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Summary 
Estimating the transmission fitness of SARS-CoV-2 variants and understanding their 
evolutionary landscape is important for epidemiological forecasting. Existing methods are 
often constrained by their parametric natures and do not satisfactorily align with the 
observations during COVID-19. Here, we introduce a sliding-window data-driven pairwise 
comparison method, Differential Population Growth Rate (DPGR), that uses viral strains 
as internal controls to mitigate sampling biases. DPGR is applicable in time windows in 
which the logarithmic ratio of two variant subpopulations is approximately linear. We apply 
DPGR to genomic surveillance data and focus on Variants of Concern (VOCs) in multiple 
countries and regions. We found the log-linear assumption of DPGR can be found in 
appropriate time windows in many regions. We show that DPGR can provide estimates 
of transmission fitness and quantify the transmission advantage of key variants such as 
Omicron by location. We show that DPGR estimates agree with other methods for 
estimating pathogenic transmission. Furthermore, DPGR allowed us to construct viral 
fitness landscapes that capture the evolutionary trends of SARS-CoV-2, reflecting the 
relative changes of transmission traits for key genotypic changes represented by major 
variants. The straightforward log-linear regression approach of DPGR may also facilitate 
its easy adoption. This study shows that DPGR is a promising new tool in our repertoire 
for addressing future pandemics.  
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Introduction 
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) has underscored the importance of estimating transmission 
fitness for variants to predict the viral evolutionary dynamics. Since December 2019, 
SARS-CoV-2 has undergone many mutations and likely rounds of recombination, leading 
to the emergence of multiple variants with varying levels of transmissibility and virulence 
1–3.  Some variants became more dominant during the transmission and were labeled 
“Variant of Concern” by Greek letters, such as Alpha, Delta, and Omicron 4–6. 

The basic reproductive number R0 is often used to gauge viral transmission, representing 
the average number of new infections caused by an infected individual in a susceptible 
population 7. R0 is often derived from the SIR (Susceptible-Infectious-Removed) model 
and its many derivations. In practice, the effective reproductive number, Rt, is often used 
for a real-time indicator that estimates the average number of secondary infections 
caused by an infectious individual in a population over time 8,9.  Both R0 and Rt are 
estimated from incidence data, which lack information on particular variants. 
Consequently, it is often challenging to use R0 and Rt to differentiate the transmission 
fitness of emerging variants. 

Phylogenetical analysis, as a classic evolutionary approach, has been used to understand 
the evolutionary fitness changes of SARS-CoV-2 due to its mutations3,10,11. Phylogenetic 
approach has limited usage for SARS-CoV-2 due to the low genetic variability among 
SARS-CoV-2 sequences, root placement uncertainty, recurrent mutations, recombination 
among subvariants, and geographic and temporal biases 10–12. The limitation of 
phylogenetic analysis has been highlighted by the unexpected evolutionary pattern of the 
Omicron variant 13.  

Multinomial or hierarchical logistical regressions implemented in softmax is a recent 
approach to estimating the fitness of variants of SARS-CoV-214–17. Multinomial logistical 
regressions can be used in conjunction with a hierarchical Bayesian framework. The 
estimated variant fitness can be used for more accurate forecasts up to 30 days and to 
identify mutations associated with fitness gains.  

Alternative approaches for variant fitness estimation can be complementary and address 
the limitations of existing methods.  To this end, we present a sliding-window data-driven 
pairwise comparative approach to estimate relative fitness for two viral strains, termed 
Differential Population Growth Fitness (DPGR), based on straightforward log-linear 
regression.  DPGR is an additive distance, and its comparative nature made it more 
tolerant to some sampling biases. We apply DPGR to estimate the transmission fitness 
of variants of SARS-CoV-2, construct a fitness landscape for the evolving variants, and 
shed light on the recent evolution of SARS-CoV-2.  
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Differential Population Growth (DPGR) for Pairwise 
Viral Transmission Fitness Comparison 

Motivated by using an internal control to mitigate sampling biases often associated with 
SAS-CoV-2, we designed a pairwise comparative approach on sliding time windows, the 
Differential Population Growth Rate (DPGR), for estimating the pairwise transmission 
fitness advantages of the variants of SARS-CoV-2. DPGR is calculated by log-
transforming the ratio of the growth rate of two exponentially growing populations in the 
applicable time windows and taking the growth latencies into account, as shown by 
Equation 1.    

log $!!
!"
% = (g" − g#)t + C = DPGR",# 	 ∙ t + C	     Eq. 1 

where N1 and N2 are two exponentially growing viral sub-populations, g1 and g2 are the 
growth coefficients, and the constant C incorporates the lag time of the growth of the two 
sub-populations, and t represents time which is measured in days in this study. The log-
transformed ratio of the growth is a linear model where the positive slope indicates 
population N1 grows faster than population N2, and the negative slope indicates the 
opposite. DPGR1,2 = (g1 - g2) is defined for variants 1 and 2. (Detailed induction of DPGR 
is in the Supporting Document.) In practice, sliding time windows were applied, and the 
appropriate periods for the log-linear approximation were selected based on linear fitting.  

During COVID-19, some variants dominate in different periods and are challenging to be 
co-sampled at the same location in the same time window, especially given the limited 
genomic surveillance capacity. Based on the property of logarithms log(a/b) = log(a/c) + 
log(c/b), we can find another variant c which can estimate DPGRa-b through DPGRa,b. = 
DPGRa,c + DPGRc,b as long as variant c can be co-sampled with both variant a and b at 
the same location. (See detailed formulation in the supporting documents.) For instance, 
we estimated DPGRAlpha-Delta through DPGRAlpha,Delta = DPGR Alpha,Beta + DPGR Beta,Delta, 
even though we could out find sufficient weekly co-observations of Alpha and Delta 
variants in the same location in the genomic sampling data from GISAID18.  

 

Results  

Overview of the Computational Flow Work  

As shown in Figure 1, we retrieved the genomic variant surveillance data for SARS-CoV-
2 from GISAID up to June 16, 2022. The Variant of Concerns (VOCs) in the retrieved data 
set include Alpha, Beta, Gamma, Delta, and Omicron. The GISAID surveillance data 
include collection dates and locations. We calculated the weekly average occurrence of 
each VoC at selected locations and scanned for time windows in which DPGR is 
applicable. The DPGR-applicable time windows were typically selected for at least 4 
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weeks and with a linear fit of R2 value greater than 0.9. We applied DPGR to various 
countries and continents. For comparisons, we estimated the transmission fitness for 
VoCs designated by WHO and the Pango lineage19 provided by GISAID. Based on the 
pairwise fitness estimation, we constructed fitness stairs and landscapes to capture the 
evolutionary big picture of SARS-CoV-2.  

Country Level Viral Transmission Revealed by DPGR with Omicron 
and Delta as an Example.  

We first examined the utility of DPGR to estimate variant transmission fitness at the 
country level using the pair of Omicron and Delta variants as an example. We performed 
sliding time window analysis to select time windows in which the DPGR assumption held 
well. As an example, estimations of DPGR between Omicron and Delta in a few countries 
are presented in Figure 2. A set of target countries, including the United States, Canada, 
Brazil, South Korea, Ireland, Denmark, Netherlands, Italy, Turkey, Belgium, Poland, 
Israel, Japan, Switzerland, Spain, France, Mexico, and Germany, are selected for 
showcasing the application of DPGR for estimating the transmission fitness (See Figure 
2 and Figure S1). In the United States, within the time window from March 2022 to May 
2022, the logarithmic values of Omicron versus Delta population fit well with a linear 
model (Figure 2 A) with an R2 value of 0.99 (See Table S1 for the estimated slope and R2 
values for the aforementioned target countries). Applying DPGR in the selected countries 
yields a range of estimation of Omicron versus Delta, termed DPGROmincron,Delta (Figure 
2G), ranging from 0.008 to 0.1 with the average at 0.06. Among the analyzed countries, 
the highest DPGROmincron,Delta is observed in Turkey (0.1) and the lowest in the United 
States (0.08). It can be observed that (see Figure 2 G) that some European bordering 
countries (Denmark, Germany, Belgium, etc.) exhibited similar DPGROmincron,Delta - 
indicating that these bordering countries share similar trends of SARS-CoV-2 epidemic 
transmission based on DPGR estimates.  

