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Abstract 

Background. Proinflammatory and neuroendocrine mediators are implicated in disease 

aetiopathogenesis. Stress increases concentrations of immune-neuroendocrine biomarkers 

through a complex network of brain-body signalling pathways. Suboptimal sleep further modulates 

these processes by altering major effector systems that sensitise the brain to stress. Given the 

ubiquitous, impactful nature of material deprivation, we tested for a synergistic association of 

financial stress and suboptimal sleep with these molecular processes. Methods. With data drawn 

from the English Longitudinal Study of Ageing (ELSA), associations were tested on 4,940 

participants (~66±9.4 years) across four-years (2008-2012). Through analytical triangulation, we 

tested whether financial stress (>60% insufficient resources) and suboptimal sleep (≤5/≥9 hours) 

were independently and interactively associated with immune-neuroendocrine profiles, derived 

from a latent profile analysis (LPA) of C-reactive protein, fibrinogen, white blood cell counts, hair 

cortisol, and insulin-like growth factor-1. Results. A three-class LPA model offered the greatest 

parsimony. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, 

financial stress was associated with short-sleep cross-sectionally (RRR=1.45; 95%CI=1.18-1.79; 

p<0.001) and longitudinally (RRR=1.31; 95%CI=1.02-1.68; p=0.035), and it increased risk of 

belonging to the high-risk biomarker profile by 42% (95%CI=1.12-1.80; p=0.004). Suboptimal 

sleep was not related to future risk of high-risk profile membership, nor did it moderate financial 

stress-biomarker profile associations. Discussion. Results advance psychoneuroimmunological 

knowledge by revealing how immune-neuroendocrine markers cluster in older cohorts and 

respond to financial stress over time. Financial stress associations with short-sleep are supported. 

The null role of suboptimal sleep, as exposure and mediator, in profile membership, provides 

valuable insight into the dynamic role of sleep in immune-neuroendocrine processes. 
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Introduction 

The most intriguing aspect of inflammation is the plurality of its modulators and its breadth of 

effects that support health or contribute to morbidity, both physical and mental, and mortality 

worldwide (Jerison, 2024; Furman et al., 2019). With multilateral, cross-blood-brain-barrier 

signalling between the immune, nervous, and endocrine systems (Becher et al., 2017), avenues of 

inquiry have found that abnormal circulating concentrations of pro-inflammatory and endocrine-

mediated biomarkers have been implicated in the genesis and progression of disease and 

psychiatric disorder across a spectrum of severity (Furman et al., 2019; Hamilton & Steptoe, 2022; 

Tomasik et al., 2023; Yuan et al., 2019). A disease burden that not only intimates premature death 

but suffering as people live with it (Whiteford et al., 2013). 

 

Human, animal, and in vitro studies converge to the understanding that exogenous acute and 

chronic stress directs adverse effects on immunologic mechanisms (Bierhaus et al., 2006), with 

material deprivation ubiquitous and among the strongest indicators of stress (Hamilton, Iob, et al., 

2023; McEwen, 2007; Muscatell et al., 2020). A stress modulated hypothalamic–pituitary-adrenal 

axis (HPA-axis) orchestrates a complex network of brain-body responses that increase circulating 

concentrations of immune and neuroendocrine mediators, with serious consequences to health 

(Bierhaus et al., 2006; Steptoe et al., 2007). Various mechanisms may underlie this response, from 

stress-induced reductions in plasma volume, upregulation of synthesis, or expansion of the cell 

pool contributing to synthesis (Steptoe et al., 2007). 

 

When sleep deprived, alterations can also be seen to major effector systems, including the HPA-

axis and the sympathetic nervous system (SNS). This corresponds to catecholamines elevations 

that drive abnormal inflammatory responses, with shifts seen to the levels and temporal profile of 

the response, and functional alterations in the expression of pro-inflammatory cytokines that then 

interact with the brain through humoral, neural, and cellular pathways (Garbarino et al., 2021; 
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Irwin, 2006, 2019). Short sleep trajectories are particularly relevant to inflammatory responses 

(Bakour et al., 2017); a more salient concern to cohorts prone to age-related declines in sleep 

efficiency (Kocevska et al., 2020). Even one night of sleep restricted to 4-hours can led to over a 

three-fold increase monocyte production of interleukin-6 (IL-6), tumor necrosis factor-alpha 

(TNF-α), and messenger RNA (mRNAs; (Irwin, 2006). While a single hour of shorter sleep has 

been associated with CRP and IL-6 elevations (Ferrie et al., 2013). In an RCT, sleep-deprived 

adults had higher baseline cortisol levels and an exaggerated cortisol response to stress than well-

rested adults (Minkel et al., 2014). Findings that suggest that sleep deprivation contribute to 

inflammatory processes by sensitising the brain to stress (Uy et al., 2022). But a meta-analytic 

review (n>50,000 participants) found that neither total nor partial sleep deprivation reliably 

increased inflammation, with results greatly depending on the sleep index (Irwin et al., 2016). 

 

It is equally important to consider whether stress is as antithetical to good sleep as poor sleep is to 

stress, with evidence that they co-occur and are reciprocally reinforcing (Jones & Gatchel, 2018). 

Stress has been implicated as a predisposing factor for shorter actigraphy-determined total sleep 

time, with worse sleep associated with greater stress perception (Slavish et al., 2021). In another 

study, a one unit increase in self-reported stress was associated with a 3min decrease in actigraphic 

and self-reported total sleep, with no significant associations between sleep parameters and next-

day stress (Yap et al., 2020). Results have been difficult to unravel, with inconsistencies between 

and within studies. Findings have largely depended on the type, acuteness and chronicity of stress, 

or the degree of sleep abnormality and whether it is assessed by self-report, actigraphy, or 

polysomnography (Beck et al., 2022; Slavish et al., 2021). 

 

A better understanding of the interaction between financial-related stress and suboptimal sleep 

may elucidate how they independently and collectively influence immune-neuroendocrine 

biomarkers as a clinically relevant pathway to disease. It is possible that the impact of experiencing 
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both is synergistic rather than additive or multiplicative, reflecting worse combined effects on 

biological processes. This raises the question of whether the nature of the relationship between 

financial stress and inflammatory processes is altered by the presence of suboptimal sleep, having 

controlled for genetic predisposition and a rich selection of confounders. 

