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Highlights 43 

- This study combines MRD status measured by ctDNA with a DL-based risk 44 

assessment trained on histological image data to enhance recurrence prediction. 45 

- DL-based spatial assessment of tumor histopathology slides significantly improves 46 

the risk stratification provided by MRD alone. 47 

- MRD-negative patients with high DL-based risk had a significantly longer DFS if 48 

treated with ACT, compared to MRD-negative and DL low risk patients  49 

- The DL model is fully open-source and publicly available. 50 
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Abstract 54 

Background: Although surgical resection is the standard therapy for stage II/III colorectal 55 

cancer (CRC), recurrence rates exceed 30%. Circulating tumor DNA (ctDNA) emerged as a 56 

promising recurrence predictor, detecting molecular residual disease (MRD). However, 57 

spatial information about the tumor and its microenvironment is not directly measured by 58 

ctDNA. Deep Learning (DL) can predict prognosis directly from routine histopathology slides.  59 

Methods: We developed a DL pipeline utilizing vision transformers to predict disease-free 60 

survival (DFS) based on histological hematoxylin & eosin (H&E) stained whole slide images 61 

(WSIs) from patients with resectable stage II-IV CRC. This model was trained on the DACHS 62 

cohort (n=1766) and independently validated on the GALAXY cohort (n=1555). Patients 63 

were categorized into high- or low-risk groups based on the DL-prediction scores. In the 64 

GALAXY cohort, the DL-scores were combined with the four-weeks post-surgery MRD 65 

status measured by ctDNA for prognostic stratification.  66 
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Results: In GALAXY, the DL-model categorized 307 patients as DL high-risk and 1248 67 

patients as DL low-risk (p<0.001; HR 2.60, CI 95% 2.11-3.21). Combining the DL scores 68 

with the MRD status significantly stratified both the MRD-positive group into DL high-risk 69 

(n=81) and DL low-risk (n=160) (HR 1.58 (CI 95% 1.17-2.11; p=0.002) and the MRD-70 

negative group into DL high-risk (n=226) and DL low-risk (n=1088) (HR 2.37 CI 95% 1.73-71 

3.23; p<0.001). Moreover, MRD-negative patients had significantly longer DFS when 72 

predicted as DL high-risk and treated with ACT (HR 0.48, CI 95% 0.27-0.86; p= 0.01), 73 

compared to the MRD-negative patients predicted as DL low-risk (HR=1.14, CI 95% 0.8-74 

1.63; p=0.48).  75 

Conclusion: DL-based spatial assessment of tumor histopathology slides significantly 76 

improves the risk stratification provided by MRD alone. Combining histologic information with 77 

ctDNA yields the most powerful predictor for disease recurrence to date, with the potential to 78 

improve follow-up, withhold adjuvant chemotherapy in low-risk patients and escalate 79 

adjuvant chemotherapy in high-risk patients. 80 

 81 

Introduction 82 

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide1. 83 

Surgical resection remains the standard curative therapy in patients with Stage II-III CRC 84 

and resectable metastases. Despite advancements in surgical and adjuvant therapies, 85 

recurrence rates exceed 30% and 60%2,3, respectively. Patients who relapse have an 86 

increased mortality risk, hence identifying these patients at an early stage is crucial for 87 

optimising follow-up treatment decisions. Current prognostication systems for risk 88 

assessment, including imaging techniques, clinicopathological features and molecular data, 89 

are moderate predictors for recurrence risk. Similarly, follow-up strategies, such as tumor 90 

marker monitoring with carcinoembryonic antigen (CEA), lack sensitivity and specificity in 91 

identifying recurrence4–6. In particular for stage II CRC, the decision on adjuvant 92 

chemotherapy (ACT) is based on diverging risk assessment recommendations provided 93 

through international oncological associations7,8. Thus, a more fine-grained system for 94 

estimating the risk of relapse is required, as no stage-specific survival benefit for adjuvant 95 

chemotherapy has been proven. Therefore, new biomarkers for better and more precise 96 