As a comparison, we also fit DPGR to the Pango lineage labels GRA and GK, which 
correspond to the WHO labels of Omicron and Delta. The plots in (see Figure S3) give a 
visual representation of the models’ estimation for GISAID labels. The estimates, 
designated DPGRGRA,GK are nearly identical to DPGROmicron,Delta based on WHO labels. 
These results demonstrate the generalizability of DPGR. The pairwise transmission 
fitness values between the variant pairs of both WHO and GISAID labels are illustrated 
in the heatmap (see Figure S2 and Figure S4). By applying DPGR for the target countries, 
the observed DPGRGRA,GK ranges from 0.0094 (USA) to 0.1021 (Turkey) with R2 values 
of 0.99 and 0.97 respectively, indicating similar estimates as DPGROmicron,Delta (see details 
in Table S6).  

Overall, the country-level analysis shows that DPGR is useful for examining the country-
level variations in viral transmissions, which might reflect differences in regional 
responses, vaccine efficacies, population demographics, immune responses, 
environmental factors, and social and cultural factors.  
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Continent Level Viral Transmission Revealed by DPGR with 
Omicron versus Delta variant as an example  

To further examine the utility of DPGR, we applied it at the continental level using the 
Omicron versus Delta variants as an example. We preprocessed the data to weekly 
frequency for each variant in each continent. Figure 3 (A-G) illustrates a positive rise in 
transmission fitness advantage of Omicron in several continents in different time 
windows, which indicates the geographic mobility of the circulating Variant of Concern. 
The DPGR estimates range from 0.006 to 0.06, with an average value of 0.03. The lowest 
relative transmission fitness is observed in Oceania (0.03) and the highest (0.06) in Asia 
and South America, with Africa, North America, and Europe in between. The R2 values 
ranges from 0.92 to 0.99, with the highest R2 values observed in North America(0.99), 
South America(0.99), Oceania(0.99) and Asia(0.99), and the lowest in Africa(0.92) (see 
Table S1). 

We estimate DPGR for the corresponding GISAID labels GRA and GK (see Figure S5) 
which show nearly identical trends. The pairwise transmission values between the variant 
pairs (GRA, GK, GRY, and GH) are illustrated as heat maps in Figure S6. The GRA variant 
demonstrates a relative fitness advantage, particularly in Asia and South America, with 
the smallest increase in Oceania. The range of the transmission fitness values between 
the comparison, DPGRGRA,GK , in several continents is 0.0064 (Oceania) to 0.0577(Asia) 
with R2 values 0.99(0ceania) and 0.99(Asia) respectively. The estimate between 
DPGRGRA,GK  indicates analogous estimated values as DPGROmicron, Delta estimates for the 
continents (Table S6).  

Overall, the results here show applying DPGR at different geographic scales can reveal 
the regional heterogeneity of viral transmission and aid our understanding of the spread 
and impact of different SARS-CoV-2 variants. 

Transmission Variations of Omicron Sublineages Revealed by 
DPGR 

To further examine the utility of DPGR, we applied DPGR in evaluating the sublineages 
of the Omicron variant20,21. From the Pango Lineage of the GISAID dataset, we selected 
the sublineage BA.1 ~ BA.5 associated with the Omicron variant, estimated the weekly 
frequency for each sublineage at a location of interest, and selected the time windows in 
which the linear fit of DPGR can be observed. For North America, the R² values for the 
comparisons between BA.5 and other variants within the time window of April 2022 to 
May 2022 are as follows: BA.5 vs. BA.1 (0.982), BA.5 vs. BA.2 (0.985), BA.5 vs. BA.3 
(0.993), and BA.5 vs. BA.4 (0.931). See Table S2 for details. 

For the sake of illustration, we chose the dominant sublineage BA.5 to compare with the 
other circulating sublineages (BA.1, BA.2, BA.3, and BA.4). Figure 4 (A-E) shows the 
pairwise DPGR estimation plots of BA.5 with other sublineages in five continents in time 
windows ranging from 5 ~ 11 weeks in 2022. The linear fit of DPGR for the Omicron 
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sublineages was often more pronounced than those in comparisons of major variants, 
such as Omicron and Delta (Figures 2 and 3). The DPGR analysis demonstrates that the 
Omicron sublineage BA.5 consistently dominated over other sublineages though at 
varying levels of relative fitness compared to other sublineages (BA.1, BA.2, BA.3, BA.4) 
across different continents, as summarized in Figure 4F. For example, in Asia, BA.5 was 
found to have the fastest differential growth advantages over others, whereas its growth 
advantage was relatively moderate in Africa. In Europe and Asia, the DPGR plots of BA.5 
over BA.4 were nearly flat, indicating codominance during the period of the analysis.  

The Evolution Fitness Landscape of SARS-CoV-2 Variants and 
Sub-variants.  

The pairwise approach of DPGR offers an opportunity to capture the relative fitness 
landscape during the evolution of SARS-CoV-2 variants. At the time of our study, we have 
data to address the Alpha, Beta, Delta, and Omicron VoCs in the United States. All 
possible pairwise comparative analyses among these four VoCs lead to a 4x4 matrix (see 
heatmap of Figure 5A). Examination by sliding windows shows DPGR model is applicable 
to Alpha and Beta from March 2021 to April 2021, to Beta and Delta from August to 
September 2021, and to Delta and Omicron from March to May 2022 with corresponding 
R2 values of 0.98, 0.97, and 0.98 respectively. For example, DPGRomicron,beta = 0.015, and 
DPGRbeta,omicron = - 0.015, which suggests that Omicron out-grow Beta by 1.5% daily 
(because e0.015 »1.015). Some pairs of VoCs, such as Alpha and Delta, though do not 
have sufficient data points due to non-overlapping periods, can be inferred based on the 
property of logarithms log(a/c) = log(a/b) + log(b/c) (See details in the supporting 
documents), which enables us to compare transmission fitness for variants that dominate 
in different periods during the pandemic.  For instance, we estimate DPGRAlpha,Delta = 
DPGR Alpha,Beta + DPGR Beta,Delta, even though we could out find sufficient weekly co-
observations of Alpha and Delta variants in the same location in the genomic sampling 
data from GISAID.  

It is worthy of emphasizing the DPGR is a relative measurement, and it is often more 
convenient to present the fitness on an ‘absolute’ scale. To do this, we first convert the 
DPGR matrix into a distance matrix (see Figure 5B) by only focusing on the positive 
values. From the distance matrix, we apply the neighbor-join tree22 to capture the 
representative tree structure of fitness for the variants (see Figure 5C). From the 
neighbor-join tree, we infer the transmission fitness on a scale using the initial VoC Alpha 
as a reference point.  

We inferred a fitness staircase (see Figure 5D) depicting the transmission fitness gain of 
the VoCs — Alpha, Beta, Delta, and Omicron—in the United States. The progressive 
transmission fitness values for Beta, Delta, and Omicron are shown relative to the initial 
variant, Alpha. The substantial increase in transmission fitness from Delta to Omicron is 
clearly illustrated by the fitness staircase. 

We constructed a neighbor-join tree for Omicron sub-lineages (BA.1*, BA.2*, BA.3*, 
BA.4*, BA.5*) to gain a closer understanding of the progressive fitness evolution (Figure 
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S12). We found that BA.5 has the fastest growth advantage with BA.4 as a close 
competitor. BA.2 and BA.4 have nearly similar fitness; however, BA.5 has rapidly 
increased transmission fitness than the other two sub-lineages. Collectively, BA.5 and 
BA.4 caused a rapid surge of cases in the United States likely due to their escape of 
neutralizing antibody20,21,23.  