 

When results from different approaches, across disciplines, with unrelated source of bias, point to 

the same conclusion it strengthens confidence in the finding (Lawlor et al., 2017). For this reason, 

in this study, we leverage several statistical, genomic, and epidemiological techniques to address 

this research question. First, a latent profile analysis (LPA) was used to capture the heterogeneity 

and latent structure of five immune-neuroendocrine biomarkers (i.e., C-reactive protein [CRP]; 

fibrinogen [Fb]; white blood cell counts [WBCC]; hair cortisol [Cortisol]; and insulin-like growth-

factor-1 [IGF-1]), which decomposed the population into a small number of groups (Bauer, 2005). 

Second, polygenic scores (PGS) were taken into account in the analyses to index genetic 

predisposition (Hamilton, Steptoe, et al., 2023) and to understand genetic risk for immune-

neuroendocrine profile membership. Third, the construction of a directed acyclic graph (DAG) 

served to identify sources of bias and visually represent the complex causal pathways between 

variables (Lipsky & Greenland, 2022). Fourth, an observational, longitudinal design allowed for 

temporal changes to be traced in a way that points to directionality. Finally, effect modification 

between financial stress and suboptimal sleep was evaluated to uncover subgroup differences in 

patterning of immune-neuroendocrine processes. We hypothesised that financial stress and 

suboptimal sleep would be independently associated with belonging to the highest risk latent 

profile of immune-neuroendocrine biomarkers. Separately, we anticipated the presence of an 

interaction between financial stress and suboptimal sleep in this association. 

 

 

METHODS 
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Study Design 

Fully anonymised data were drawn from the English Longitudinal Study of Ageing (ELSA), an 

ongoing multidisciplinary, observational study, with a longitudinal response rate of 70% (Steptoe 

et al., 2013). In line with the National Census, ELSA is representative of the non-institutionalised 

general population aged ≥50 in England. Data collection is performed in participants’ homes, via 

computer-assisted personal interviews (CAPI) and self-completed questionnaires biennially, then 

nurse visits quadrennially to collect biological samples. All participants provide written consent 

and ethical approval was granted by the National Research Ethics Service. Here, longitudinal 

sample derivation is from wave 4 (2008) and wave 6 (2012). Analyses were weighted using 

longitudinal survey weights. A total of 6,523 participants had complete measures and at least one 

biomarker at baseline. After exclusions of CRP values >20 mg/L (n=116), the sample was 6,407. 

Of these, 1,467 had missing genetic data, leaving an analytic sample of 4,940 (Figure 

Supplementary [S] 1). 

 

Exposure 

Financial stress was indexed by financial strain, a binary measure of the perceived chance of not 

having enough financial resources in the future to meet needs (categorised by 0; 1-39; 40-60; 61-

99; 100% and dichotomised at >60%). The higher the percentage, the higher the belief of having 

insufficient resources and, thus, the higher the stress experience. 

 

Moderator 

Sleep duration was measured with an open-ended question, asking participants about the length 

of their sleep on an average weeknight. Outlier values greater than three standard deviations (±) 

from the mean (M) were excluded from the raw data. To improve model fit, interpretability, and 

to avoid non-linear interaction complexity, sleep duration was demarcated by “≤5 hrs” (i.e., short-
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sleep), “>5-<9 hrs” (i.e., optimal-sleep), and “≥9 hrs” (i.e., long-sleep), categories that align with 

earlier research (Hamilton, Steptoe, et al., 2023). 

 

Outcomes 

Immune-neuroendocrine biomarkers entered into the Latent Profile Analysis (LPA) included high-

sensitivity plasma C-reactive protein (CRP; mg/L), plasma fibrinogen (Fb; g/L), white blood cell 

counts (WBCC; 109/L), hair cortisol (cortisol; pg/mg), and serum insulin-like growth factor-1 

(IGF-1; mmol/L). Exclusion criteria for bloods included coagulation and haematological 

disorders, being on anticoagulant medication or having a history of convulsions. Blood samples 

were discarded if deemed insufficient or unsuitable (e.g., haemolysed; received >5 days post-

collection). Collection details can be found in Supplementary Materials (SM) 1. 

 

Covariates 

Covariates were built into the model a priori, on the basis of a DAG (SM2). The DAG was 

developed to trace causal pathways, mitigate bias, optimise parameter inferences, and improve 

estimate accuracy. This epidemiological approach led variables, likely on the causal pathway 

between stress, suboptimal sleep, and immune-neuroendocrine processes, to be excluded from the 

main models, because conditioning on them would have introduced collider bias (Hernán & 

Monge, 2023). All measured at baseline, covariates included demographics: age (≥50 years); age2 

([squared] to account for non-linearity); sex (male/female); genetic variables: 10 PCs, PGS for CRP, 

WBCC, Cortisol, IGF-1, and sleep duration; socioeconomic variables: education (higher; lower; or 

none); wealth (total net household wealth, as determined by the summation of property [minus 

mortgage], business assets, possessions, liquid assets; cash, savings, investments, artwork, and 

jewellery, net of debt, exclusive of pension wealth); lifestyle variables: smoking status (non-smokers 

and ex-smokers/smokers); weekly alcohol consumption (low <3/high ≥3 day); weekly physical 

activity (sedentary and moderate/vigorous activity); health variables: limiting longstanding illness (an 
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enduring condition that limits activity); any self-reported clinician diagnosis of abnormal heart 

rhythm; angina; arthritis; asthma; cancer; chronic lung disease; congestive heart failure; coronary 

heart disease; diabetes; heart murmur; hypertension; osteoporosis; dementia; Parkinson's disease; 

or psychiatric disorder; difficulty with mobility (walking 100 yards; sitting 2-hours; rising from 

chairs after sitting long periods; climbing stairs; stooping, kneeling, or crouching; reaching or 

extending arms above shoulders; pulling or pushing large objects; lifting or carrying objects over 

10lb; picking-up a 5p coin). 

 

Statistical Analyses 

Polygenic Scores (PGS). The derivation of the PGSs for CRP, WBCC, IGF-1, Cortisol, and 

sleep duration has been detailed in the supplementary (SM3). Z-scores were used to standardise 

all PGSs, so values from different distributions could be equitably compared and so interpretation 

could be improved. The genome-wide genotyping, funded by the Economic and Social Research 

Council (ESRC), was performed at University College London (UCL) Genomics in 2013-2014 

using the llumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1.3). 