prognostication are needed. Circulating tumor DNA (ctDNA) has emerged as a promising 97 

minimally invasive biomarker that measures a small fraction of ctDNA in the blood, allowing 98 

for the detection of molecular residual disease (MRD) status9. Additionally, ctDNA can be 99 

used for monitoring treatment response and early prediction of recurrence, as ctDNA 100 

positivity after surgery is associated with a higher risk of disease recurrence10,11. Previous 101 
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studies have shown that this correlation had already been found as early as four weeks after 102 

primary tumor resection12. However, ctDNA analysis alone does not capture the 103 

morphological characteristic of the tumor. For instance, information such as histopathological 104 

subtype, grading, vascular and lymphatic invasion, as well as the abundance of tumor-105 

infiltrating lymphocytes13–16, among many other morphological properties of the tumor 106 

microenvironment (TME), have been shown to be prognostically relevant and are reflected in 107 

current clinical guidelines17,18. Deep Learning (DL) is an artificial intelligence technology 108 

which is useful to extract quantitative biomarkers from routinely available clinical data in 109 

oncology19,20. DL models, trained on histopathological routine hematoxylin and eosin (H&E) 110 

tumor slides have been shown to act as survival prediction models outperforming current 111 

risk-stratifications systems21–23. DL can extract highly relevant information from routine 112 

pathology slides of CRC, including presence of microsatellite instability (MSI)24,25, gene 113 

mutations25,26, response to neoadjuvant therapy27, and overall survival (OS)22. Given the 114 

ability of DL to extract meaningful biological information from pathology slides that ctDNA 115 

cannot capture, we hypothesise that the combination of MRD assessment with a 116 

transformer-based DL risk score from morphology could significantly improve prognosis 117 

prediction. In this study, we aim to enhance patient stratification and recurrence prediction in 118 

patients with CRC by integrating MRD status derived from ctDNA with a DL-based risk score 119 

trained on routine histological images. 120 

Methods & Materials 121 

Patient Data Acquisition  122 

In this study, we analysed histological whole slide images (WSIs) of hematoxylin & eosin 123 

(H&E) stained tumour tissue of surgically curable CRC from two large cohorts in Germany 124 

and Japan (Figure 1A-B, Supplementary Figure 1). The first cohort was the Darmkrebs: 125 

Chancen der Verhütung durch Screening Study (DACHS), which includes 1774 WSI’s 126 

belonging to 1766 patients and was used as a training cohort (Supplementary Figure 1A). 127 

The second cohort was the GALAXY trial from the CIRCULATE-Japan study 128 

(UMIN000039205), which includes 1556 WSIs from 1555 patients and was used as an 129 

independent external validation cohort (Supplementary Figure 1B). The GALAXY trial 130 

comprised ctDNA data measuring the MRD status at the four weeks post-surgery interval: 131 

MRD positivity was defined as at least 2 out of 16 tumour-specific ctDNA variants detected 132 

above a predefined threshold based on Natera’s method12,28. Out of the 1555 patients 133 

included in the trial, 241 were MRD-positive and 1314 patients were MRD-negative at the 134 

respective 4 weeks interval12 (Figure 1B). For both cohorts, disease free survival in months 135 
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(DFS) was available. DFS marked the time from primary surgery to last follow-up date or last 136 

surgery to last follow-up date for patients for which primary surgery date was unavailable. 137 

Image Processing and Deep Learning Techniques 138 

Data Preprocessing  139 

All whole-slide images (WSIs) were segmented into image patches with dimensions of 140 

224�×�224 pixels and an edge length of 256 μm, resulting in an effective magnification of 141 

1·14 μm per pixel. During this segmentation process, patches that primarily contained 142 

background or blur (identified by having an average number of Canny edges below a 143 

threshold of 2) were removed from the dataset. The retained image tiles were colour 144 

normalised using the Macenko method in order to avoid stain-associated bias29. For WSI 145 

pre-processing, we employed our end-to-end publicly available pipeline, which can be found 146 

here: https://github.com/KatherLab/end2end-WSI-preprocessing.  147 

 148 

Model Development 149 

To train and validate our prediction DL-models we used our open-source pipeline, marugoto 150 