We constructed a fitness landscape for these circulating variants in the U.S.A. (Figure 
5E) which illustrates the relative change of transmission fitness among the variants during 
their evolution. The fitness landscape in evolutionary biology is used to visualize the 
relationship between genotypes and their evolutionary fitness24,25, and is of importance 
to understanding viral evolution26–31.  In Figure 5E, we use the variants to represent the 
change of genotypes of SARS-CoV-2. The flying bird-shaped landscape (See Figure 5E) 
visualizes the pairwise fitness landscape of the WHO-labeled Variants of Concern 
(VOCs). To generate the fitness landscape, we used the absolute pairwise DPGR. The 
pairs with the lowest fitness values are presented at the bottom of the landscape, and 
those with higher fitness climb progressively on the top of the hill. At the bottom of the hill 
Omicron Vs. Omicron has zero fitness (from the estimated pairwise distance matrix), and 
as moved uphill, Omicron exhibits significant fitness gain against Delta, Beta, and Alpha. 
At the top of the hill, Omicron Vs. Alpha has the highest fitness gains as shown by the 
highest value of DPGR between the Omicron and Alpha. The Delta variant can be seen 
in the middle of the hill, reflecting its relative growth advantage between Omicron and 
other variants.  

Overall, we show that the pairwise approach of DPGR can allow us to infer the fitness 
distance matrix fitness landscape, and fitness staircase through the neighbor-join tree 
method.  

Comparison of DPGR with other measurement 
We compared the relative transmission fitness of SARS-CoV-2 variants using the 
Differential Population Growth Rate (DPGR) model and the PyR0 model developed by 
another study14. We performed a linear correlation analysis (see Figure S 13)  between 
the estimated DPGR and those by PyR0. We used the fold increase in relative fitness 
(R/RA) for the Alpha, Beta, Delta, and Omicron variants, relative to the Wuhan A strain, 
as provided in the “strains.tsv” file from the supporting materials of the previous study. We 
log-transformed (log2) the fold increase to make the values comparable with the DPGR 
model. We observed a strong linear correlation (R2 = 1) between the estimates of PyR0 
and DPGR. Interestingly, the requirement of a log transformation shows that the estimates 
of DPGR and PyR0 are on different scales. These analyses show that on one hand, DPGR 
gave a comparable estimate to the relative fitness of SARS-CoV-2 variants,  and on 
another hand, DPGR offers a different perspective to the previous method.  
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Discussions 
In this study, we present a data-driven sliding-window pairwise approach, DPGR, to 
capture the relative competitiveness of SARS-CoV-2 subpopulations and their changes 
in fitness during the pandemic. The pairwise nature of DPGR allows one subpopulation 
to serve as an internal control. The simplicity of log-linear regression can facilitate the 
wide implementation and adoption of DPGR. The additive property of DPGR makes it 
suitable for distance matrix-based analysis. Limitations of DPGR include the exponential 
growth assumption and the need for correctly labeled variants. To avoid the negative 
value of DPGR, the dominant variant should be chosen to be the numerator part of DPGR. 
In contrast to the typical parametric fitting approach of the existing methods, the sliding 
time windows approach focuses on the most applicable period for DPGR. Our studies 
show that these applicable time windows are readily available during the COVID-19. The 
pairwise ratio approach can help reduce sampling errors that are non-discriminatory to 
subvariants. Surveillance data on SARS-CoV-2 genomics are considerably under-
reported. It is reasonable to argue that most genomic surveillance methods are non-
discriminatory with respect to viral genomic sequences. Hence, the ratio between the two 
observed measurements would cancel out the non-discriminatory sampling errors. We 
acknowledge that this pairwise approach assumes the subpopulation clustering is correct 
and equal sampling among the subpopulations. It is important to discuss the similarities 
and differences between DPGR and the classical logistical growth model3. DPGR is 
different from the logistic growth model log(p1/(1-p1)), in the sense that the denominator 
was replaced by the fraction of another subpopulation p2. Hence, DPGR can 
accommodate the heterogeneity of relative fitness in subpopulations as observed in the 
sub-populations of Omicron.  

Notably, DPGROmicron_Delta in the USA is the smallest compared to those in European 
countries. Regional differences in DPGR may be influenced by various factors. For 
example, age-dependent infection rates of variants32 and human population age 
structures could contribute to these regional differences. Variants' differential dependence 
on environmental factors33 such as humidity and temperature is another possibility. 
Additionally, viral mutations6,34,35, host genetic makeup36, immune responses23,37, and 
drug resistance38,39 may play a role. Variations in vaccine efficacies are also a contributing 
factor. 
Finally, the estimated fitness and relative changes in fitness of SARS-CoV-2 variants 
would be a valuable resource for genome-wide association studies, which can help 
identify mutations associated with fitness changes in SARS-CoV-2 and interactions with 
host genetic factors. 

Materials and Methods 
GISAID Meta Information 
The dataset used for this research is provided by GISAID18, which stands for Global 
Initiative on Sharing All Influenza Data. We download the metadata tsv file. There are a 
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total of 18 columns in the dataset. We mostly focused on Location, Clade, Pango Lineage, 
Variant, and Collection date. The variant column records the type of the SARS-CoV-2 
variant according to the WHO (World Health Organization) proposed labels. Only Variants 
of Interest (VOI) or Variant of Concern (VOCs) are labeled by WHO.  
Pango Lineage is a dynamic nomenclature system that tracks the transmission and 
spread of the SARS-CoV-2 variants. Pango Lineage uses phylogenetic diversity for 
naming the SARS-CoV-2 lineages that contribute most to the current propagation.  

Variant of Concern (VOC) is defined by WHO. When a variant of newly emerged 
SARS-CoV-2 changes the pandemic dynamics and causes increased hospitalization and 
death, the World Health Organization (WHO) labels that specific variant as a Variant of 
Concern (VOC). WHO also keeps the preventive measures on alert to check the further 
propagation. There are five variants of Concern (VOCs) labeled by WHO: Alpha, Beta, 
Gamma, Delta, and Omicron.  

Data Preprocessing 
In the data preprocessing stage, we have taken some steps to ensure the data is in the 
correct format before passing it to the DPGR model. Initially, the raw dataset is loaded 
from a TSV (Tab-separated value) file using libraries from pandas. Filtering of the rows is 
performed to ensure that the rows containing the non-null ‘Variant’ values are selected. 
We also mapped the variant name to a standardized format aligning with the GISAID or 
Pango nomenclature system to ensure consistency in variant names along the entire 
dataset. This ensured the uniformity of the naming of all the variants. Depending on the 
region of interest (country or continent), the ‘Location’ column is mapped to the predefined 
lists of regions to facilitate country or continent-level analysis. This standardization 
facilitated more accurate geographical analysis. Subsequently, the dataset was narrowed 
down to the most pertinent columns: 'Variant', 'Location', and 'Collection date'. The 
'Collection date' was then converted to a Python datetime format, and a new column 
representing the collection week was introduced to enable the weekly aggregation of the 
data. 
 
The dataset is further filtered to a specified date range ('2020-01-01' to '2022-05-31') and 
grouped by 'Variant', 'Location', and 'Date' to obtain weekly frequency counts for a certain 
variant at a target location. Certain variants, which were less relevant for the analysis, 
were excluded to focus on the primary variants of interest such as Alpha, Beta, Gamma, 
Delta, and Omicron. The 'Date' column was refined to extract the start date of each week, 
ensuring clarity in temporal analysis. 
 