 

Multiple Imputation. Owing to attrition and item non-response missingness ranged 0.00-61.0% 

(Table S1; SM4). Imputation was performed using missForest (RStudio v.2022.02.2); a Random 

Forest algorithm-based machine learning imputation method that builds decision trees during 

training and combines predictions iteratively until convergence to ensure accurate predictions with 

minimal overfitting (Stekhoven & Bühlmann, 2012). Imputation yielded a minimal error for 

continuous variables (Normalized Root Mean Squared Error [NRMSE]=0.07%) and categorical 

variables (Proportion of Falsely Classified [PFC]=0.05%). 
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Latent Profile Analysis (LPA). The LPA was conducted to cluster the sample according to 

concentrations of immune-neuroendocrine biomarkers; CRP, Fb, WBCC, Cortisol, and IGF-1. 

An LPA model for observed variable A that can be expressed as: 

𝜎
2
𝐴 = 	&𝜋!(𝜇"! − 𝜇")	# +	

$

!%&

&𝜋!𝜎"!#
$

!%&

 

where 𝜇"! and 𝜎"!#  denote (t) class-specific means and variances for variable A, and 𝜋! show the 

proportion of N participants that belong to class t. A stepwise approach was taken to identify the 

optimal number of latent profiles and the number of profiles was determined on the basis of 

multiple parameters that have been detailed in the supplementary (SM5). Once the number of 

latent profiles was established, individuals within the sample were assigned to a cluster for which 

they had the greatest posterior probability of belonging to. 

 

Association Analyses. Baseline characteristics were expressed as means and proportions, with 

Analysis of Variance (ANOVA) and Chi-squared (χ2) comparisons on biomarkers. Logarithmic 

transformation was performed on CRP, WBCC, Cortisol, and IGF-1 values because of their 

originally skewed distribution, but Fb was normally distributed. There was no evidence of attrition 

bias due to systematic differences in missing data or differential loss-to-follow-up (Table S1; Figure 

S1). Multivariable, multinomial regressions were used to test several key associations. First, the 

cross-sectional association between financial stress and suboptimal sleep at wave (W) 4 (2008). 

Second, the longitudinal association of financial stress at W4 on suboptimal sleep, then immune-

neuroendocrine profile membership at W6 (2012). Third, the association between suboptimal 

sleep at W4 and immune-neuroendocrine profile membership at W6. Finally, a multiplicative 

interaction term was applied between financial stress and suboptimal sleep at W4 on immune-

neuroendocrine profiles at W6; expressed by an ordinary least squares (OLS) regression equation: 

𝑌	 = 	𝜇	 + 	𝜂𝛸	 + 	𝛼𝐷	 + 	𝛽(𝐷 ∙ 𝑋) 	+ 	𝑍𝛾	 + 	𝜖. 
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where 𝑌 represents immune-neuroendocrine profile membership (W6 outcome); 𝐷 represents 

financial stress (W4 exposure); 𝑋 represents suboptimal sleep (W4 moderator);  𝐷⋅𝑋 is the interaction 

term with its constituent first-order terms (𝐷 and 𝑋); 𝑍 is a vector of covariates, while 

𝜇 and 𝜖 represent the constant and error terms, respectively. The magnitude of the interaction 

coefficient represents the estimated change in the effect of the focal exposure 𝐷 on the outcome 

𝑌 for a single unit change in the moderator 𝑋. All regression assumptions were met (Aguinis & 

Gottfredson, 2010; Hainmueller et al., 2018). The highest risk category was reported against the 

lowest risk reference. Results were reported as relative risk ratios (RRR), with standard errors (SE) 

and 95% confidence intervals (95% CI). Analyses were two-tailed. Different models were fitted to 

understand the role of covariates on associations: Model (M) 1 was unadjusted; M2 adjusted for 

baseline immune-neuroendocrine profiles; M3 controlled for demographic and genetic variables; 

M4 was fully adjusted. Association analyses were conducted in Stata 18.1 (STATA CorpLP, USA). 

 

Sensitivity Analyses. To test the robustness of the results, five additional analyses were 

performed. First, owing to known changes in stress perception (Graham et al., 2006) and sleep 

trajectories as we age (Kocevska et al., 2020), it is conceivable that these factors are a less salient 

risk to biological processes in later adulthood, so associations were stratified by median age (≥65). 

Second, sex-stratified analyses were performed because individuals who experience short sleep are 

more likely to be men, while women are more likely to experience long sleep (Bakour et al., 2017; 

Prather et al., 2015), with sex differences also reported in stress experience (Bale & Epperson, 

2015). Third, excess adipose tissue, as measured by BMI, is a likely mediator because of its shared 

genetic basis with suboptimal sleep (Garfield et al., 2019), along with its known roles in stress 

(Wardle et al., 2011) and inflammation (Brydon et al., 2008), so independent analyses controlled 

for BMI. Fourth, caseness of suboptimal sleep durations were low, so the thresholds were changed 

to “≤6 hr” (i.e., short-sleep), “>6-<8 hr” (i.e., optimal-sleep), and “≥8 hr” (i.e., long-sleep) to 
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ensure that results were not contingent on power nor the extremities of short and long sleep. Fifth, 

PGSs can detect a common genetic basis between traits and provide a prediction of an individual’s 

genetic risk for a particular disease, or in this case a biological outcome (Pain et al., 2022). PGSs 

for short and long sleep were, therefore, used to test associations with immune-neuroendocrine 

profile membership, for results less encumbered by confounding, and to provide stronger evidence 

of a possible causal effect between the two. There are no GWASs from which a PGS for stress 

could be derived. 

 

 

RESULTS 

Cohort characteristics 

Sample characteristics are described in Table 1. The sample comprised 4,940 (Figure S1) from 

whom total baseline data were available. Participants were male (45.3%) and female (54.7%), aged 

66.3 years on average (±9.35; range50-99). Of these, 17.0% experienced financial strain, 12.7% 

short sleep, and 1.7% long sleep. Although individual trajectories varied widely, biomarkers were 

relatively stable from baseline to follow-up. CRP was linearly correlated with Fb (r=0.707); WBCC 

(r=0.448); Cortisol (r=0.281); and IGF-1 (r=-0.167; all p=<0.001). All other correlations can be 

found in Table S2. Participants were, on average, overweight (73.4%), but active (72.9%), most 

consumed alcohol less than three days a week (64.3%) and were non-smokers (87.3%). The 

majority were without disorder (67.2%), and most had no limiting longstanding illness (68.5%), 

but similar proportions were with and without mobility difficulties (45.8/54.2%). 

