1	Fragile X Syndrome Carrier Screening Using a Nanopore Sequencing Assay
2	Running title: FXS Carrier Screening using Nanopore Sequencing
3	Zhongmin Xia ^{a,†} , Qiuxiao Deng ^{a,b,†} , Ping Hu ^{c,†} , Chunliu Gao ^d , Yu Jiang ^e , Yulin Zhou ^{a,b,*} , and
4	Qiwei Guo ^{a,b,*}
5	^a Department of Medical Genetics, Women and Children's Hospital, School of Medicine,
6	Xiamen University, Xiamen, Fujiang, China.
7	^b School of Medicine, Xiamen University, Xiamen, Fujian, China.
8	°Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University,
9	Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
10	^d School of Public Health, Xiamen University, Xiamen, Fujian, China.
11	^e Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen
12	University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
13	[†] Zhongmin Xia, Qiuxiao Deng, and Ping Hu contributed equally to this work.
14	*Correspondence to:
15	Qiwei Guo, Department of Medical Genetics, Women and Children's Hospital, School of
16	Medicine, Xiamen University, Xiamen, Fujiang, China. Tel: +86-592-7805028. Email:
17	guoqiwei@xmu.edu.cn
18	Yulin Zhou, Department of Medical Genetics, Women and Children's Hospital, School of
19	Medicine, Xiamen University, Xiamen, Fujiang, China. Tel: +86-592-7805028. Email:
20	zhou_yulin@126.com

22 sequencing NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

21

Keywords: AGG interruption, carrier screening, CGG repeat, fragile X syndrome, nanopore

- 23 Word count: 2969
- 24 Figures: 4
- 25 Tables: 2
- 26 Nonstandard abbreviations: FXS, fragile X syndrome; TP-PCR, triplet-primed PCR.
- 27 Human gene: *FMR1*, fragile X messenger ribonucleoprotein 1.

28	BACKGROUND: Fragile X syndrome (FXS) is the leading cause of monogenic autism
29	spectrum disorder and inherited intellectual disabilities. Although the value of
30	population-based FXS carrier screening has been acknowledged, appropriate screening
31	methods are urgently required to establish and implement screening programs.
32	METHODS: We developed a nanopore sequencing-based assay that includes data analysis
33	software to identify FXS carriers. Reference and clinical samples were used to evaluate the
34	performance of our nanopore sequencing assay. Triplet-primed PCR and PacBio long-read
35	sequencing were used for comparisons.
36	RESULTS: Nanopore sequencing identified reference carrier samples with a full range of
37	premutation alleles in single-, 10-, and 100-plex assays, and identified AGG interruptions in
38	an allele-specific manner. Nanopore sequencing revealed no size preference for amplicons
39	containing different length CGG repeat regions. Finally, nanopore sequencing successfully
40	identified three carriers among ten clinical samples for preliminary clinical validation. The
41	observed variation in CGG repeat region size resulted from the base-calling process of
42	nanopore sequencing.
43	CONCLUSIONS: Our nanopore sequencing assay is rapid, high-capacity, inexpensive, and

easy to perform, thus providing a promising tool and paving the way for population-based

45 FXS carrier screening.

46 Introduction

47	Fragile X syndrome (FXS) (#MIM300624) is the leading cause of monogenic autism
48	spectrum disorders and inherited intellectual disability, affecting approximately 1/7,000
49	females and $1/4,000$ males worldwide (1, 2). The causative gene of FXS is fragile X
50	messenger ribonucleoprotein 1 (FMR1), an X-linked dominant gene with full penetrance in all
51	males and many females that plays a fundamental role in synapse formation and normal
52	dendrite development (3, 4). FMR1 can be categorized into four allelic forms based on the
53	number of CGG trinucleotide repeats in its 5' untranslated region: (a) normal alleles contain
54	\sim 5 to \sim 44 repeats and are stable in meiosis or mitosis; (b) intermediate alleles contain \sim 45 to
55	~54 repeats and during intergenerational transmission, their repeat number can change slightly;
56	(c) premutation alleles contain \sim 55 to \sim 200 repeats and can expand to full mutation during
57	maternal transmission to offspring; premutation alleles are associated with risk of fragile
58	X-associated primary ovarian insufficiency, fragile X-associated tremor/ataxia syndrome, and
59	fragile X-associated neuropsychiatric disorders; (d) full mutation alleles have more than 200
60	repeats that frequently accompany hypermethylation in adjacent CpG islands and in the repeat
61	region itself, which silences transcription and causes most cases of FXS (4). Asymptomatic
62	women with pre-mutation or full mutation alleles are thus termed FXS carriers because their
63	offspring are at risk of FXS (5). The prevalence of FXS carriers varies among different
64	populations, ranging from approximately 1/149 in Israel to approximately 1/581 in East Asia
65	(6-9). In many cases, CGG repeats are interrupted by one or more AGG trinucleotides (i.e.,
66	AGG interruptions), which can prevent strand slippage during replication, thus functioning as
67	a protective factor that decreases the risk of intergenerational CGG expansion (9). Evaluation

of AGG interruptions among CGG repeats is thus essential for genetic counseling, especially
for FXS carriers (4).