This weekly dataset was further summarized by summing the frequencies of each variant 
for each week and location, providing a clear and concise dataset for further analysis. 
This comprehensive preprocessing stage ensured the dataset was clean, standardized, 
and adequately prepared for detailed analysis and visualization, forming a solid 
foundation for understanding the spread and evolution of COVID-19 variants across 
different regions and periods. 
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Sliding Windows Implementation  
The selection of time window for DPGR in a target region focus on dates of collection. 
Typically, the range of chosen time window ranges from 4 weeks to 12 weeks, considering 
both the good R2 fit and predefined P value threshold. For the region-specific analysis, 
the time windows are aligned with the periods when the target variants are predominant 
in a certain region of interest. For instance, in our continent-level analysis Omicron and 
Delta variants were predominant in each continent within the chosen time windows. Time 
windows are also influenced by the availability of data. The pairwise transmission fitness 
estimation analysis relies on having enough data points within each window to perform 
pairwise comparisons. For instance, the time window in Asia spans from December 2021 
(Figure 3 C), reflecting the period when Omicron began to spread rapidly in that region. 
The length of the time windows varies slightly depending on the region due to the 
variances in first detection of a variant at a certain region of interest, however they are 
generally consistent to allow for comparative analysis across different regions. This 
consistency helps in comparing the slope values (indicating the transmission fitness) 
across regions. 
  
To understand the significance of the estimated transmission fitness we considered a 
significance level of 0.05 and compared the p-value against this threshold to determine 
the statistical significance of the results. We also considered the R2 value or coefficient of 
determination while selecting the time windows to understand how well our regression 
model fits the observed data, indicating the proportion of the dependent variable 
(transmission fitness) can be predicted from the independent variable (time window). A 
higher R2 value helps to ensure that the suggested relationship between transmission 
fitness and the selected time window is strong and consistent. To facilitate more cross-
regional comparison R2 value provides consistency, ensuring the time windows selected 
in the regions of interest are based on strong statistical relationships. To ensure data 
quality the high R2 value helps to filter out periods where the observed data is noisy. Both 
the R2 value and p-value help to ensure the observed relationships are statistically 
significant and the model prediction is strong and explanatory. Thus, incorporating the 
sliding windows, R2 value and p-value during the estimates we ensured that our estimated 
transmission fitness is statistically significant. 

Neighbor Join Tree 
The neighbor-joining method is an agglomerative clustering algorithm to create the 
phylogenetic tree of species. This method does not consider the constant rate of 
evolution; hence the branch length from each node to the tips varies. It takes in input as 
genome sequence data and calculates the distance between each pair of taxa. The 
neighbor-joining algorithm uses the pairwise distance matrix to create an unresolved star-
shaped tree that is iterated over a few steps to find the tree’s branch lengths. From the 
distance matrix, it calculates a Q-matrix and finds the distance between each pair of taxa. 
It joins the two taxa with a new node and connects with the central node. The Q-matrix is 
calculated using this formula: 
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Q(i, j) = (n − 2)d(i, j) −	- d(i, k) −	- d(j, k)
!

"#$	

!

"#$	

 

Then the algorithm calculates the distance of each of the taxa in the pair to the newly 
created node using the following equation: 

δ(f, u) = 	
1
2 d
(f, g) +	

1
2(n − 2) [-d(f, k) −	-d(g, k)]

!

"#$

!

"#$

 

δ(g, u) = d(f, g) − 	δ(f, u) 
 
Here, u is the newly created node, and f, g is the taxa in the pair. The distance from the 
other taxa from the newly created node is calculated using the following equation: 

δ(u, k) = 	
1
2 [d

(f, k) − d(f, g)] 

Here, k denotes the node to calculate the distance, and u refers to the newly created 
node. 
 

Distance Matrices 
To construct the fitness stair and transmission fitness landscape, we created a pairwise 
distance matrix leveraging the Differential Population Growth Rate (DPGR) method to 
infer pairwise transmission fitness between SARS-CoV-2 variants. As the method is 
pairwise, we can directly estimate the transmission fitness of the adjacent variants like 
DPGRAlpha,Beta, DPGRBeta, Delta and DPGRDelta.Omicron. To infer the transmission fitness of the 
non-adjacent variants, DPGRAlpha,Delta, DPGRAlpha, Omicron ,  the property of logarithms 
(log(a/b) = log(a/c) + log(c/b) is used. Thus, we can infer the growth advantages of non-
adjacent variants. This technique allows us to create a distance matrix with a predefined 
root, capturing the relative fitness of multiple variants over a certain period. For our case, 
we considered Alpha, the earliest variant, as the root variant.  
 
 Alpha Beta Delta Omicron 
Alpha 0.000000 0.002313 0.008400 0.017715 
Beta  0.002313 0.000000 0.006088 0.015403 
Delta 0.008400 0.006088 0.000000 0.009315 
Omicron 0.017715 0.015403 0.009315 0.000000 

Table 1 : Pairwise Distance Matrix considering Alpha as the root variant 
Here, the distance matrix is non-negative because we considered absolute pairwise 
fitness. In non-absolute relative terms, transmission fitness between Omicron to Alpha is 
negative and vice-versa. 
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Construction of Fitness Stair 
The fitness stair (See Figure 5 d) is a step plot generated using the plt.step() function 
from the Matplotlib library. This plot visually represents the progressive fitness growth of 
various COVID-19 Variants of Concern (VOCs) relative to a root variant, in this case, 
Alpha. 
 
By examining the absolute pairwise distance matrix (as shown in Table 1), the fitness 
values for subsequent variants—Beta, Delta, and Omicron—progressively increase 
relative to Alpha. Specifically, the pairwise distances are 0.002313 for Beta, 0.008400 for 
Delta, and 0.017715 for Omicron. The distance between Alpha and itself is 0, as it serves 
as the reference point. This fitness stair (See Figure 5 d) effectively illustrates how each 
variant diverges in terms of fitness from the original Alpha variant, providing a clear visual 
representation of the evolutionary changes in their relative fitness. 
 

Construction of Fitness Landscape: 
In evolutionary biology, reproductive success of the organisms is understood by the 
fitness landscape. In the fitness landscape, the height of the landscape defines the 
relative fitness of one genotype with respect to the others. In our study, using the pairwise 
absolute distance matrix (Table 1) we constructed a pairwise fitness landscape to 
understand the relative fitness of pairs of variants. The variant pairs on the top of the 
landscape have higher relative fitness than those on the bottom of the landscape. 
 
The fitness landscape is generated by reading the distance matrix (Table 1) from a CSV 
file. This distance matrix, which contains pairwise fitness values between different SARS-
CoV-2 variants, is used to create a 3D surface plot. The Python pandas library is utilized 
to load the data and set the appropriate columns as the DataFrame's index. The x and y 
coordinates for the plot are derived from the matrix's columns and index, respectively. 
Using Plotly's “go.Surface” function, a surface trace is created, which visualizes the 
fitness values as a continuous 3D surface. The plot is configured to have transparent 
axes and background, ensuring a clean visualization focused on the fitness landscape 
itself. The camera position and perspective are adjusted to provide an optimal view of the 
surface to understand the relative fitness growth of the pairs of variants. To create the 
fitness landscape, we used the absolute pairwise distance matrix to visualize the 
landscape. As we go towards the peaks we observe the pairs with higher relative fitness. 
For instance, in Figure 5d, Omicron Vs. Alpha has higher relative fitness than Delta Vs. 
Omicron. This comprehensive visualization effectively highlights the relative fitness of 
each variant in a three-dimensional space, offering valuable insights into their 
evolutionary dynamics. 
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Figures and Figure Legends: 
 