(https://github.com/KatherLab/marugoto). In the initial step, a self-supervised learning (SSL) 151 

model called UNI, pretrained on over 100 M histology-specific images and 100k WSIs, was 152 

employed to extract a 1024-dimensional feature vector from each image tile (Figure 1A-B)30. 153 

The obtained features were then preprocessed using a multi-headed self-attention 154 

mechanism by the transformer network (Figure 1C). Here, the network views patch 155 

embeddings as a sequence, with elements interacting through self-attention. For a WSI with 156 

n patches of dimension d, self-attention calculates a query-key product. Multi-headed self-157 

attention repeats this in h heads, then concatenating and transforming the outputs. The 158 

transformer architecture is designed with two layers, each featuring eight heads (total h=8), 159 

a latent dimension of 512, and equal dimensions (each 64) for queries, keys, and values. 160 

Post self-attention, the embeddings of each patch are combined into a sequence of 161 

dimension n×1024 processed through a linear projection and ReLU activation to reduce 162 

dimensionality to 512. A learnable class token is added to this sequence, resulting in an 163 

input dimension of (n+1) x 512 that is fed into the transform layer. Each transformer layer 164 

consists of a layer normalisation block followed by multi-headed self-attention, a block of 165 

layer normalisation and finally a multi-layer perceptron (MLP), with skip connections 166 

integrated across each block to facilitate training24. After processing through two transformer 167 

layers, the class token is inputted into an MLP head designed to produce a continuous risk 168 

score for each patient, serving as the output of the model. For model training, we used Cox 169 

partial likelihood, as the loss function22,31. We randomly split the DACHS cohort at the patient 170 
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level into training, validation, and test sets in a 4:4:2 ratio. The model was trained using the 171 

training set, and the best checkpoint, determined by the highest C-index on the validation 172 

set, was saved. This checkpoint was then validated on DACHS test set and CIRCULATE 173 

data cohort 174 

 175 

Visualisation  176 

To interpret our model's output, we generated whole-slide patient heatmaps showing the DL 177 

prediction scores. We used our trained Vision Transformer (ViT) model to process tile-level 178 

features extracted from the WSI. The features are passed through the trained model to 179 

obtain tile-level scores, which are then combined with Grad-CAM (Gradient-weighted Class 180 

Activation Mapping) values to generate weighted scores, which were normalised to a range 181 

of -1 to 1 facilitating the identification of the most significant tiles. Heatmaps were then 182 

created using the weighted scores, with red indicating high-risk, and blue indicating low-risk. 183 

To maintain interpretability, we blended these heatmaps with the original image features, 184 

providing clear insights into the tumor morphology and the model's predictions.  185 

Experimental Design  186 

In our study we first trained a transformer-based DL model on the DACHS cohort, utilizing 187 

clinical data on disease-free survival (DFS) events and DFS time in months to generate 188 

patient level DL-based risk scores (Figure 1C). Next, we externally validated the trained DL 189 

model on the GALAXY cohort. The continuous DL-risk score was binarized into DL high-risk 190 

and DL low-risk categories based on a fixed threshold, defined as the median risk score in 191 

the training cohort (0.9357855). Subsequently, we combined the four-week post-surgery 192 

MRD status from the GALAXY trial with the DL-risk scores to analyze survival differences 193 

between these subgroups (Figure 1D). We also looked at the effects of adjuvant 194 

chemotherapy in the various subgroups. Survival Analysis was performed using Kapan-195 

Meier analysis and log-rank test to compare DFS time between the groups. Additionally, 196 

multivariate analysis was conducted using Cox proportional hazard models, including the 197 

covariates: age, gender, pathological T-Stage (pT) and pathological N-Stage (pN)22. Lastly, 198 

we performed a morphological analysis to identify histopathological correlations between the 199 