Owing to the severe morbidity of FXS, carrier screening, and subsequent prenatal 70 71 diagnosis are still warranted for this disease until the development of effective treatments (4, 10). Although all major ethnic groups and races appear to be susceptible to FXS, and FXS 72 carrier prevalence is high, whether FXS carrier screening should be offered to the general 73 74 population has long been a subject of debate (5, 9, 11-13). We previously showed that population-based carrier screening is the dominant strategy for FXS intervention in East Asia 75 (9). Recently, population-based pan-ethnic FXS carrier screening was officially endorsed by 76 77 the American College of Medical Genetics and Genomics (10). Clinical interest has shifted 78 from "whether to perform" to "how to perform" population-based FXS carrier screening. An 79 assay to capably address this issue should be able to examine a large number of female 80 samples with high accuracy, low cost, short turnaround time, and ease of performance. FXS genetic testing was performed using Southern blotting, a labor-intensive method 81 that allows estimation of CGG expansion size but cannot accurately quantitate CGG repeat 82 number and AGG interruption patterns (4). These drawbacks have been overcome with the 83 triplet-primed PCR (TP-PCR) assay, which has become the mainstay method in clinical use, 84 with several kits, including AmplideXTM FMR1 PCR Kit (Asuragen) and Molecular Fragile X 85 86 PCR Kit (Biofast) commercially available (4, 14). Typing AGG interruptions at the allelic level in female samples with TP-PCR remains challenging. Long-read sequencing-based 87 assays for FXS genetic testing using Nanopore and PacBio sequencing have recently been 88 developed (15-19). Theoretically, with the ability to directly sequence entire CGG repeats 89

90	and/or the full-length FMR1 gene, long-read sequencing-based assays enable quantitative
91	evaluation of CGG repeat number, AGG interruptions, rare intragenic variants, and large
92	deletions in a single allele, dramatically advancing genetic diagnosis of FXS (16). To date, the
93	clinical utility of long-read sequencing-based assays for population-based screening of FXS
94	carriers has not been demonstrated.
95	In this study, we developed a nanopore sequencing assay that includes data analysis
96	software and demonstrated its clinical potential as a promising tool for population-based FXS
97	carrier screening.
98	Materials and Methods
99	SAMPLES
100	Eight (P2, P3, P4, P5, N1, N2, N3, and N4) and two (NA06968 and NA20239) reference
101	samples with known FMR1 genotypes were obtained from the National Institutes for Food
102	and Drug Control of China and the Coriell Institute, respectively (20, 21). P3, P4, NA06968,
103	and NA20239 provide genomic DNA from FXS carriers with different extents of CGG
104	expansion, and N1, N2, N3, and N4 provide genomic DNA from women with normal FMR1
105	alleles. N1/P2 and N1/P5 mixtures represent genomic DNA from women carrying CGG
106	repeats near the intermediate/premutation boundary (Supplemental Table 1).
107	The genomic DNA of ten women whose FMR1 genotypes have been examined via
108	clinical FXS genetic testing was obtained from the Department of Prenatal Diagnosis,
109	Women's Hospital of Nanjing Medical University. Signed informed consent was obtained
110	from each participant to authorize the use of their genetic data for research purposes. This
111	study was approved by the Research Ethics Committee of Xiamen University.

112 AMPLIFICATION OF FMR1 ALLELES

- 113 The CGG repeats and flanking sequences of *FMR1* were amplified using a T100 Thermal
- 114 Cycler (Bio-Rad, Hercules, CA, USA). A 50-µL reaction containing 1× Expand Long
- 115 Template buffer 2 (Roche Diagnostics, Mannhei, Germany), 3.75U Expand Long Template
- 116 Enzyme mix (Roche Diagnostics, Mannhei, Germany), 0.5 mmol/L dNTPs (Takara, Kyoto,
- 117 Japan), 2.2 mol/L Betaine (SIGMA-Aldrich, Saint Louis, Missouri, USA), 0.33 mmol/L of
- 118 each forward and reverse primer (Sangon, Shanghai, China), and 50 ng DNA template. Primer
- information and amplification conditions are listed in Supplemental Tables 2 and 3,
- 120 respectively. After amplification, PCR products were purified with a TIANquick Midi
- 121 Purification Kit (TIANGEN, Beijing, China) and subsequently quantified with a Qubit[™]
- 122 dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) on a Qubit[™] fluorometer
- 123 (ThermoFisher Scientific, Waltham, Massachusetts, USA) according to the respective
- 124 manufacturers' instructions.