 
Figure 1. Overall Computational Workflow of the DPGR Model for Transmission Fitness 
Estimation 
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Figure 2 : Pairwise Transmission fitness estimation of Omicron compared to Delta in 
several countries  
The figures (A-F) Illustrates the sharp increase of pairwise transmission fitness of 
Omicron Compared to Delta in the target countries. The y-axis in the plots refers to the 
log-transformed ratio of growth, and the x-axis refers to the time window in days.  G. 
The bar plot visualizes the estimated transmission fitness values in all the analyzed 
regions. 
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Figure 3 Pairwise Transmission fitness estimation of Omicron compared to Delta in 
several continents  
The scatterplots (A-G) visualize the sharp increase of transmission fitness of Omicron 
compared to Delta in several continents. G. Bar plots to visualize the fitness values in 
each continent 
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Figure 4: Pairwise Transmission fitness estimation of Omicron sub-lineages in target 
continents  
The subplots(A-E) Illustrates the estimated pairwise transmission fitness of Omicron 
Sub-lineages (BA.5 with others sublineage). F. estimated fitness values in several 
continents. 
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Figure 5: Progressive fitness evolution of Variants of Concerns (VOCs) 
a) Pairwise heatmap of the transmission fitness for WHO variants in USA. B) Lower 
triangular heatmap with absolute pairwise distance to create the NJ tree, Fitness Stair, 
and Fitness Landscape. c) Neighbor Join tree  d) Step plot visualizes the progressive 
transmission fitness gain of the WHO labeled Variant of Concerns (VOCs) in the United 
States. e) illustrates the pairwise transmission fitness landscape of the SARS-CoV-2 
variants in USA for the WHO labels. Variant Pairs having higher pairwise transmission 
fitness is on the top of the landscape and vice-versa. 
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1 Construction of the Differential Population Growth 
Rate (DPGR) Model 
When estimating the Differential Population Growth Rate (DPGR) between two target 
variants, it is assumed that the populations exhibit exponential growth rates. A period of 
linear growth is selected for analysis within the time window between pairs of target 
variants. Additionally, a time lag is accounted for to address the difference in the timing of 
their growth phases. 

																								𝑵𝟏 = 𝑵𝟏,𝟎𝒆𝒈𝟏(𝒕'𝑻𝟏)		,					𝑵𝟐 = 𝑵𝟐,𝟎𝒆𝒈𝟐(𝒕'𝑻𝟐)																																												 

where, the variable t is time,  N1 and N2 are the population as a function of time, N1,0 
and N2,0 are the initial populations, g1 and g2 are the growth rates, and T1 and T2 are 
the time lag of their growth, where t > T1 and T2.  

Now taking the ratio of their growth rate, 
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𝑵𝟏
𝑵𝟐
= 𝑵𝟏,𝟎

𝑵𝟐,𝟎
𝒆𝒈𝟏(𝒕'𝑻𝟏)'𝒈𝟐(𝒕'𝑻𝟐)  

				= 𝐶-	𝒆(𝒈𝟏'𝒈𝟐)𝒕 / ('𝒈𝟏𝑻𝟏/𝒈𝟐𝑻𝟐)  

= 𝐶-𝑒(0%'0&)1 / 2& 																		 

Here, C1 = N1,0/N2,0 and C2 = (-g1T1+ g2T2) are constants. Now taking the log 
transformation on both sides, we get, 

𝐥𝐨𝐠 ,𝐍𝟏
𝐍𝟐
- = (𝐠𝟏 − 𝐠𝟐)𝐭 + C                                           Eq. S1 

  
where C is a constant derived from C1 and C2. Because of the asymptotic cases of 
SAS-CoV-2, it is likely N1 and N2 are under-reported, which can lead to sampling biases.  
If we assume that the sampling biases are invariant or similar among different variants, 
then the ratio of N1/N2 would approximate the true ratio of the two subpopulations of 
variations.  
 
The term (g1−g2) denotes the Differential Population between the two populations of 
interest. If g1 is greater than g2, the first population grows faster than the second, and 
DPGR is a positive value. Otherwise, DPGR would be a negative value.  
 
With the linear form of Eq S1, we can apply linear regression to a scatter plot of 
log(N1/N2) versus t in an appropriate time window to infer DPGR.  
 

2. Indirect Estimation of DPGR 
 
During the COVID-19 pandemic period, some variants, say N1, 
dominated in earlier stages and some variants, say N3, appeared much 
later. Given the limited genomic sampling capacity, we cannot observe 
N1/N3 directly. In this case, we can choose an intermediate variant N2 
through which we can observe N1/N2 and N2/N3 through genomic 
sampling. For instance, for SARS-CoV-2 variants, there is limited co-
sampling of Alpha and Delta variants in the same location which makes 
DPGRAlpha-Delta challenging to estimate. With the Beta variant as an intermediate, we 
can have DPGRAlpha-Delta =  DPGR Alpha-Beta + DPGR Beta-Delta.  
 
The inference is based on the property of logarithms indicates, log(a/c) 
=log(a/b)+log(b/c), and is illustrated as follows.  
 
 DPGR1-3 ⋅t +C1-3 = (g1- g3) ⋅t + (-g1 T1+ g3 T3)  
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                               = log(N1/N3) 
                               = log((N1/N2) ⋅(N2/N3)) 
                               = log(N1/N2) + log(N2/N3) 
                               = (g1- g2) ⋅t + (-g1T1+ g2T2) + (g2 – g3) ⋅t + (-g2T2+ g3T3)) 
                               = DPGR1-2 ⋅t + DPGR2-3⋅t + (-g1T1+ g3 T3) 
Simplifying, we have, 
          DPGR1-3 ⋅t = (DPGR1-2 + DPGR2-3) ⋅t 
Hence, 
                              DPGR1-3 = DPGR1-2 + DPGR2-3 
 

3 Mitigating the Sampling Biases in Genomic 
Surveillance Dataset and Validating Model 
Robustness against Noise  
Existing literature have underscored the issue that estimating the viral transmission 
fitness is prone to sampling biases. Inconsistency in the data and geographic 
dominance of one variant over the other can highly compromise the estimated fitness 
values at a certain region7. Moreover, underreporting of the genomic sequencing data is 
frequently observed. For instance, in many of the African, Asian and South American 
countries underreporting is a crucial obstacle to estimating the viral transmission fitness. 
However, our proposed model made an effort to mitigate the sampling biases caused by 
an imbalanced dataset. One of the primary key points to be considered is the model 
estimates the pairwise transmission fitness. For estimating this pairwise transmission 
fitness, the weekly submission counts for any two target variants at each location within 
a particular time window are considered. This approach eliminates the chance of 
considering only the highly dominant variants in the target region and neglecting the 
less frequent ones. Thus, considering pairwise comparison and all the frequencies 
associated with target variants within the selected time window helps to reduce the 
biases induced by sampling, resulting in a more accurate estimation of transmission 
fitness, and strengthening the robustness of the model. 

To test the model’s performance in response to the noise in the data, the preprocessed 
GISAID dataset is induced with random noise from the Gaussian Distribution, widely 
known as the Normal Distribution or Bell Curve. The noise is added to the ‘Freq’ column 
of the dataset, which records the weekly sum of submission counts for each variant 
observed at a particular location. Gaussian distribution of mean 0 and varying standard 
deviation depending on the spread of the frequency count in a particular location is 
selected to induce the generated noise. Then the “np.normal.random()” function from 
the NumPy library is used to select random values from the Gaussian Distribution and 
added to the existing values of the Freq column. After that, the model is fitted with the 
noisy data to observe the linear performance of the model, as according to the 
assumption of the DPGR model, the transmission fitness growth must follow a linear 
pattern. Figure S7 and S8 illustrate the transmission fitness estimation scatterplots of 
Omicron compared to Delta in several countries and continents. It is apparent that after 
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introducing the noise, the estimated fitness values changed, and the range of the 
maximum and minimum fitness shifted, which is expected; however, the observed 
growth in the pairwise transmission fitness of Omicron is still maintaining the linear trend 
with R2 values ranging from 0.864 to 0.995 for continent level estimation. Higher R2 
values are observed in North America (0.974), Europe (0.995) and Oceania (0.985)  and 
the lowest R2 value is observed in Asia (0.864) (details in Table S4). For the country 
level analysis of transmission fitness estimation under gaussian noise we observed R2 

values ranging from 0.65 to 0.96 (details in Table S5).  Therefore, the linearity of the 
model validates the model’s resiliency in handling the introduced noise, demonstrating 
the ability of the model to capture the variations.  