DL high-risk and low-risk subgroups, using classification heatmaps (Figure 1D).  200 

Data and Code availability  201 

Our whole slide image preprocessing pipeline is available here: 202 

https://github.com/KatherLab/end2end-WSI-preprocessing. The code for the pretrained 203 

vision encoder UNI can be found under:  https://github.com/mahmoodlab/uni. Our DL model 204 
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codes are publicly available at https://github.com/KatherLab/marugoto/tree/survival-205 

transformer/marugoto/survival. The respective study Principal Investigators provided the 206 

remaining data. For detailed data sharing policies, please refer to the original publications. 207 

Results 208 

DL stratifies patients by recurrence risk 209 

We trained a DL model to generate risk scores based on DFS and validated its performance 210 

on the GALAXY cohort. Based on the DL-risk scores, we divided our cohort into DL high- 211 

and DL low-risk groups, followed by a survival analysis using Kaplan Meier estimator and 212 

Cox proportional hazard analysis (Figure 1D). These results were then compared with the 213 

stratification outcomes of MRD status four weeks post-surgery in the GALAXY cohort. 214 

Among the 1,555 patients 19.8% (n=307) were categorized as DL high-risk and 80.2% 215 

(n=1248) as DL low-risk. Patients classified as DL high-risk exhibited a significantly elevated 216 

risk of disease recurrence compared to DL low-risk patients (HR=2.6, CI 95% 2.11-3.21; p < 217 

0.005), with a 20-month DFS of 59.3% vs. 82.1%, respectively (Figure 1D). The ctDNA 218 

analysis alone stratified 15.5 % (n=241) patients as MRD-positive and 84.5% (n=1,314) as 219 

MRD-negative, with an HR of 11.4 (CI 95% 9.28-14, p<0.001, Supplementary Figure 2A). In 220 

the multivariate analysis, including the covariates age, sex, pT, and pN, we found the most 221 

prognostic indicator for recurrence risk to be MRD positivity (HR=10.57, CI 95% 8.26-13.53; 222 

p<0.001), followed by pT3-pT4-Stage (HR=2.00, CI 95% 1.20-3.35; p<0.05, Figure 1F). The 223 

DL-risk score was significant with an HR of 1.46 (CI 95% 1.11-1.90, p<0.05). When 224 

correlating the DL risk categories with patient characteristics, we found significant 225 

differences in sex, pT-Stage, pN-Stage, pathological Stage, and MRD status (Table 1). 226 

Together, these data demonstrate that the DL model can significantly stratify patients 227 

according to their risk of recurrence. 228 

DL stratifies recurrence risk within MRD subgroups 229 

We hypothesised that by integrating the MRD status with our DL risk score we can further 230 

stratify the patients according to risk of recurrence, particularly the MRD-negative patients. 231 

To test this, we combined the binarized DL-derived risk score with the MRD status four-232 

weeks after curative surgery (Figure 2). In the MRD-positive group, 33.6% (81 out of 241 233 

patients) were categorized as DL high-risk and 66.4% (160 out of 241 patients) as DL low-234 

risk, with an HR of 1.57 (CI 95% 1.18-2.12; p=0.002, Figure 2A). The DFS-time interval was 235 

longer in the DL low-risk group, with a 20-months DFS of 30.9% compared to 9.9% in the DL 236 

high-risk group (Figure 2A).  237 
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In the MRD-negative group, 17.2% (226 out of 1,314 patients) were classified as high-risk by 238 

the DL model and 82.8% (1,088 out of 1,314 patients) as DL low-risk with an HR of 2.36 (CI 239 

95% 1.73-3.23; p<0.001, Figure 2B). Additionally, the 20-month DFS was longer in the DL 240 

low-risk group at 89.7%, compared to 77% in the DL high-risk group (Figure 2B). In a 241 

multivariate Cox analysis with age, sex, pT and pN as covariates, the DL-score was the only 242 

independent prognostic predictor in the MRD-positive group with an HR of 1.51 (CI 95% 243 