125 LIBRARY PREPARATION AND NANOPORE SEQUENCING

Library preparation and nanopore sequencing methods are described in detail in SupplementalMethods.

128 DATA ANALYSIS SOFTWARE

- 129 Based on the previously described STRique software (15), we developed data analysis
- 130 software to facilitate the identification of CGG repeat numbers and AGG interruptions for
- 131 FXS carrier screening in our nanopore sequencing assay. The logic of software is described in
- detail in Suppmental Methods; the software code was licensed by Xiamen University and is
- 133 available at https://github.com/guoqiwei-xmu/FXS-carrier-identifier.git.

134 TP-PCR ASSAY

135	A CE-certified AmplideX [™] FMR1 PCR Kit (Asuragen, Minneapolis, Minnesota, USA) and a
136	Chinese Food and Drug Administration-approved Molecular Fragile X PCR Kit (Biofast,
137	Xiamen, Fujian, China) were used as comparative methods. Respective assays were
138	performed on a T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA) and a 3500 DX Genetic
139	Analyzer (Applied Biosystems, Waltham, Massachusetts, USA), according to the
140	manufacturers' instructions.
141	CAFXS ASSAY
142	A long-read sequencing-based method termed the CAFXS assay, was used as a comparative
143	method and performed by a commercial service (Berry Genomics, Beijing, China). The
144	principle of CAFXS has been previously described (16).
145	Results
145 146	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING
145 146 147	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing
145 146 147 148	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing
145146147148149	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of
 145 146 147 148 149 150 	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand's 5' end. These primers allow
 145 146 147 148 149 150 151 	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand's 5' end. These primers allow the specific identifier sequence to be integrated into the amplicon of each sample to enable the
 145 146 147 148 149 150 151 152 	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand's 5' end. These primers allow the specific identifier sequence to be integrated into the amplicon of each sample to enable the analysis of multiple samples in a single sequencing assay. After purification and quantification,
 145 146 147 148 149 150 151 152 153 	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand's 5' end. These primers allow the specific identifier sequence to be integrated into the amplicon of each sample to enable the analysis of multiple samples in a single sequencing assay. After purification and quantification, amplicons are pooled to achieve equal masses to prepare the sequencing library. After
 145 146 147 148 149 150 151 152 153 154 	Results DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand's 5' end. These primers allow the specific identifier sequence to be integrated into the amplicon of each sample to enable the analysis of multiple samples in a single sequencing assay. After purification and quantification, amplicons are pooled to achieve equal masses to prepare the sequencing library. After nanopore sequencing of the library, post-sequencing data analysis is performed using novel

156	ionic current signal (base calling), and qualified reads that contain correct identifier, prefix,
157	and suffix sequences, are retained for further analysis. Next, the CGG repeat numbers of
158	qualified reads are evaluated based on the distance between prefix and suffix sequences. After,
159	the presence and position of AGG interruptions are evaluated for each qualified read. For each
160	sample, the distribution of reads with different CGG repeat numbers and AGG statuses is
161	analyzed. Finally, the CGG repeat number and AGG status of a specific allele are determined
162	based on the peaks generated from the aggregated reads with similar CGG repeat numbers
163	and AGG patterns. When an allele with a CGG repeat number over the threshold (e.g., 54 or
164	55) is identified, an alarm is triggered to flag an FXS carrier.
165	VALIDATION OF NANOPORE SEQUENCING ASSAY BY EXAMINING FXS
166	CARRIERS WITH VARIOUS CGG REPEAT NUMBERS AND AGG
167	INTERRUPTION PATTERNS

We first validated the nanopore sequencing assay by examining FXS carriers with various 168 numbers of CGG repeats and AGG interruption patterns in a single-plex manner. Reference 169 samples were used as FXS carriers, and TP-PCR and CAFXS were used as methods for 170 comparison. As shown in Fig. 2, nanopore sequencing identified a wide range of expanded 171 alleles. AGG interruption patterns were identified in an allele-specific manner. A slight 172 173 discordance between nanopore sequencing and comparative method results was observed in 174 the reported CGG repeat numbers of expanded alleles (Table 1). Due to a one CGG repeat difference between methods, the N1/P5 sample was designated as a non-carrier by the 175 nanopore sequencing assay but a carrier by comparative methods. 176