 

Latent profile analysis of immune and neuroendocrine biomarkers 

A three-profile model of W6 immune-neuroendocrine biomarkers provided the most 

parsimonious fit to the data (Table S3; Figures S4 [a-g]). After which there were limited returns 

in AIC and BIC value (Figure S5), entropy was 0.67 (Figure S6), the mean posterior probabilities 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.24310898doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.23.24310898
http://creativecommons.org/licenses/by/4.0/


did not exceed 0.70, each profile had ≥5% of participants (Figure S7); and there was theoretical 

meaning to the profiles. Profile 1, defined as ‘low-risk’, included 35.2% of the sample (Mage=64.05; 

±7.72; male47.44/female52.56%), characterised by individuals with low CRP, Fb, WBCC, Cortisol, and 

high IGF-1. The modal profile 2, defined as ‘moderate-risk’, included 39.5% of the sample 

(Mage=66.53; ±9.31; male43.77/female56.23%) and consisted of individuals with moderate CRP, Fb, 

WBCC, Cortisol, and IGF-1 levels. Finally, profile 3, defined as ‘high-risk’, included 25.3% of the 

sample (Mage=69.13; ±10.60; male44.68/female55.32%;) and was marked by a high probability of high 

CRP, Fb, WBCC, Cortisol, and low IGF-1 (Figure 6). The number of individuals within the low-

risk group fell by 17.2% from baseline (W4; 2008) to follow-up (W6; 2012), with the moderate-risk 

group increasing by 3.6%, and the high-risk group increasing by 13.6% (Table 1). 

 

Cross-sectional associations of financial stress with suboptimal sleep  

As shown in Table 2, after adjustment for, age, sex, and genetic predisposition to adverse immune-

neuroendocrine biological signatures, the experience of financial-related stress was cross-

sectionally associated with an 80% greater risk of experiencing short sleep (RRR=1.80; 

95%CI=1.47-2.20; p<0.001), but not long sleep (RRR=1.24; 95%CI=0.70-2.19; p=0.463). And 

associations held after full adjustment, with financial stress being associated with a 45% greater 

risk of short sleep (RRR=1.45; 95%CI=1.18-1.79; p<0.001). 

 

Longitudinal associations of financial stress with suboptimal sleep  

In models adjusted for baseline suboptimal sleep, age, sex, and genetic predisposition (Table 3), 

financial stress was longitudinally associated with a greater risk of experiencing short sleep 

(RRR=1.46; 95%CI=1.14-1.86; p=0.003), but not long sleep (RRR=1.22; 95%CI=0.86-1.72; 

p=0.265). When fully adjusted, financial stress was associated with a 31% greater risk of 

experiencing short sleep 4 years later (RRR=1.31; 95%CI=1.02-1.68; p=0.035). 
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Longitudinal associations of financial stress with immune and neuroendocrine profiles  

Having adjusted for baseline profiles, along with demographic and genetic factors, as shown in 

Table 4, financial stress experience was longitudinally associated with 28% increased likelihood of 

being classified into the moderate-risk profile, as compared to the low-risk profile (RRR=1.28; 

95%CI=1.06-1.54; p=0.010). But associations were reduced to null after full adjustment 

(RRR=1.18; 95%CI=0.97-1.43; p=0.093). By contrast, with membership of the high-risk profile 

across the same models, financial stress was associated with a 1.65 greater risk of belonging to this 

group (RRR=1.65; 95%CI=1.31-2.07; p<0.001), which fell to 1.42 after full adjustment 

(RRR=1.42; 95%CI=1.12-1.80; p=0.004). 

 

Longitudinal associations of suboptimal sleep with immune and neuroendocrine profiles  

At any level of adjustment, suboptimal sleep durations were not prospectively associated with a 

greater risk of belonging to the moderate-risk profile compared with the low-risk profile (Table 5). 

And short sleep was not associated with future risk of high-risk immune-neuroendocrine profile 

membership in adjusted models. There were indications that long sleep was associated with a two-

fold increase in the likelihood of high-risk profile membership when adjusted for baseline profiles, 

demographic, and genetic factors (RRR=2.02; 95%CI=1.02-3.98; p=0.043), but this association 

was attenuated to null after full adjustment (RRR=1.48; 95%CI=0.73-2.98; p=0.277). 

 

Effect modification between financial stress and suboptimal sleep in immune and 

neuroendocrine profile membership 

There was no moderating effect of suboptimal sleep on the association between financial stress 

and immune-neuroendocrine profile membership (Table 6). The coefficients of interaction terms 

were close to zero for short sleep. The magnitude of effects were large for long sleep but with 

large confidence intervals. Thus, there was insufficient evidence to reject the null hypothesis. 
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Sensitivity Analyses 

First, when associations were stratified by age, financial stress was associated with a 70% higher 

relative risk of belonging to the high-risk immune-neuroendocrine profile in younger individuals 

(RRR=1.70; 95%CI=1.20-2.41; p=0.003), with indications of a gradient in risk, such that the 

moderate-risk profile showed an intermediate pattern (RRR=1.30; 95%CI=1.00-1.70; p=0.050). 

However, there were no associations in the older age category (Table S4). As it relates to the 

suboptimal sleep associations with immune-neuroendocrine profile membership, effect sizes did 

not differ by age (Table S5). In the second sensitivity analysis, sex-stratified analyses revealed that 

men, but not women, stressed from a lack of resources had a greater risk of belonging to the high-

risk immune-neuroendocrine profile (RRR=1.68; 95%CI=1.16-2.43; p=0.006; Table S6) despite 

an overlap of confidence intervals. But this pattern between the sexes was not replicated in 

suboptimal sleep associations with immune-neuroendocrine profile membership (Table S7). The 

third sensitivity analysis included BMI as an additional covariate in Model 4, with no substantive 

change seen in the magnitude of effects (Table S9). The fourth sensitivity analysis used less 

stringent thresholds for short and long sleep (≤6 hr [n=2,095; 19.29%]; ≥8 hr [n=4,788; 44.08%] 

respectively) and results were materially unchanged (Table S10). In the final sensitivity analysis, a 

1± increase in genetic liability for short sleep and long was not associated with immune-

neuroendocrine profile membership (Table S8). 