1.07-2.14; p= 0.018, Supplementary Figure 2B). In the MRD-negative group, pT1-T2 was the 244 

strongest prognostic indicator with an HR of 2.50 (CI 95% 1.73-3.64; p<0.001, 245 

Supplementary Figure 2C). The DL risk score, with an HR of 1.28 (CI 95% 0.83-1.99; 246 

p=0.27), was not an independent prognostic predictor (Supplementary Figure 2C). In 247 

summary, these data show that the combination of MRD status with the DL risk score 248 

enables a better stratification of patients with CRC.  249 

DL-based recurrence risk predicts benefit from adjuvant chemotherapy 250 

in MRD-negative patients 251 

We hypothesised that our DL-risk score could identify patients with stage II-IV CRC who 252 

might benefit from ACT, despite being MRD-negative. To test this hypothesis, we explored 253 

the association of ACT with DFS by performing Kaplan-Meier analysis within the DL high-risk 254 

and low-risk subgroups among both MRD-positive and MRD-negative patients (Figure 2 C-255 

F). For the MRD-positive group, patients receiving ACT in had significantly longer DFS in 256 

both the DL low-risk group (HR=0.20, CI 95% 0.14-0.30; p<0.001, Figure 2C) and in the DL 257 

high-risk group (HR=0.25, CI 95% 0.16-0.43; p<0.001, Figure 2E). Without receiving ACT, all 258 

MRD-positive and DL high-risk patients experienced recurrence within 20-months, whereas 259 

18.6% of the MRD-positive and DL high-risk patients who received ACT remained disease-260 

free after 20 months (Figure 2E). In the MRD-negative group, patients in the low-risk DL 261 

group did not have longer DFS when treated with ACT (HR=1.14, CI 95% 0.8-1.63; p=0.48). 262 

The 20-month DFS was 89.4% for patients treated with ACT vs 89.9% for patients not 263 

receiving ACT (Figure 2D). Interestingly, patients in the MRD-negative and DL high-risk 264 

group showed significantly longer DFS when treated with ACT (HR 0.48, CI 95% 0.27-0.86; 265 

p= 0.01, Figure 2D). The 20-month DFS rate was 86.2% in patients who received ACT and 266 

thus significantly higher than in patients who did not receive ACT (70.5%). This disease-free 267 

survival advantage continued to be seen in the 40-month DFS rate at 83% (with ACT) vs 268 

68.9% (without receiving ACT, Figure 2F). 269 

Together, these data show that the DL prognostication model can successfully further stratify 270 

MRD-negative patients. This indicated that even within the low-risk subgroup (according to 271 
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MRD), there are high-risk individuals for whom the omission of ACT may carry a higher risk 272 

of recurrence.  273 

DL can identify histopathological features linked to prognosis 274 

Measurements of ctDNA provide information about viable and disseminated tumor cells, 275 

serving as surrogate markers for their presence in the body and enabling a non-invasive 276 

assessment of MRD after surgery. However, they do not provide any information regarding 277 

tumor morphology as well as the TME, which is reflected in histopathology slides and is 278 

known to be related to clinical outcomes. We investigated whether our model trained on 279 

histopathology images without any manual annotation, learned to consider morphological 280 

features of the tumor and the TME, which would be synergistic to MRD status. We used a 281 

model trained on DACHS and deployed on GALAXY, visualising highly predictive regions at 282 

both high and low magnification, as shown in Figure 3.  283 

In the DL low-risk classified patients, the morphological analysis revealed a variety of benign 284 

histopathological tissue features (Supplementary Figure 3A). As the DL score increased, the 285 

histological image tiles still below the risk threshold displayed moderately differentiated 286 

tumor components. These samples still displayed a balanced tumor-stroma ratio and tumor 287 

glands with tubular to cribriform architecture, indicating an intermediate phenotype between 288 