177 DETECTION OF FXS CARRIERS FROM WILDTYPE BACKGROUNDS WITH

178 THE MULTIPLEX NANOPORE SEQUENCING ASSAY

We next evaluated whether the nanopore sequencing assay could examine multiple samples 179 simultaneously and distinguish FXS carriers from wild-type backgrounds, as shown in Fig. 1. 180 181 Ten pairs of primers labeled with different identifier sequences were designed, validated, and used to amplify ten respective samples (Fig. 3A and Supplemental Table 2). As illustrated in 182 Fig. 1, amplicons were pooled to achieve equal masses for library preparation and nanopore 183 184 sequencing. Nanopore sequencing successfully detected a wide range of expanded alleles in the 10-plex assay (Fig. 3B-G). 185 We assessed whether the nanopore sequencing assay could simultaneously examine more 186 samples (e.g., 100 samples). Instead of using 100 identifier sequences to identify 100 different 187 188 samples, we mimicked the scenario by decreasing the pooling proportion of the six target amplicons to 6% (1% each), while increasing the pooling proportion of the four wild-type 189 190 amplicons to 94% (23.5% each). Similar to the results of the 10-plex assay, the 100-plex assay

191 successfully detected all expanded alleles within wild-type backgrounds (Fig. 3H-M).

192 INACCURATE BASE CALLING ATTRIBUTED TO VARIATIONS IN CGG REPEAT 193 QUANTIFICATION

Although the nanopore sequencing assay was able to detect various FXS carriers, the reported CGG repeat numbers of expanded alleles differed slightly from those of the comparative methods (Table 1). Moreover, for a specific reference sample, the reported CGG repeat numbers of the expanded alleles were slightly discordant among the different nanopore sequencing assays (Fig. 4A). To investigate the potential causes of these variations, we manually examined the sequences of 20 random reads with fewer CGG repeats than those

200	expected in the nanopore sequencing assay. As shown in Fig. 4B, sequence variants due to
201	inaccurate base calling were distributed in these reads, including prefix, suffix, and CGG
202	repeat sequences, resulting in the miscalculation of CGG repeat numbers in the subsequent
203	data analysis processes. We analyzed the Fastq data (i.e., data after base calling) for N1/P2
204	and N1/P5 reference samples derived from the CAFXS assay using our data analysis software,
205	and the reported CGG repeat numbers of these reference samples were concordant between
206	our data analysis pipeline and the CAFXS assay (Supplemental Fig. 1) confirming the
207	accuracy of post-base-calling processes using our data analysis software. Lastly, we
208	reanalyzed N1/P2 and N1/P5 reference samples based on sequencing data derived from the
209	sense and antisense strands, respectively, and confirmed that there was no strand bias in CGG
210	repeat quantification (Fig. 4C). Collectively, the observed variations in CGG repeat
211	quantification are thus mainly attributed to inaccurate base-calling.
212	NANOPORE SEQUENCING DEMONSTRATES NO SIZE PREFERENCES FOR
213	AMPLICONS WITH DIFFERENT CGG REPEATS
214	Although the nanopore sequencing assay could detect FXS carriers with a wide range of
215	expanded alleles, we noticed that for a specific carrier, the read ratios of expanded alleles
216	versus their wild-type counterparts tended to decrease with increasing allelic expansion (Fig.
217	4D). We thus evaluated whether the short amplicons of the wild-type alleles more readily
218	passed through the nanopore than the longer amplicons of the expanded alleles. Two libraries
219	derived from reference samples, N1 (29 CGG repeats) and P5 (55 CGG repeats) were pooled

- in equimolar amounts and sequenced. The read ratio of P5 to N1 was approximately 1.06,
- suggesting that there was no size preference for amplicons with different CGG repeats