 

 

Discussion  

In a large, population-representative, prospective cohort study of older adults, cross-sectional, 

longitudinal, and multiplicative associations were tested between financial stress and suboptimal 

sleep in immune-neuroendocrine profile membership. Financial stress was cross-sectionally and 

longitudinally associated with short sleep, but not long sleep. Associations held having controlled 

for genetic predisposition and a broad selection of covariates. Financial stress was additionally 
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associated with high-risk profile membership four years later. It is worth noting that there was no 

change in the magnitude of effects when accounting for BMI. In addition, against our expectations, 

suboptimal sleep was not associated with immune-neuroendocrine profile membership, nor did it 

modify the relationship between financial stress and said profiles. 

 

The preliminary findings extend a growing evidence-base that stress exposure has a significant 

liability on sleep routines (Beck et al., 2022; Slavish et al., 2021; Yap et al., 2020), credibly through 

the activation the HPA- and SNS-axes (Kalmbach et al., 2018). But here we add more specificity, 

with financial stress being a more salient risk factor to short sleep than long sleep. This is 

persuasive given that different molecular mechanisms are thought to underlie associations at the 

either end of the sleep duration distribution (Hamilton, Steptoe, et al., 2023). Contrasts with other 

studies are likely due to differences in sleep definitions, objectivity, and architecture, together with 

the acuteness and nature of stress (S. Y. Kim et al., 2020; Vandekerckhove et al., 2011; Zagaria et 

al., 2023). 

 

Our analytical strategy leveraged much more than a convenient device with which to model 

individual differences. Semiparametric, finite mixture models, such as the LPA used here, offer a 

principled way to identify heterogeneity based on observed patterns within empirical data (S. H. 

Kim & Mokhtarian, 2023). It proves useful when the normality assumption of the maximum 

likelihood (ML) fitting function, used to estimate the model, is unwittingly violated (Cole & Bauer, 

2016). These models avoid the need for ad hoc classifications. Instead they are estimated in the 

service of more flexibly modelling the characteristics of the aggregate population as a whole (Bauer, 

2005). While studies that isolate individual biomarkers offer detailed mechanistic insights, studies 

that aggregate profiles contribute to a more comprehensive understanding of system-level activity. 

In the present study, distinct biological groups in the population were identified. Where financial 

stress was an antecedent, differences in the risk of belonging to the moderate- or high-risk groups, as 
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compared to the low-risk group, emerged. This emphasis on group-level differences highlights the 

importance of considering the biological context and complexity. And results advance a precision 

medicine approach, where remedies can be directed toward identified subgroups, rather than 

indiscriminate treatments across heterogeneous populations. 

 

Beyond a binary interpretation of statistical significance, the interpretation of estimates must 

consider whether the effect size is meaningful from a public health perspective. An evaluation that 

is contingent on exposure and outcome prevalence, together with the Minimal Clinically Important 

Difference (MCID), which captures the magnitude of the issue and its ecological value 

(McGlothlin & Lewis, 2014). Given the ubiquity of financial stress exposure and the far-reaching 

impacts that biological processes have on health, a 42% increase in relative risk is meaningful. 

While there are notable complications to drawing policy conclusions from a single study (Bann et 

al., 2024), financial stress associations with immune-neuroendocrine profile memberships echoes 

earlier work in the same longitudinal dataset (Hamilton, Iob, et al., 2023). This result can, therefore, 

be treated as scientific replication that underscores the robustness and consistency of the observed 

relationships, despite a more comprehensive biomarker matrix included into the LPA here and 

more exhaustive controls used to mitigate confounding. 

 

The unexpected finding that suboptimal sleep was not prospectively associated with immune-

neuroendocrine profile membership is an important contribution to understanding the role of 

sleep in immune-neuroendocrine processes. It challenges compelling evidence elsewhere that sleep 

is integral to endocrine, metabolic, and immune integrity, and where sleep loss, even acutely, 

perturbs gene expression and the functional cellular response (Garbarino et al., 2021; Irwin, 2006).  

Meta-analytic evidence substantiates cross-sectional associations between suboptimal sleep and 

heightened inflammatory levels (Irwin et al., 2016), with further evidence that associations are 

longitudinal (Cho et al., 2015; Ferrie et al., 2013). Even when modelled curvilinearly, sleep duration 
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remained associated with inflammatory processes (Prather et al., 2015). But in all cases, results 

depended on the biomarkers measured and the temporal relationship between exposures and 

outcomes. 

 

Sleep duration likely activates pro-inflammatory pathways (Patel et al., 2009). But one plausible 

explanation for the contrasting findings in the present study is that suboptimal sleep may exert its 

effects on specific immune, neural, and endocrine biomarkers (Ferrie et al., 2013; Irwin et al., 2016; 

Prather et al., 2015). And it may do this without contemporaneously influencing a constellation of 

biomarkers, as would be captured by the latent profiles that represent co-variation across multiple 

biomarkers at a single timepoint (Morin et al., 2016). In this way, the profiles would not be as 

sensitive to suboptimal sleep durations as isolated biomarkers, because they represent greater 

physiological stability, following a more adaptive response to exogenous-endogenous challenge, 

through systemic-level compensatory biological mechanisms that dilute exposure impact. 

 

Polygenic risk prediction is a useful tool in observational studies to confirm the less confounded 

role of traits in outcomes, albeit limited to genetic contribution (Hamilton, Steptoe, et al., 2023). 

Results arising from the PGSs for short and long sleep, support the phenotypic findings that 

suboptimal sleep durations are not prospectively associated with immune-neuroendocrine profiles. 