DL low and DL high-risk morphological characteristics (Figure 3A-B). The images, above the 289 

risk threshold, displayed high-grade tumor cells with a significant desmoplastic stroma 290 

reaction. There was a high a intratumoral stroma fraction, and the presence of tumor 291 

buds/poorly differentiated clusters, which are known to be associated with a higher 292 

recurrence risk (Figure 3A-B).32–36 Taken together, we observed a clear morphological 293 

continuum mirroring the progression from DL low to DL high-risk tumors. Moreover, we 294 

analysed the distribution of the DL risk score with clinically relevant molecular information 295 

namely MSI status, BRAF and RAS mutational status (Figure 3 C-F). We found that the 296 

distribution was very similar for all these factors, suggesting that our DL model 297 

independently detects and accounts for additional prognostically relevant morphological 298 

features. 299 

In summary, although our histopathology DL model was trained without human annotations, 300 

and solely on non-processed WSIs, we found that the model learned to pay attention to 301 

regions linked to tumor biological features plausibly associated with prognosis, thereby 302 

synergizing with ctDNA. Moreover, our findings are consistent with previous DL-based end-303 

to-end prognostication approaches in CRC based on H&E histopathology alone22,37. 304 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.23.24310822doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.23.24310822
http://creativecommons.org/licenses/by/4.0/


Discussion 305 

CRC can often be cured through surgery, but a subset of patients experience relapse, which 306 

is associated with high mortality. To mitigate this risk, ACT is administered to locally 307 

advanced CRC patients post-surgery. However, the majority of these patients do not benefit 308 

from such treatment, which is associated with substantial side effects38. Decades of research 309 

have focused on identifying potential biomarkers to administer ACT selectively to high-risk 310 

individuals who would benefit the most, while withholding it from low-risk individuals. To 311 

date, one of the most promising biomarkers for this purpose is ctDNA. Measurement of MRD 312 

through ctDNA is non-invasive, robust, and highly prognostic. However, ctDNA does not 313 

capture the tumor's interaction with its microenvironment—the complex spatial ecology of 314 

tumors39-nor the tumor morphology itself. This is a limitation of ctDNA as a biomarker given 315 

that, in addition to conventional histopathology tumor features, the interplay between tumors 316 

and their microenvironment has been demonstrated to be highly prognostic and predictive 317 

over the years. In our study, we demonstrate that combining DL-based risk assessment with 318 

MRD measurement further enhances prognostic capabilities: MRD-negative patients who 319 

were predicted to be at high-risk for relapse by our DL model had a significantly longer DFS 320 

if treated with ACT, whereas in MRD-negative patients with a DL-based low-risk status no 321 

DFS benefit was seen for those receiving ACT (Figure 2F). These observations suggest that 322 

healthcare providers may identify a subset of patients who are at risk for relapse but are not 323 

detected through current diagnostic tools, including a diagnostic as innovative as ctDNA. 324 

Previous studies developing DL-based prognostication systems failed to provide evidence 325 

for potentially different chemotherapy efficacy across DL categories, by which all potential 326 

therapeutic implications of these models remain speculative23,40 327 

To our knowledge, our study provides the first evidence suggesting that a DL risk 328 

assessment algorithm may indicate therapy efficacy in a real world setting in CRC. This 329 

combined approach may improve patient selection, suggesting a way how ACT could be 330 

restricted to those patients who are most likely to benefit from it. Furthermore, our DL 331 

method is using the latest state-of-the-art models, is fully open source and can be reused 332 

and adapted by anyone.  333 

Limitations 334 

A limitation of our study is that integrating our insights into clinical routine requires further 335 

evaluation in additional cohorts, ideally in a prospective manner. Despite this, our study, 336 

encompassing thousands of patients across different ethnicities, represents one of the 337 

largest studies in this field. Moreover, we utilized a state-of-the-art foundation model for 338 
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digital pathology analysis, UNI30. This is particularly relevant for clinical translatability, as the 339 

capabilities of foundation models are rapidly advancing, suggesting that further performance 340 

gains are conceivable with improved DL models. Nevertheless, medical device approval in 341 