222	(Supplemental Fig. 2). Moreover, we compared the read ratios of the expanded alleles with
223	their wild-type counterparts using single-plex, 10-plex, and 100-plex nanopore sequencing
224	assays. As shown in Fig. 4E, the read ratios of each sample were similar among the three
225	assays, suggesting that in the presence of different wild-type backgrounds, large amounts of
226	short amplicons did not skew the target size-indiscriminative characteristics of nanopore
227	sequencing. Finally, we evaluated the same samples on different nanopore sequencing
228	platforms, namely MinION and PromethION, which had 1190 and 8657 active nanopores on
229	their flow cells at the beginning of sequencing, respectively. As shown in Fig. 4F, the read
230	ratios were similar between the two platforms, suggesting that the target-size indiscriminatory
231	characteristics of nanopore sequencing were not influenced by the number of active
222	nanonores in the flow cells
232	hanopoles in the now eens.
232 233	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE
232 233 234	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING
 232 233 234 235 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we
 232 233 234 235 236 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering
 232 233 234 235 236 237 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with ≥ 54 CGG repeats was
 232 233 234 235 236 237 238 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with ≥ 54 CGG repeats was identified, an alert would be triggered designating a carrier. These samples were analyzed in
 232 233 234 235 236 237 238 239 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with \geq 54 CGG repeats was identified, an alert would be triggered designating a carrier. These samples were analyzed in parallel with CAFXS assay data. As shown in Table 2 and Supplemental Fig. 3, three carriers
 232 233 234 235 236 237 238 239 240 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with \geq 54 CGG repeats was identified, an alert would be triggered designating a carrier. These samples were analyzed in parallel with CAFXS assay data. As shown in Table 2 and Supplemental Fig. 3, three carriers were identified using the nanopore sequencing assay, concordant with the results of the
 232 233 234 235 236 237 238 239 240 241 	PRELIMINARY VALIDATION OF CLINICAL UTILITY OF NANOPORE SEQUENCING ASSAY FOR THE FXS CARRIER SCREENING To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with \geq 54 CGG repeats was identified, an alert would be triggered designating a carrier. These samples were analyzed in parallel with CAFXS assay data. As shown in Table 2 and Supplemental Fig. 3, three carriers were identified using the nanopore sequencing assay, concordant with the results of the CAFXS assays.
 232 233 234 235 236 237 238 239 240 241 242 	<td< td=""></td<>

244 appropriate screening methods are urgently needed to implement such screening programs. A favorable testing method should be able to examine large-scale samples with high accuracy, 245 low cost, short turnaround times, and ease of performance. Our nanopore sequencing assay 246 247 would be one option that can meet these demands. First, we developed reliable and user-friendly software to facilitate sequencing data analysis and output results. Second, using 248 reference and clinical samples, we demonstrated that the nanopore sequencing assay was able 249 250 to identify the full range of premutation FMR1 alleles, which account for the majority of FXS carriers, and the nanopore sequencing assay was able to reliably quantify CGG repeats and 251 AGG interruptions, which are two important determinants for assessing the risk of full 252 253 mutation expansion in carriers, thus facilitating genetic counseling for carrier screening. Third, 254 using identifier sequences, we tested multiple samples in one assay, dramatically increasing 255 test capacity and decreasing cost. In our 100-plex assay, the cost per sample was less than 256 USD 10. Moreover, nanopore sequencing demonstrated no size preferences for amplicons with different CGG repeats, suggesting that the detection of expanded alleles will not be 257 compromised by wild-type allele abundance as long as sufficient data are collected for each 258 sample, while tens of thousands of identifier sequences are available in the form of different 259 short combinations of nucleotides. In this regard, we could further increase sample capacity 260 and decrease cost per sample by collecting more data using an advanced nanopore sequencing 261 262 platform, such as PromethION. Fourth, the nanopore sequencing assay can be easily accomplished with a short turnaround time (for example, a 100-plex assay requires 263 approximately two days) by a technician in a regular molecular diagnostics laboratory. Lastly, 264 in comparison with TP-PCR and CAFXS, the equipment for nanopore sequencing assays is 265

266 more available and portable, and thus could be more readily and widely adapted, particularly
267 in underdeveloped regions of the world (22).

In comparison with NGS or PacBio-based long-read sequencing, nanopore sequencing 268 269 has a relatively higher sequencing error rate in single reads owing to inaccuracies in ionic current signal-to-nucleotide sequence translation (i.e., the base calling process) (22). This 270 innate error would cause one to several copy number variations during quantification of CGG 271 272 repeats in our nanopore assays, which may cause misclassification of subjects whose CGG repeat numbers are near the boundary between intermediate and premutation alleles. 273 Technical limitation-associated variations in CGG repeat sizing are common to most methods 274 275 and are allowed to a certain extent in technical standards (4). The accuracy of CGG repeat 276 sizing can be improved, rendering it not a major concern in the use of our nanopore sequencing assay. For example, base calling is educable with machine learning models, and 277 278 its accuracy continuously increases with the accumulation of nanopore sequencing data (23-25). Even at the current stage, a reference sample, such as N1/P5, can be used as a 279 quantitative control to monitor variation in base calling and direct the threshold setting for 280 carrier identification. 281

In comparison with amplification-free methods (15, 18), amplification of *FMR1* alleles drastically increases the sequencing depth of the target region and decreases costs. However, owing to the high GC content of the target region and competitive effects of wild-type alleles, the amplification efficiencies of expanded alleles tend to decrease with increasing allelic expansion (4). In this study, carriers with a full range of premutation alleles were identified by our nanopore sequencing assay; however, carriers with full mutation alleles, which constitute

