33 75 67 22

Sample type per patient 41 93 76 31
44 100 82 36

Samples % % sequenced
Sequenced 

samples
63 36 31 33

Bone marrow samples 21 12 9 10
Blood samples 42 24 21 23

52 30 33 36
Bone marrow samples 24 14 16 17
Blood samples 28 16 18 19

59 34 36 39
Bone marrow samples 28 16 17 18
Blood samples 31 18 19 21

73 42 42 45
101 58 58 63
44 100 82 36

174 100 62 108

At time of entry into study Age groups

Gender

WHO classification

Timepoint
samples per patient

Vital status

Clinical Responses to 
second induction

ELN 2022

Clinical Responses to 
first induction

Over the time of study

Blood samples
Patients
Samples

Total

Timepoint 1

Sample type

Samples per timepoint

21 - 40
41 - 60
61 - 80
Male

Bone marrow samples

AML with myelodysplasia-related changes
Timepoint 1
Timepoint 3
Timepoint 5
Bone marrow samples

Adverse

Complete Remission (CR)
CR with Minimal Residual Disease (MRD)
No Response

Timepoint 2

Timepoint 3

Female

Blood samples

Alive
Dead
Unknown

Myeloid Sarcoma
AML not otherwise specified (NOS)
Therapy-related myeloid neoplasia
AML with recurrent genetic abnormalities

0 - 20

Intermediate
Favorable

Unknown
Complete Remission (CR)
CR with Minimal Residual Disease (MRD)
No Response
Unknown
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