Japan, the US, and the European Union requires a static piece of software that cannot be 342 

easily updated. Therefore, like any other DL-based biomarker, our method may be outdated 343 

by the time of clinical approval. We urge regulators and policymakers to work towards 344 

enabling the update of DL-based biomarkers with the latest technologies. 345 

Conclusion 346 

Despite these limitations, our data show that the excellent prognostic performance of ctDNA 347 

in CRC can be further improved by DL-based end-to-end assessment of routine pathology 348 

slides. After prospective validation, this approach provides a plausible and comprehensive 349 

strategy for relapse risk assessment with potential therapeutic implications.  350 
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Figures & Tables 432 

 433 

Figure 1: Study Design and DL risk stratification overall  434 

(A) DACHS cohort overview including patient characteristics and WSI preprocessing pipeline 435 

using UNI a pretrained vision encoder for feature extraction. (B) GALAXY cohort overview 436 

including patient characteristics and WSI preprocessing pipeline. (C) Flowchart of the study 437 

design: DFS data was analysed using a Cox-Regression model and fed into the DL-Model 438 

combined with the image features from the DACHS cohort for training. The DL-Model was 439 

then deployed onto the GALAXY features and a DL-Score was obtained. (D) Overview 440 

Experimental Setup: Patients were first categorised based on MRD status and then sub-441 

categorized according to the DL score. Survival analysis with Kaplan-Meier estimator and 442 

Cox proportional hazard models were performed. Lastly, highly predictive Tiles and patient 443 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.23.24310822doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.23.24310822
http://creativecommons.org/licenses/by/4.0/


whole slide heatmaps were generated. (E) Kaplan-Meier curves for DFS stratified by DL 444 

high-risk and DL low-risk patients. (F) Forest plot showing multivariate cox regression 445 

analysis including the covariates gender, age, DL risk score, pathological Nodal Stage (pN-446 

Stage), pathological Tumor Stage (pT-Stage) and MRD-status and their association with 447 

DFS. HR and 95% CI were calculated by the Cox proportional hazard model. P-value was 448 

calculated using the two-sided log-rank test (*p<0.05, ** p<0.001).  Plot were generated 449 

using lifelines package in Python 3.11.5  450 

DACHS=Darmkrebs: Chancen der Verhütung durch Screening Study, WSI=whole-slide 451 

image, DFS=disease-free survival, DL=Deep Learning, MRD=molecular residual disease, 452 

HR=Hazard ratio, CI=Confidence interval 453 

 454 

 455 
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Figure 2: DL stratifies recurrence risk within MRD subgroups 456 

Kaplan-Meier curves showing DFS stratification by DL high-risk and DL low-risk groups for 457 

(A) MRD-positive and (B) MRD-negative groups, followed by Kaplan-Meier curves showing 458 

DFS stratified by with or without ACT treatment in (C) MRD-positive and DL low-risk, (D) 459 

MRD-negative and DL low-risk, (E) MRD-positive and DL high-risk and (F) MRD-negative 460 

and DL low-risk subgroups. HR and 95% CI were calculated by the Cox proportional hazard 461 

model. P-value was calculated using the two-sided log-rank test. Plots were generated using 462 

the lifelines package in Python 3.11.5 DFS=disease-free survival, DL=Deep Learning, 463 

ACT=adjuvant chemotherapy, MRD=molecular residual disease, HR=Hazard ratio, 464 

CI=Confidence interval. 465 

 466 

 467 

Figure 3: Morphological and molecular features of the DL risk score 468 
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(A) Highly predictive tiles for patients below the DL risk-threshold and above the DL risk-469 

threshold exemplarily with DL score reported. (B) Whole slide patient heatmaps showing the 470 

DL prediction score, red indicating high-risk, and blue indicating low-risk. Box plot showing 471 

distribution of DL risk score among (C) MSI status (D) BRAF-V600E mutational status and 472 

(E) PanRAS mutational status. P-Value calculated using Kruskal-Wallis test. Figure was 473 

created using Flourish (https://flourish.studio/).  474 

DL= Deep Learning, MRD= molecular residual disease, WT= wildtype, MUT=mutation, 475 