288	approximately 3% of FXS carriers (9), could be missed by our assay. This issue can be
289	partially resolved by further optimizing the amplification system through the optimization of
290	reagents or reaction conditions. While the sensitivity of mosaicism detection has not been
291	systematically examined because its clinical significance in carrier screening remains unclear,
292	this sensitivity could be compared between nanopore sequencing and TP-PCR (~5-10%) (26)
293	using the mosaicism detection results of reference sample P3.
294	In conclusion, we developed a nanopore sequencing-based assay to identify FXS carriers
295	that includes data analysis software. This assay was demonstrated to be rapid, high-capacity,
296	inexpensive, and easy to perform, thus providing a promising tool for population-based FXS
297	carrier screening.
298	Conflict of interest
299	None
300	Research Funding
301	
	This work was supported by the National Natural Science Foundation of China [grant
302	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant
302 303	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141].
302 303 304	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141]. Acknowledgement
302303304305	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141]. Acknowledgement We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang,
 302 303 304 305 306 	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141]. Acknowledgement We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang, and Lingfeng Mao for their kind supports to this work.
 302 303 304 305 306 307 	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141] . Acknowledgement We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang, and Lingfeng Mao for their kind supports to this work. References
 302 303 304 305 306 307 308 	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141] . Acknowledgement We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang, and Lingfeng Mao for their kind supports to this work. References 1. Mila M, Alvarez-Mora MI, Madrigal I, Rodriguez-Revenga L. Fragile x syndrome: An
 302 303 304 305 306 307 308 309 	This work was supported by the National Natural Science Foundation of China [grant numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant numbers 3502Z20227141]. Acknowledgement We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang, and Lingfeng Mao for their kind supports to this work. References 1. Mila M, Alvarez-Mora MI, Madrigal I, Rodriguez-Revenga L. Fragile x syndrome: An overview and update of the fmr1 gene. Clinical Genetics 2017;93:2:197-205 doi:

- 310 10.1111/cge.13075.
- 311 2. Lozano R, Azarang A, Wilaisakditipakorn T, Hagerman RJ. Fragile x syndrome: A review
- of clinical management. Intractable & Rare Diseases Research 2016;5:3:145-57 doi:
- 313 10.5582/irdr.2016.01048.
- 314 3. Pieretti M, Zhang F, Fu Y-H, Warren ST, Oostra BA, Caskey CT, et al. Absence of
- expression of the fmr-1 gene in fragile x syndrome. Cell 1991;66:4:817-22 doi:
- 316 10.1016/0092-8674(91)90125-i.
- 4. Spector E, Behlmann A, Kronquist K, Rose NC, Lyon E, Reddi HV. Laboratory testing for
- fragile x, 2021 revision: A technical standard of the american college of medical genetics
- and genomics (acmg). Genet Med 2021;23:5:799-812. Epub 20210401 doi:
- 320 10.1038/s41436-021-01115-y.
- 321 5. Committee opinion no. 691: Carrier screening for genetic conditions. Obstet Gynecol
- 322 2017;129:3:e41-e55. Epub 2017/02/23 doi: 10.1097/AOG.000000000001952
- 323 00006250-201703000-00048 [pii].
- 324 6. Zlotogora J, Grotto I, Kaliner E, Gamzu R. The israeli national population program of
- 325 genetic carrier screening for reproductive purposes. Genetics in Medicine 2016;18:2:203-6
- doi: 10.1038/gim.2015.55.
- 327 7. Westemeyer M, Saucier J, Wallace J, Prins SA, Shetty A, Malhotra M, et al. Clinical
- 328 experience with carrier screening in a general population: Support for a comprehensive
- 329 pan-ethnic approach. Genetics in Medicine 2020;22:8:1320-8 doi:
- 330 10.1038/s41436-020-0807-4.
- 8. Archibald AD, Smith MJ, Burgess T, Scarff KL, Elliott J, Hunt CE, et al. Reproductive

genetic carrier screening for cystic fibrosis, fragile x syndrome, and spinal muscular