These corresponding results raise the possibility of reverse causality. First, having considered the 

previously reported role of immune-neuroendocrine biomarkers in diurnal variations (Besedovsky 

et al., 2019; Irwin, 2019), with much of the evidence on sleep duration and inflammation being 

cross-sectional, limiting inferences on directionality (Irwin et al., 2016; Patel et al., 2009). Second, 

because PGSs point to directionality given they are largely unconfounded; predicated on inherited 

DNA differences from birth that increase the predictive facility of complex traits in unrelated 

individuals among the population (Plomin & Von Stumm, 2022; Wray et al., 2021). Still, the current 

predictive facility of PGSs is insufficient for clinical implementation. This is due to the aetiological 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.24310898doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.23.24310898
http://creativecommons.org/licenses/by/4.0/


complexity of common disorders, like sleep duration, that are influenced by gene-environment 

interactions, with polygenic architecture that has contributions from multiple single nucleotide 

polymorphism (SNPs) of small effect, rather than a dominant genetic variant of large effect that 

can be isolated (Pain et al., 2021). Owing to this complexity, the ecological value of PGSs is reduced 

and the immediate scope to dismiss the credibility of sleep-related policy from these findings is 

narrow. Thus, results can be considered preliminary and hypothesis-generating. 

 

It is, nonetheless, important to control for genetic influence in analyses, given the stability of 

genetic sequence across the lifespan and genetic variation that accounts for a notable proportion 

of individual difference in health and disease (Polderman et al., 2015). Our adjustment for a 

comprehensive selection of confounders, notably genetic predisposition for adverse biomarker 

levels, has rarely been reported elsewhere. We show that the longitudinal role of financial stress 

on suboptimal sleep and immune-neuroendocrine profiles is independent of genetic 

predisposition. But the role of suboptimal sleep on profile membership was not robust enough to 

withstand this genetic influence. The contrast with earlier evidence linking suboptimal sleep to 

inflammatory markers, may, in part, be attributable to statistically less controlled analyses that 

increase the likelihood of Type I error (Strain et al., 2020). 

 

The age composition of the cohort has important implications. There is suggestive evidence of 

age-related effects from the first sensitivity analyses that warrants replication in a younger sample. 

One notion that merits consideration is survivor bias (viz. left truncation), where selective attrition 

led to a healthier, more resilient older group upon stratification, who are not characteristic of the 

general population (Vansteelandt et al., 2018). Moreover, the practice of napping might serve as a 

protective factor for immune-neuroendocrine processes. One study found cortisol decreased 

immediately after a midday nap (limited to 30 minutes), and this was accompanied by a return to 

baseline leukocytes counts (Faraut et al., 2011). In a later randomised, polysomnography-
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monitored study, an increase in norepinephrine and cytokine values after a sleep-restricted night 

was not observed after the countermeasure of a nap (Faraut et al., 2015). Given the higher 

prevalence of napping among older cohorts (Kocevska et al., 2020), this practice may have 

mitigated the influence of sleep duration on the inflammatory status of this population by acting 

on homeostatic processes. Equally, this cohort may not expend as much energy as younger cohorts 

(Gomes et al., 2017), with insufficient sleep debt corresponding to lesser homeostatic pressure 

(i.e., compensatory increases in essential sleep duration, sleep consolidation, and sleep intensity 

that mounts in response to an extended period of wakefulness (Dittrich et al., 2015). This pressure 

accumulates exponentially during wakefulness and dissipates during sleep, striking balance 

between sleep-promoting and wake-promoting neurons that control the volume and amplitude of 

slow-wave activity (Taillard et al., 2021). 

 

In the absence of moderation, results putatively contradict anecdotal and empirical evidence 

(Chiang et al., 2019) that stress exposure compounded with suboptimal sleep durations increase 

risk to biological signatures. Analyses can be considered preliminary, owing to the modest cell sizes 

of suboptimal sleep cases, and other common power attenuating factors, including exposure-

mediator intercorrelations, scale coarseness, the artificial categorisations of continuous variables, 

or the transformation of non-normal outcomes (Dawson, 2014). These may have restricted the 

detection of interactions, with unstable parameter estimates and inflated standard errors, but given 

the sizeable alphas, it is unlikely that a greater powered sample would have detected moderating 

effects with reliable estimates. Results point to financial stress being a more proximate risk factor 

to immune-neuroendocrine processes than suboptimal sleep, so much so that financial stress may 

reach a threshold beyond which suboptimal sleep has limited additional returns. The lack of 

interaction is consistent with the limited influence of sleep duration in this cohort (Taillard et al., 

2021).  
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Invariably, findings must be interpreted in light of some limitations.  Financial stress and sleep 

duration are self-reported and time varying, so individuals may experience changes throughout the 

course of the study that are subject to recall bias. Future study may benefit from objective measures 

in a time-varying effect model (Tan et al., 2012). Moreover, financial stress was measured with a 

single item, so it may not have captured the multidimensionality of material deprivation (Hamilton 

& Steptoe, 2022). While the causal DAG represented  a particular set of assumptions, its 

complexity does not explicitly reflect real-world concerns about reciprocity or sources of bias, and 

it does not specify the estimate magnitude, nor its interplay with random errors (Lipsky & 

Greenland, 2022). Observational studies cannot yield definitive conclusions on cause and effect, 

particularly in the face of reverse causality (Sattar & Preiss, 2017).  In this respect, while not without 

limitations, Mendelian randomization (MR) offers a promising avenue to overcome this challenge. 

But the most promising approach is to triangulate evidence across multiple sources to improve 

causal claims (Lawlor et al., 2017). 

 

Conclusion 

Immune and neuroendocrine activity has a highly complex aetiology that arises from multifaceted 

interplays across biological, physiological, behavioural, social, and environmental dynamics. 

Capitalising on converging methods of estimation, we unravel a portion of this complexity, by 

giving insight into the independent and interactive roles of financial stress and suboptimal sleep in 

immune-neuroendocrine latent profile membership. Financial-related stress remains a reliable 

target for reducing short-sleep and offers a promising pathway for understanding the stratification 

of immune-neuroendocrine activity among the general population. Policies to screen for and 

alleviate the financial burden on the population may be an effective strategy to reduce adverse 

immune-endocrine processes that lead to generalised disease, with a view to mitigate the liability 

on an already stretched public health system. While suboptimal sleep has long been recognised as 

a primal factor in biological processes, its inconsistent findings make it a less compelling target for 
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immune-endocrine patterning, certainly in older adults. And there was no conclusive evidence to 

support that the combined experience of financial stress and suboptimal sleep is worse for 

immune-neuroendocrine patterning than financial stress alone in this group. This study 

underscores several potential areas of interest for future research while emphasising the need for 

translational investigations. Most pressing among them is the need to determine whether results 

hold in a younger cohort, whether associations are causal, and whether these immune-

neuroendocrine profiles mediate associations between stress and disease. Addressing these would 

contribute to the understanding of biosocial mechanisms to disease.  
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Figure 1.  A Conceptual and Statistical Diagram of Effect Modification 
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Figure 2 .  Predicted Marginal Mean Margins of Immune and Neuroendocrine Profiles 
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Table 1.  Sample characteristics 
 