Alongside adding random noise from the gaussian distribution, we also added synthetic 
noise to the target country (USA) from our existing distribution of Turkey to comprehend 
the robustness of the model by estimating the transmission fitness between Omicron 
and Delta between the sliding window of 2021-11-01 to  2021-12-31.  We calculated the 
frequency of weekly submission counts for Turkey and added it to our target country, 
USA, for pairwise estimation. We mixed varying proportions (see details of the mix 
proportions in Table S3) of USA and Turkey submission counts to understand the noise 
handling performance of the model. For every combination of mix proportions the 
observed R2 value is 0.97. The purpose of this addition is to simulate an enhanced 
dataset with an induced variance, mirroring potential inconsistencies akin to real-world 
surveillance discrepancies.  

Existing frequency count of USA, now supplemented with the frequency from Turkey, 
underwent pairwise transmission fitness estimation. The resultant transmission fitness 
and corresponding p-values (ranging from 0.00000194 to 0.00000189) offer nuanced 
insights into the model's significant predictive stability and accuracy in the face of 
synthetically induced data variability. (details in Table S3) 

This methodological fortification through synthetic noise introduction is crucial in our 
pursuit of model validation. It ensures that our model is not only calibrated to pristine 
datasets but can also withstand and accurately interpret datasets that have been 
subjected to the vicissitudes of real-world data collection and reporting anomalies. 
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4. Supporting Figures 
 
 

 
Figure S 1: Pairwise Transmission fitness estimation of Omicron compared to 
Delta in several countries  
The subplots (A-L) illustrate the sharp increase of pairwise transmission fitness of 
Omicron Compared to Delta in the target countries. 
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Figure S2 Heatmaps of the estimated pairwise transmission fitness of the WHO 
labeled Variants of Concern (VOCs) for the target countries.  
 
The heatmaps (A-Q) are read from row to column, describing the transmission fitness of 
a row variant compared to a variant in a column. The dark red cells in the figures 
indicate higher transmission fitness of the specific variant in the row compared to the 
variant in the column. Cells colored in blue indicate that a particular variant in the row 
has negative transmission fitness growth with the variant in the column. Dendrograms 
are plotted on the left and the top of each figure to depict differences in the transmission 
fitness growth rate of one variant to another. A higher variant distance indicates a 
significant difference in growth. Variants under the same node are closer to each other 
in transmission fitness growth than the other variants. 
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Figure S3: Pairwise Transmission fitness estimation of GRA compared to GK in 
target countries 
The sub-plots (A-G) illustrate the estimated pairwise transmission fitness of GRA 
Compared to GK in the target countries. G. The bar plot visualizes the estimated 
transmission fitness values in all the analyzed regions. 
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Figure S4: Heatmaps of the estimated pairwise transmission fitness of the GISAID 
labeled clades containing Variants of Concern (VOCs) for the target countries. 
The heatmaps from (A-Q) are read from row to column, describing the transmission 
fitness of a row variant compared to a variant in a column. The dark red cells in the 
figures indicate higher transmission fitness of the specific clade in the row compared to 
the clade in the column. Cells colored in blue indicate that a particular clade in the row 
has negative transmission fitness growth with the corresponding clade in the column. 
Dendrograms are plotted on the left and the top of each figure to depict differences in 
the transmission fitness growth rate of one clade to another. A higher clade distance 
indicates a significant difference in transmission fitness growth. Clades under the same 
node are closer to each other in transmission fitness growth than the other clades. 
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Figure S5: Pairwise Transmission fitness estimation of GRA compared to GK in 
target continents 
The sub-plots (A-F) illustrate the sharp increase of pairwise transmission fitness of GRA 
Compared to GK in the target continents. G. The bar plot visualizes the estimated 
transmission fitness values in all the analyzed regions 
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Figure S6: Heatmaps of the estimated pairwise transmission fitness of the GISAID 
labeled clades containing Variants of Concern (VOCs) for the target continents. 
The heatmaps from (A-E) are read from row to column, describing the transmission 
fitness of a row clade compared to a clade in a column. The dark red cells in the figures 
indicate higher transmission fitness of the specific clade in the row compared to the 
clade in the column. Cells colored in blue indicate that a particular clade in the row has 
negative transmission fitness growth with the corresponding clade in the column. 
Dendrograms are plotted on the left and the top of each figure to depict differences in 
the transmission fitness growth rate of one clade to another. A higher clade distance 
indicates a significant difference in transmission fitness growth. Clades under the same 
node are closer to each other in transmission fitness growth than the other clades. 
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Figure S7: Pairwise Transmission fitness estimation of Omicron compared to 
Delta after introducing Gaussian noise in target continents 
The estimated transmission fitness plots (A-R) of Omicron Compared to Delta in the 
target countries after introducing Gaussian Noise to validate model performance under 
simulated noises. The bar plot visualizes the estimated transmission fitness values in all 
the analyzed regions. 
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Figure S8: Pairwise Transmission fitness estimation of Omicron compared to 
Delta after introducing Gaussian noise in target countries 
The estimated transmission fitness plots (A-F) of Omicron Compared to Delta in the 
target different continents after introducing Gaussian Noise. G. Bar plot visualizes the 
estimated transmission fitness values in all the analyzed regions. 
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Figure S9: Estimated pairwise transmission fitness of Delta Compared to Omicron 
in several countries 
 The sub-plots (A-R) illustrate transmission fitness plots of Delta Compared to Omicron. 
The negative trend line indicates Delta has a negative transmission fitness growth 
compared to Omicron in different time windows in the selected regions. G. Bar plot 
visualizes the estimated transmission fitness values in all the analyzed regions. 
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Figure S 10: Estimated pairwise transmission fitness of Delta Compared to 
Omicron in several continents 
 The sub-plots (A-G) illustrate transmission fitness plots of Delta Compared to Omicron 
in the target continents. The negative trend line indicates Delta has a negative 
transmission fitness growth compared to Omicron in different time windows in the 
selected regions. G. Bar plot visualizes the estimated transmission fitness values in all 
the analyzed regions. 
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Figure S 11: Estimated pairwise transmission fitness of GK Compared to GRA in 
several countries 
The sub-plots (A-R) illustrate transmission fitness plots of GISAID clades GK Compared 
to GRA in the target countries. The negative trend line indicates GK has a negative 
transmission fitness growth compared to GRA in different time windows in the selected 
regions. The Bar plot visualizes the estimated transmission fitness values in all the 
analyzed regions. 
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Figure S 12: Fitness stair of Omicron Sub-lineages (BA.1*, BA.2*, BA.4*, BA.5*) 
The fitness stair illustrates the progressive transmission fitness gain of the Sub-lineages 
of the Omicron variant in the United States. 
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Figure S 13: Estimated transmission fitness comparison between DPGR and PyRO 
model 
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Figure S 14: Estimated pairwise transmission fitness of GK Compared to GRA in 
several continents 
The sub-plots (A-F) illustrate transmission fitness plots of GISAID clades GK Compared 
to GRA in the target continents. The negative trend line indicates GK has a negative 
transmission fitness growth compared to GRA in different time windows in the selected 
regions. G. Bar plot visualizes the estimated transmission fitness values in all the 
analyzed regions. 
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5. Supporting Tables 

Table S1: Observed R2 Values for Different 
Geographic Locations for Omicron Vs. Delta: 

Location (Country) P-Value Slope Value R2 value Time Window 
USA 0.0000000002 0.0084 0.99 '2022-03' - '2022-05' 

Canada 0.0000121512 0.0688 0.94 '2021-11' - '2021-12' 
Brazil 0.0000424733 0.0767 0.98 '2021-11' - '2021-12' 

Germany 0.0000037926 0.0292 0.96 '2021-12' - '2022-01' 
Belgium 0.0000017600 0.0239 0.97 '2021-12' - '2022-01' 

Italy 0.0002011518 0.0743 0.98 '2021-11' - '2021-12' 
Turkey 0.0017071813 0.1011 0.97 '2021-11' - '2021-12' 
Israel 0.0000498947 0.0750 0.97 '2021-11' - '2021-12' 