332

333	atrophy in australia: Outcomes of 12,000 tests. Genet Med 2018;20:5:513-23. Epub
334	20171026 doi: 10.1038/gim.2017.134.
335	9. Guo Q, Chang YY, Huang CH, Hsiao YS, Hsiao YC, Chiu IF, et al. Population-based
336	carrier screening and prenatal diagnosis of fragile x syndrome in east asian populations. J
337	Genet Genomics 2021;48:12:1104-10. Epub 20210607 doi: 10.1016/j.jgg.2021.04.012.
338	10. Gregg AR, Aarabi M, Klugman S, Leach NT, Bashford MT, Goldwaser T, et al. Screening
339	for autosomal recessive and x-linked conditions during pregnancy and preconception: A
340	practice resource of the american college of medical genetics and genomics (acmg).
341	Genetics in Medicine 2021;23:10:1793-806 doi: 10.1038/s41436-021-01203-z.
342	11. Dimmock DP. Should we implement population screening for fragile x? Genetics in
343	Medicine 2017;19:12:1295-9 doi: 10.1038/gim.2017.81.
344	12. Metcalfe SA, Delatycki MB, Cohen J, Archibald AD, Emery JD. Fragile x population
345	carrier screening. Genetics in Medicine 2018;20:9:1091-2 doi: 10.1038/gim.2017.209.
346	13. Metcalfe SA, Martyn M, Ames A, Anderson V, Archibald AD, Carter R, et al. Informed
347	decision making and psychosocial outcomes in pregnant and nonpregnant women offered
348	population fragile x carrier screening. Genetics in Medicine 2017;19:12:1346-55 doi:
349	10.1038/gim.2017.67.
350	14. Juusola JS, Anderson P, Sabato F, Wilkinson DS, Pandya A, Ferreira-Gonzalez A.
351	Performance evaluation of two methods using commercially available reagents for
352	pcr-based detection of fmr1 mutation. J Mol Diagn 2012;14:5:476-86. Epub 20120702 doi:
353	10.1016/j.jmoldx.2012.03.005.

354	15. Giesselmann P, Brändl B, Raimondeau E, Bowen R, Rohrandt C, Tandon R, et al.
355	Analysis of short tandem repeat expansions and their methylation state with nanopore
356	sequencing. Nat Biotechnol 2019;37:12:1478-81. Epub 20191118 doi:
357	10.1038/s41587-019-0293-x.
358	16. Liang Q, Liu Y, Duan R, Meng W, Zhan J, Xia J, et al. Comprehensive analysis of fragile
359	x syndrome: Full characterization of the fmr1 locus by long-read sequencing. Clin Chem
360	2022;68:12:1529-40. Epub 2022/09/29 doi: 10.1093/clinchem/hvac154
361	6726663 [pii].
362	17. Ardui S, Race V, Zablotskaya A, Hestand MS, Van Esch H, Devriendt K, et al. Detecting
363	agg interruptions in male and female fmr1 premutation carriers by single-molecule
364	sequencing. Human Mutation 2017;38:3:324-31 doi: 10.1002/humu.23150.
365	18. Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK,
366	et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with
367	programmable targeted nanopore sequencing. Sci Adv 2022;8:9:eabm5386. Epub 20220304
368	doi: 10.1126/sciadv.abm5386.
369	19. Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, et al. Sequencing the
370	unsequenceable: Expanded cgg-repeat alleles of the fragile x gene. Genome Research
371	2013;23:1:121-8 doi: 10.1101/gr.141705.112.
372	20. Amos Wilson J, Pratt VM, Phansalkar A, Muralidharan K, Highsmith WE, Beck JC, et al.
373	Consensus characterization of 16 fmr1 reference materials: A consortium study. The Journal
374	of Molecular Diagnostics 2008;10:1:2-12 doi: 10.2353/jmoldx.2008.070105.
375	21. Gao F, Huang W, You Y, Huang J, Zhao J, Xue J, et al. Development of chinese genetic

- 376 reference panel for fragile x syndrome and its application to the screen of 10,000 chinese
- 377 pregnant women and women planning pregnancy. Molecular Genetics & Genomic
- 378 Medicine 2020;8:6 doi: 10.1002/mgg3.1236.
- 379 22. Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: Towards clinical
- 380 applications. Trends in Biotechnology 2019;37:1:72-85 doi: 10.1016/j.tibtech.2018.07.013.
- 23. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, et al. Rubicon: A
- framework for designing efficient deep learning-based genomic basecallers. Genome
- Biology 2024;25:1 doi: 10.1186/s13059-024-03181-2.
- 384 24. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and
- challenges in long-read sequencing data analysis. Genome Biology 2020;21:1 doi:
- 386 10.1186/s13059-020-1935-5.
- 387 25. Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G, et al. From molecules to
- 388 genomic variations: Accelerating genome analysis via intelligent algorithms and
- architectures. Computational and Structural Biotechnology Journal 2022;20:4579-99 doi:
- 390 10.1016/j.csbj.2022.08.019.
- 391 26. Hantash FM, Goos DG, Tsao D, Quan F, Buller-Burckle A, Peng M, et al. Qualitative
- 392 assessment of fmr1 (cgg)n triplet repeat status in normal, intermediate, premutation, full
- 393 mutation, and mosaic carriers in both sexes: Implications for fragile x syndrome carrier and
- newborn screening. Genetics in Medicine 2010;12:3:162-73 doi:
- 395 10.1097/GIM.0b013e3181d0d40e.