Variable 
Baseline (N= 4,940) 

N / M (SD) % / Range ANOVA χ2 

      

Age  66.3 (9.35) 50-99 <0.001  

Age (Binary) <65 Md 2,436 49.31  <0.001 

 ≥65 Md 2,504 50.69   

Sex Male 2,237 45.3  0.073 

 Female 2,703 54.7   

Education Higher 1,589 32.2  <0.001 

 Lower 1,543 31.2   

 Alternative/No 1,808 36.6   

Wealth Lowest 1,573 31.8  <0.001 

 Middle 2,014 40.8   

 Highest 1,353 27.4   

Smoking Status Never/Ex-Smokers 4,312 87.3  <0.001 

 Current Smoker 628 12.7   

Alcohol Consumption <3 days a week 3,175 64.3  <0.001 

 ≥3 days a week 1,765 35.7   

Physical Activity Sedentary 1,340 27.1  <0.001 

 Active 3,600 72.9   

Mobility Mobile 2,678 54.2  <0.001 

 Not Mobile 2,262 45.8   

Limiting Longstanding Illness None 3,386 68.5  <0.001 

 Present 1,554 31.5   

Health No health condition 3,319 67.2  <0.001 

 At least one health condition 1,621 32.8   

BMI <25, Underweight/Normal 1,312 26.6  <0.001 

 25-30, Overweight: Pre-obese 2,213 44.8   

 30 or over, Obese 1,415 28.6   

PGS for CRP  0.00 (1.00) -3.50 (3.76) 0.235  

PGS for WBCC  0.00 (1.00) -4.03 (2.58) 0.123  

PGS for IGF-1  0.00 (1.00) -3.69 (3.83) 0.411  

PGS for Cortisol  0.00 (1.00) -3.47 (3.28) 0.928  

PGS for Sleep Duration  0.00 (1.00) -4.09 (2.87) 0.449  

CRP* (mg/L; Baseline)  0.28 (0.46) -0.70-1.30 <0.001  

CRP* (mg/L; Follow-up)  0.40 (0.48) -1.00-1.30 <0.001  

Fb (g/L; Baseline)  3.38 (.56) 1.30-5.90 <0.001  

Fb (g/L; Follow-up)  3.12 (0.52) 1.50-5.80 <0.001  

WBCC* (nmol/L; Baseline)  0.79 (0.13) -0.10-1.50 0.062  

WBCC* (nmol/L; Follow-up)  0.81 (0.11) 0.34-1.51 <0.001  

IGF-1* (nmol/L; Baseline)  1.18 (0.16) 0.30-1.81 <0.001  

IGF-1* (nmol/L; Follow-up)  1.18 (0.13) 0.60-1.76 <0.001  

Cortisol* (nmol/L; Follow-up)  1.23 (0.65) -0.85-2.82 0.158  

Stress (indexed by Financial Strain) No Strain (0-60%) 4,099 83.0  <0.001 

 Strain (61-100%) 841 17.0   

Sleep Duration Short Sleep 627 12.7  <0.001 

 Optimal Sleep 4,227 85.6   

 Long Sleep 86 1.7   

I-N Profiles (Baseline) Low-risk 2,590 52.4  <0.001 

 Moderate-risk 1,773 35.9   

 High-risk 577 11.7   

I-N Profiles (Follow-up) Low-risk 1,739 35.2  - 

 Moderate-risk 1,951 39.5   

 High-risk 1,250 25.3   
      

 
Notes: ELSA, waves 4-6 (2008-2012); N = observations; M = Mean; Md = Median; % = percentage frequencies; SD = standard deviations; 
ANOVA = Analysis of Variance between the exposed and unexposed for continuous variables with a 3-level categorical variable; χ2 = Pearson Chi 
square test significance between the exposed and unexposed for categorical variables with a 3-level categorical variable; < = less than; ≥ = greater 
than or equal to; BMI = Body Mass Index; PGS = Polygenic Score; CRP = C-reactive protein; Fb = Fibrinogen; WBCC = White Blood Cell 
Counts; IGF-1 = Insulin-growth factor-1; Cortisol = Hair Cortisol; * Log-transformed variable; I-N = Immune and Neuroendocrine.  
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Table 2.  Cross-sectional associations between stress and suboptimal sleep 
 

 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.80 0.18 1.47 2.19 <0.001 

Model 2: Model 2 + demographics & genetics a, b 1.80 0.19 1.47 2.20 <0.001 

Model 3: Fully Adjusted c 1.45 0.15 1.18 1.79 <0.001 

Long Sleep 

Model 1: Unadjusted 1.13 0.32 0.64 1.98 0.680 

Model 2: Model 2 + demographics & genetics a, b 1.24 0.36 0.70 2.19 0.463 

Model 3: Fully Adjusted c 1.11 0.33 0.62 1.98 0.721 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Demographic variables: age; sex 
b Genetic variables: 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood Cell Counts (WBCC) 

PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; education; wealth; occupational social status; smoking 

status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart 
disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; 
dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table 3.  Longitudinal associations between stress and suboptimal sleep 
 

 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.80 0.20 1.45 2.23 <0.001 

Model 2: Model 1 + baseline sleep duration a 1.47 0.18 1.15 1.87 0.002 

Model 3: Model 2 + demographics & genetics b 1.46 0.18 1.14 1.86 0.003 

Model 4: Fully Adjusted c 1.31 0.17 1.02 1.68 0.035 

Long Sleep 

Model 1: Unadjusted 1.06 0.18 0.76 1.48 0.729 

Model 2: Model 1 + baseline sleep duration a 1.09 0.19 0.78 1.53 0.628 

Model 3: Model 2 + demographics & genetics b 1.22 0.22 0.86 1.72 0.265 

Model 4: Fully Adjusted c 1.05 0.19 0.74 1.50 0.773 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline sleep duration. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; baseline suboptimal sleep; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 