Ireland 0.0019830378 0.0734 0.93 '2021-11' - '2021-12' 
Spain 0.0034588120 0.0680 0.91 '2021-11' - '2021-12' 
France 0.0002099997 0.0612 0.91 '2021-11' - '2021-12' 

Denmark 0.0000116662 0.0280 0.94 '2021-12' - '2022-01' 
South Korea 0.0000074797 0.0360 0.90 '2021-11' - '2022-01' 

Japan 0.0000169371 0.0402 0.94 '2021-12' - '2022-01' 
Netherlands 0.0003426374 0.0590 0.898 '2021-11' - '2021-12' 
Switzerland 0.0008614151 0.0714 0.91 '2021-11' - '2021-12' 

Poland 0.0007941103 0.0952 0.99 '2021-11' - '2021-12' 
Mexico 0.0001007758 0.0709 0.96 '2021-11' - '2021-12' 

 
Location (Continents) P-Value Slope 

Value 
R2 value Time Window 

North America 0.0000000006 0.0072 0.99 '2022-03' - '2022-05' 
South America 0.0032756997 0.0561 0.99 '2021-12' 

Europe 0.0000234708 0.0094 0.96 '2022-02' - '2022-03' 
Oceania 0.0000000000 0.0063 0.99 '2022-01', '2022-02', 

'2022-03', '2022-04' 
Asia 0.0001804061 0.0579 0.98 '2021-12' 

Africa 0.0000349938 0.0349 0.92 '2021-11' - '2021-12' 
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Table S2: Observed R2 Values for Different 
Geographic Locations for Omicron Sub-lineages 
(BA.1* -BA.5*) 

Location 
(Continent) 

Comparison P-Value Slope Value R2 value Time Window 

North America BA.5 vs BA.1 0.0000017075 0.053027 0.982 '2022-04' – ‘2022-05’ 
North America BA.5 vs BA.2 0.0000008811 0.042768 0.985 '2022-04' – ‘2022-05’ 
North America BA.5 vs BA.3 0.0002200994 0.052902 0.993 '2022-04' – ‘2022-05’ 
North America BA.5 vs BA.4 0.0001053811 0.013199 0.931 '2022-04' – ‘2022-05’ 

Europe BA.5 vs BA.1 0.0000000001 0.045530 0.986 '2022-02' – ‘2022-05’ 
Europe BA.5 vs BA.2 0.0000000001 0.042186 0.988 '2022-02' – ‘2022-05’ 
Europe BA.5 vs BA.3 0.0000000019 0. 047117 0.990 '2022-02' – ‘2022-05’ 
Europe BA.5 vs BA.4 0.0047140545 0. 003869 0.567 '2022-02' – ‘2022-05’ 

Asia BA.5 vs BA.1 0.0000056861 0.057299 0.974 '2022-03' – ‘2022-05’ 
Asia BA.5 vs BA.2 0.0000041944 0.046805 0.959 '2022-03' – ‘2022-05’ 
Asia BA.5 vs BA.3 0.0024389686 0.051755 0.968 '2022-03' – ‘2022-05’ 
Asia BA.5 vs BA.4 0.2765494733 0.005945 0.193 '2022-03' – ‘2022-05’ 

Africa BA.5 vs BA.1 0.0000000005 0.033623 0.988 '2022-02' – ‘2022-04’ 
Africa BA.5 vs BA.2 0.0000000042 0.027082 0.981 '2022-02' – ‘2022-04’ 
Africa BA.5 vs BA.3 0.0002743433 0.033385 0.993 '2022-02' – ‘2022-04’ 

Oceania BA.5 vs BA.1 0.0000000300 0.048157 0.995 '2022-03' – ‘2022-05’ 
Oceania BA.5 vs BA.2 0.0000000255 0.043159 0.995 '2022-03' – ‘2022-05’ 
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Table S3:  Observed R2 Values for Estimation by 
Introducing Synthetic Bias by Mixing Two Different 
Locations: 

Location 
(Country) 

Comparison p-value Mix 
Proportion 

Slope 
Value 

R2 value Time Window 

USA + 
Turkey 

Omicron Vs. 
Delta 

0.00000194 1 Vs. 1 0.085 0.97 '2021-11-01'– '2021-
12-31' 

USA + 
Turkey 

Omicron Vs. 
Delta 

0.00000193 0.25 Vs. 
0.75 

0.085 0.97 '2021-11-01'– '2021-
12-31' 

USA + 
Turkey 

Omicron Vs. 
Delta 

0.00000194 0.75 Vs. 
0.25 

0.085 0.97 '2021-11-01'– '2021-
12-31' 

USA + 
Turkey 

Omicron Vs. 
Delta 

0.00000189 0.1 Vs. 0.9 0.085 0.97 '2021-11-01'– '2021-
12-31' 

Table S4:  Observed R2 Values for Estimation by 
Introducing Gaussian Noise: 

Location (Continent) Comparison Slope Value P-Value R2 value Time Window 
North America Omicron Vs. 

Delta 
29.77 0.0000000045 0.98 '2022-03' - '2022-05' 

South America Omicron Vs. 
Delta 

0.05 0.0386653928 0.92 '2021-12' 

Europe Omicron Vs. 
Delta 

18.46 0.0000000167 0.99 '2022-02' - '2022-03' 

Oceania Omicron Vs. 
Delta 

0.47 0.0000000000 0.99 '2022-01', '2022-02', 
'2022-03', '2022-04' 

Asia Omicron Vs. 
Delta 

0.09 0.0000006608 0.98 '2021-12'-‘2022-01’ 

Africa Omicron Vs. 
Delta 

0.07 0.0000054488 0.96 '2021-11' - '2021-12' 
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Table S5:  Observed R2 Values for Estimation by 
Introducing Gaussian Noise: 

Location 
(Country) 

Comparison P-Value Slope Value R2 value Time Window 

USA Omicron Vs. Delta 0.0000000981 35.67 0.96 '2022-03' - '2022-05' 
Canada Omicron Vs. Delta 0.0046773058 0.009 0.70 '2021-11' - '2021-12' 
Brazil Omicron Vs. Delta 0.0463248792 0.006 0.67 '2021-11' - '2021-12' 

Germany Omicron Vs. Delta 0.0000215862 0.031 0.93 '2021-12' - '2022-01' 
Belgium Omicron Vs. Delta 0.0000030266 0.051 0.96 '2021-12' - '2022-01' 

Italy Omicron Vs. Delta 0.0268002067 0.006 0.75 '2021-11' - '2021-12' 
Turkey Omicron Vs. Delta 0.0818599314 0.003 0.84 '2021-11' - '2021-12' 
Israel Omicron Vs. Delta 0.0104577546 0.014 0.84 '2021-11' - '2021-12' 

Ireland Omicron Vs. Delta 0.0024074943 0.009 0.92 '2021-11' - '2021-12' 
Spain Omicron Vs. Delta 0.0019413457 0.010 0.93 '2021-11' - '2021-12' 
France Omicron Vs. Delta 0.0146589756 0.005 0.66 '2021-11' - '2021-12' 

Denmark Omicron Vs. Delta 0.0000037399 0.081 0.96 '2021-12' - '2022-01' 
South Korea Omicron Vs. Delta 0.0000567553 0.006 0.85 '2021-11' - '2022-01' 

Japan Omicron Vs. Delta 0.0000279855 0.31 0.93 '2021-12' - '2022-01' 
Netherlands Omicron Vs. Delta 0.0027182864 0.003 0.86 '2021-11' - '2021-12' 
Switzerland Omicron Vs. Delta 0.0055076478 0.004 0.81 '2021-11' - '2021-12' 

Poland Omicron Vs. Delta 0.1311799352 0.002 0.76 '2021-11' - '2021-12' 
Mexico Omicron Vs. Delta 0.0263814437 0.009 0.66 '2021-11' - '2021-12' 
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Table S6: Observed R2 Values for Different 
Geographic Locations for GRA Vs. GK: 