Figure 1. Flowchart of screen for fragile X syndrome carriers using our nanopore

397 sequencing assay.

398 Figure 2. Comparison of nanopore sequencing, TP-PCR, and CAFXS for detection of

399 different FXS carrier reference samples.

400 Figure 3. Detection of FXS carriers within wildtype backgrounds with multiplex

- 401 **nanopore sequencing assay.** (A) Efficacy of ten pairs of primers labeled with different
- 402 identifier sequences was validated by amplification of wildtype samples. (B-G) CGG repeat
- 403 numbers associated with reference samples in the 10-plex nanopore sequencing assay.
- 404 (H-M) CGG repeat numbers associated with reference samples in the 100-plex nanopore
- 405 sequencing assay.

406	Figure 4. Evaluation of length variation and length preference of the nanopore
407	sequencing assay. (A) Slight variations were observed in reported CGG repeat numbers for
408	expanded alleles in reference samples among single-plex, 10-plex, and 100-plex nanopore
409	sequencing assays. (B) Representative reads with sequence variants due to inaccurate base
410	calling. (C) Reported CGG repeat numbers of expanded alleles were identical based on
411	reads derived from forward and reverse strands, respectively. (D) Read ratios of expanded
412	alleles versus their wild-type counterparts tend to decrease with increasing allelic expansion.
413	Error bars indicate standard deviation among triplicate samples. (E) Reads ratios of
414	expanded alleles versus their wildtype counterparts were similar among single-plex,
415	10-plex, and 100-plex nanopore sequencing assays. (F) Reads ratios of expanded alleles
416	versus their wildtype counterparts were similar between MinION and PromethION
417	platforms whose respective flow cells had 1190 and 8657 active nanopores.

	CGG repeat number						AGG interruption			
Sample	Manufacturer's	TP-PCR	TP-PCR	Nanopore	CAFXS	TP-PCR	TP-PCR	Nanopore	CAFXS	
	instruction	Asuragen	Biofast	sequencing		Asuragen	Biofast	sequencing		
N1/P2	29±1/54	29/54	29/54	29/53	29/54	2AGG	2AGG	9A9A9/none	9A9A9/none	
N1/P5	29±1/56±1	29/55	29/55	29/54	29/55	3AGG	3AGG	9A9A9/11A42	9A9A9/11A43	
P3	30±1/69±3	30/54/67	30/54/67	30/53/66	30/67	2AGG	2AGG	10A9A9/none/none	10A9A9/none	
NA06968	32/107	33/111	33/111	33/110	33/113	1AGG	1AGG	9A23/none	9A23/none	
P4	29±1/155±5	30/156	30/156	30/155	30/153	2AGG	2AGG	10A9A9/none	10A9A9/none	
NA20239	20/183-193	20/>200	20/>200	20/203	20/202	3AGG	3AGG	10A9/9A9A183	10A9/9A9A182	

418 Table 1. Comparison of nanopore sequencing, TP-PCR, and CAFXS for the detection of different FXS carrier reference samples.

CGG repeat number			AGG interruption				
Sample	Nanopore	CAFXS	Nanopore	CAFXS			
sequencing			sequencing				
1*	36/151	36/153	9A9A6A9/9A141	9A9A6A9/9A143			
2	33/50	33/51	9A6A6A9/10A39	9A6A6A9/10A40			
3	29/52	29/53	9A9A9/9A9A5A9A6A9	9A9A9/9A9A6A9A6A9			
4*	29/54	29/55	9A9A9/9A9A10A6A6A9	9A9A9/9A9A11A6A6A9			
5*	36/60	36/61	9A9A6A9/10A49	9A9A6A9/10A50			
6	29/29	29/29	9A9A9/9A9A9	9A9A9/9A9A9			
7	20/30	20/30	10A9/none	10A9/none			
8	29/29	29/29	9A9A9/9A9A9	9A9A9/9A9A9			
9	36/36	36/36	9A9A6A9/9A16A9	9A9A6A9/9A16A9			
10	26/29	26/29	10A9A5/9A9A9	10A9A5/9A9A9			

420 Table 2. Evaluation of nanopore sequencing assay with clinical samples

421 ^{*}FXS carrier

medRxiv preprint doi: https://doi.org/10.1101/2024.07.23.24310865; this version posted July 26, 2024. The copyright holder for this preprint **Pre-sequences** preprint preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Nanopore sequencing

AGG interruption pattern

CGG repeat number

Sample ο P2/N1 P5/N1 **P**3 NA06968 P4 NA20239