PGS; Cortisol PGS; Sleep Duration PGS; education; wealth; occupational social status; smoking status; alcohol consumption; physical 
activity; mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table 4.  Longitudinal associations of stress with immune and neuroendocrine profiles 
 

 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.26 0.12 1.05 1.50 0.012 

Model 2: Model 1 + baseline profiles a 1.23 0.12 1.03 1.48 0.025 

Model 3: Model 2 + demographics & genetics b 1.28 0.12 1.06 1.54 0.010 

Model 4: Fully Adjusted c 1.18 0.12 0.97 1.43 0.093 

High-risk Profile 

Model 1: Unadjusted 1.57 0.15 1.30 1.90 <0.001 

Model 2: Model 1 + baseline profiles a 1.52 0.17 1.21 1.90 <0.001 

Model 3: Model 2 + demographics & genetics b 1.65 0.19 1.31 2.07 <0.001 

Model 4: Fully Adjusted c 1.42 0.17 1.12 1.80 0.004 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; 
education; wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; 
health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; 
diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table 5.  Longitudinal associations of suboptimal sleep with immune and neuroendocrine profiles 
 

 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.15 0.12 0.94 1.41 0.171 

Model 2: Model 1 + baseline profiles a 1.08 0.11 0.88 1.33 0.447 

Model 3: Model 2 + demographics & genetics b 1.01 0.11 0.82 1.25 0.907 

Model 4: Fully Adjusted c 0.90 0.10 0.72 1.12 0.335 

High-risk Profile 

Model 1: Unadjusted 1.45 0.16 1.17 1.80 0.001 

Model 2: Model 1 + baseline profiles a 1.26 0.16 0.98 1.62 0.075 

Model 3: Model 2 + demographics & genetics b 1.19 0.16 0.92 1.54 0.192 

Model 4: Fully Adjusted c 0.87 0.12 0.67 1.14 0.323 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.55 0.48 0.85 2.84 0.152 

Model 2: Model 1 + baseline profiles a 1.43 0.45 0.77 2.66 0.254 

Model 3: Model 2 + demographics & genetics b 1.16 0.37 0.62 2.16 0.650 

Model 4: Fully Adjusted c 1.05 0.34 0.55 1.98 0.893 

High-risk Profile 

Model 1: Unadjusted 3.52 1.03 1.98 6.24 <0.001 

Model 2: Model 1 + baseline profiles a 2.78 0.94 1.43 5.41 0.003 

Model 3: Model 2 + demographics & genetics b 2.02 0.70 1.02 3.98 0.043 

Model 4: Fully Adjusted c 1.48 0.53 0.73 2.98 0.277 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; 
education; wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; 
health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; 
diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table 6.  Effect modification between stress and suboptimal sleep in immune and neuroendocrine profile 
membership 

 
 

Adjustments 
Stress × Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.90 0.22 0.55 1.45 0.660 

Model 2: Model 1 + baseline profiles a 0.95 0.24 0.58 1.57 0.852 

Model 3: Model 2 + demographics & genetics b 0.95 0.24 0.58 1.57 0.841 

Model 4: Fully Adjusted c 0.95 0.24 0.57 1.57 0.827 

High-risk Profile 

Model 1: Unadjusted 0.77 0.20 0.46 1.28 0.309 

Model 2: Model 1 + baseline profiles a 0.78 0.24 0.43 1.42 0.408 

Model 3: Model 2 + demographics & genetics b 0.83 0.26 0.45 1.53 0.557 

Model 4: Fully Adjusted c 0.85 0.27 0.46 1.58 0.602 

Adjustments 
Stress × Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 4.07 4.57 0.45 36.79 0.211 

Model 2: Model 1 + baseline profiles a 4.23 4.81 0.45 39.30 0.205 

Model 3: Model 2 + demographics & genetics b 4.64 5.30 0.49 43.60 0.179 

Model 4: Fully Adjusted c 4.02 4.64 0.42 38.62 0.228 

High-risk Profile 

Model 1: Unadjusted 2.11 2.36 0.24 18.86 0.503 

Model 2: Model 1 + baseline profiles a 2.08 2.51 0.20 22.16 0.545 

Model 3: Model 2 + demographics & genetics b 2.97 3.59 0.28 31.61 0.366 

Model 4: Fully Adjusted c 2.28 2.81 0.21 25.50 0.502 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; 
education; wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; 
health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; 
diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table 7.  Longitudinal associations of immune and neuroendocrine profiles with suboptimal sleep  
 

 

Adjustments 
Moderate-risk Profile  

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.51 0.15 1.24 1.84 <0.001 

Model 2: Model 1 + baseline profiles a 1.38 0.15 1.11 1.71 0.003 

Model 3: Model 2 + demographics & genetics b 1.38 0.15 1.11 1.72 0.004 

Model 4: Fully Adjusted c 1.21 0.14 0.96 1.51 0.103 

Adjustments 
High-risk Profile  

RRR SE 95% CI p 

Model 1: Unadjusted 1.33 0.20 0.99 1.79 0.059 

Model 2: Model 1 + baseline profiles a 1.13 0.19 0.82 1.57 0.454 

Model 3: Model 2 + demographics & genetics b 1.11 0.19 0.80 1.54 0.539 

Model 4: Fully Adjusted c 0.86 0.15 0.61 1.22 0.388 

Adjustments 
Moderate-risk Profile  

RRR SE 95% CI p 

Long Sleep 

Model 1: Unadjusted 2.14 0.31 1.61 2.83 <0.001 

Model 2: Model 1 + baseline profiles a 2.11 0.31 1.58 2.80 <0.001 

Model 3: Model 2 + demographics & genetics b 1.91 0.28 1.43 2.56 <0.001 

Model 4: Fully Adjusted c 1.66 0.25 1.23 2.23 0.001 

Adjustments 
High-risk Profile  

RRR SE 95% CI p 

Model 1: Unadjusted 2.93 0.53 2.06 4.18 <0.001 

Model 2: Model 1 + baseline profiles a 2.81 0.52 1.96 4.03 <0.001 

Model 3: Model 2 + demographics & genetics b 2.30 0.43 1.59 3.33 <0.001 

Model 4: Fully Adjusted c 1.81 0.35 1.24 2.64 0.002 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; 
education; wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; 
health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; 
diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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