Location (Country) P-Value Slope Value R2 value Time Window 
USA 0.0000000003 0.0094 0.99 '2022-03' - '2022-05' 

Canada 0.0000110765 0.0687 0.95 '2021-11' - '2021-12' 
Brazil 0.0000332042 0.0762 0.99 '2021-11' - '2021-12' 

Germany 0.0000038165 0.0292 0.96 '2021-12' - '2022-01' 
Belgium 0.0000017206 0.0239 0.97 '2021-12' - '2022-01' 

Italy 0.0001901356 0.0747 0.98 '2021-11' - '2021-12' 
Turkey 0.0017446336 0.1021 0.97 '2021-11' - '2021-12' 
Israel 0.0000478457 0.0758 0.97 '2021-11' - '2021-12' 

Ireland 0.0023451291 0.0641 0.92 '2021-11' - '2021-12' 
Spain 0.0035146910 0.0678 0.90 '2021-11' - '2021-12' 
France 0.0002081598 0.0615 0.91 '2021-11' - '2021-12' 

Denmark 0.0000116616 0.0277 0.94 '2021-12' - '2022-01' 
South Korea 0.0000069824 0.0351 0.90 '2021-11' - '2022-01' 

Japan 0.0000169799 0.0402 0.94 '2021-12' - '2022-01' 
Netherlands 0.0003454587 0.0590 0.89 '2021-11' - '2021-12' 
Switzerland 0.0009175994 0.0711 0.91 '2021-11' - '2021-12' 

Poland 0.0007546938 0.0954 0.99 '2021-11' - '2021-12' 
Mexico 0.0000858866 0.0711 0.96 '2021-11' - '2021-12' 

 
Location (Continents) P-Value Slope Value R2 value Time Window 

North America 0.0000000052 0.0082 0.98 '2022-03' - '2022-05' 
South America 0.0028071909 0.0554 0.99 '2021-12' 

Europe 0.0000376295 0.0099 0.95 '2022-02' - '2022-03' 
Oceania 0.0000000000 0.0064 0.99 '2022-01', '2022-02', 

'2022-03', '2022-04' 
Asia 0.0001752538 0.0577 0.99 '2021-12' 

Africa 0.0000328541 0.0351 0.93 '2021-11' - '2021-12' 
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Table S6: DPGR Estimates for All Variant Pairs 
(WHO Label) 

Location(Continent) Comparison Slope Value 
North America Alpha Vs. Alpha 0.00 

Beta Vs. Alpha 0.000392 
Delta Vs. Alpha 0.006577 

Omicron Vs. Alpha 0.014587 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.006185 

Omicron Vs. Beta 0.014195 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.008010 
Omicron Vs. Omicron 0.00 

Europe Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.012519 
Delta Vs. Alpha 0.044362 

Omicron Vs. Alpha 0.117089 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.031843 

Omicron Vs. Beta 0.104570 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.072727 
Omicron Vs. Omicron 0.00 

Asia Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.004142 
Delta Vs. Alpha 0.012872 

Omicron Vs. Alpha 0.057688 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.008729 

Omicron Vs. Beta 0.053545 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.044816 
Omicron Vs. Omicron 0.00 

Africa Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.027493 
Delta Vs. Alpha 0.048860 

Omicron Vs. Alpha 0.100258 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.021367 

Omicron Vs. Beta 0.072766 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.051399 
Omicron Vs. Omicron 0.00 
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Oceania Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.007550 
Delta Vs. Alpha 0.034721 

Omicron Vs. Alpha 0.110792 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.027171 

Omicron Vs. Beta 0.103243 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.076072 
Omicron Vs. Omicron 0.00 

 
Location(Country) Comparison Slope Value 

France Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.007791 
Delta Vs. Alpha 0.035466 

Omicron Vs. Alpha 0.105387 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.027675 

Omicron Vs. Beta 0.097596 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.069921 
Omicron Vs. Omicron 0.00 

Belgium Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.014263 
Delta Vs. Alpha 0.033342 

Omicron Vs. Alpha 0.097112 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.019079 

Omicron Vs. Beta 0.082849 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.063770 
Omicron Vs. Omicron 0.00 

Canada Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.031635 
Delta Vs. Alpha 0.074619 

Omicron Vs. Alpha 0.143377 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.042984 

Omicron Vs. Beta 0.111742 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.068758 
Omicron Vs. Omicron 0.00 

Africa Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.010137 
Delta Vs. Alpha 0.040724 
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Omicron Vs. Alpha 0.120853 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.030587 

Omicron Vs. Beta 0.110715 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.080128 
Omicron Vs. Omicron 0.00 

Germany Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.000393 
Delta Vs. Alpha 0.023663 

Omicron Vs. Alpha 0.095820 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.023271 

Omicron Vs. Beta 0.095427 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.072157 
Omicron Vs. Omicron 0.00 

Ireland Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.020674 
Delta Vs. Alpha 0.060162 

Omicron Vs. Alpha 0.133592 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.039489 

Omicron Vs. Beta 0.112918 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.073430 
Omicron Vs. Omicron 0.00 

Israel Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.007646 
Delta Vs. Alpha 0.014176 

Omicron Vs. Alpha 0.089077 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.006530 

Omicron Vs. Beta 0.081432 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.074902 
Omicron Vs. Omicron 0.00 

Italy Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.009695 
Delta Vs. Alpha 0.025031 

Omicron Vs. Alpha 0.099349 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.015336 

Omicron Vs. Beta 0.089654 
Delta Vs. Delta 0.00 
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Omicron Vs. Delta 0.074318 
Omicron Vs. Omicron 0.00 

Japan Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.001599 
Delta Vs. Alpha 0.008899 

Omicron Vs. Alpha 0.058610 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.007301 

Omicron Vs. Beta 0.057012 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.049711 
Omicron Vs. Omicron 0.00 

Netherlands Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.012271 
Delta Vs. Alpha 0.051898 

Omicron Vs. Alpha 0.110896 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.039627 

Omicron Vs. Beta 0.098625 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.058998 
Omicron Vs. Omicron 0.00 

Poland Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.021080 
Delta Vs. Alpha 0.082703 

Omicron Vs. Alpha 0.135399 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.061623 

Omicron Vs. Beta 0.114319 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.052696 
Omicron Vs. Omicron 0.00 

South Korea Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.014668 
Delta Vs. Alpha 0.054380 

Omicron Vs. Alpha 0.080371 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.039712 

Omicron Vs. Beta 0.065703 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.025991 
Omicron Vs. Omicron 0.00 

Spain Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.073431 
Delta Vs. Alpha 0.083084 
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Omicron Vs. Alpha 0.150894 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.009653 

Omicron Vs. Beta 0.077463 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.067810 
Omicron Vs. Omicron 0.00 

Switzerland Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.009731 
Delta Vs. Alpha 0.034113 

Omicron Vs. Alpha 0.105482 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.024382 

Omicron Vs. Beta 0.095751 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.071369 
Omicron Vs. Omicron 0.00 

Turkey Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.097631 
Delta Vs. Alpha 0.147481 

Omicron Vs. Alpha 0.200871 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.049850 

Omicron Vs. Beta 0.103240 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.053390 
Omicron Vs. Omicron 0.00 

USA Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.002825 
Delta Vs. Alpha 0.024760 

Omicron Vs. Alpha 0.109624 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.021935 

Omicron Vs. Beta 0.106799 
Delta Vs. Delta 0.00 

Omicron Vs. Delta 0.084864 
Omicron Vs. Omicron 0.00 

Mexico Alpha Vs. Alpha 0.00 
Beta Vs. Alpha 0.016381 
Delta Vs. Alpha 0.041005 

Omicron Vs. Alpha 0.111893 
Beta Vs. Beta 0.00 
Delta Vs. Beta 0.024623 

Omicron Vs. Beta 0.095511 
Delta Vs. Delta 0.00 
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Omicron Vs. Delta 0.070888 
Omicron Vs. Omicron 0.00 
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