MSS=microsatellite stable, MSI= microsatellite instability, NS=not significant 476 

 477 

 478 

Patient 

characteristics 

Category DL high-risk (n=307�), 

n (%) 

DL low-risk (n=1248),  

n (%) 

Chi squared and p 

values 

Age 
</=70 167 (54.4) 647 (51.8) X² = 0.54618 

P-value = 0.4599 >70 140 (45.6) 601 (48.2) 

Sex 
Female 120 (39.1) 603 (48.3) X² = 8.0696 

P-value = 0.004501 Male 187 (60.9) 645 (51.7) 

ECOG 

performance 

Status 

0 280 (91.2) 1124 (90) 
X² = 0.24735 

P-value = 0.6189 1 27 (8.8) 124 (10) 

pT-Stage 

T1-T2 10 (3.3) 195 (15.6) 
X² = 19.26 

P-value<0.001 

 

T3-T4 206 (67.1) 998 (80) 

NA 91 (29.6) 55 (4.4) 

pN-Stage 

N0 76 (35.2) 618 (51.8) 

X² = 19.646 

P-value<0.001 
N1-2 140 (64.8) 574 (48.2) 

NA 91 (29.6) 56 (4.5) 

pathological 

Stage 

I 3 (1) 148 (11.9) 

X² = 201.46 

P-value<0.001 

II 65 (21.1) 452 (36.2) 

III 116 (37.8) 533 (42.7) 

IV  123 (40.1) 115 (9.2) 

RAS status 
RAS wild-type 102 (54.8) 394 () X² = 0.32606 

P-value=0.568 RAS mutant 84 (45.2) 291 () 
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 479 

Table 1 Patients characteristic for DL high-risk and low-risk patients 480 

P values were obtained by a pearsons chi-squared test with Yates’ continuity correction 481 

comparing the distribution of the factors between the two columns (DL high-risk vs DL low-482 

risk). Statistical analysis was performed on R 4.4.4. ECOG=Eastern Cooperativ Oncology 483 

Group, MSS=microsatellite stable, MSI=microsatellite instable, NA=Not available 484 

 485 

NA 121 (39.4) 563 (45.1) 

BRAF status 

BRAF wild-

type 

171 (55.7) 623 (49.9) 

X² =1.2724e-28 

P-value=1 BRAF mutant 13 (4.2) 48 (3.8) 

NA 123 (40.1) 577 (46.2) 

MSI status 

MSI 20 (6.5) 102 (8.2) 

X² = 0.46606 

P-value=0.4948 
MSS 262 (85.3) 1090 (87.3) 

NA 25 (8.1) 56 (4.5) 

MRD Status 

MRD-positive 81 (26.4) 160 (12.8) 
X² = 33.585 

P-value <0.001 
MRD-negative 226 (73.6) 1088 (87.2) 
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Supplementary Figures and Tables  486 

 487 

 488 

Supplementary Figure 1: Consort diagram for both cohorts 489 

Flowchart showing initial screened patients and WSIs and exclusion criterias for (A) the 490 

DACHS cohort and (B) the GALAXY cohort. 491 

WSIs= whole slide images, DACHS=Darmkrebs: Chancen der Verhütung durch Screening 492 

Study 493 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.23.24310822doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.23.24310822
http://creativecommons.org/licenses/by/4.0/


 494 

Supplementary Figure 2: MRD status is predictive of survival outcomes and 495 

Multivariate analysis for MRD-subgroups 496 

(A) Kaplan-Meier curves for DFS stratified by MRD-positive and MRD-negative patients. 497 

Forest plot showing multivariate cox regression analysis for (B) MRD-positive and (C) MRD-498 

negative subgroup including the covariates gender, age, DL risk score, pathological Nodal 499 

Stage (pN-Stage), pathological Tumor Stage (pT-Stage) and their association with DFS. HR 500 

and 95% CI were calculated by the Cox proportional hazard model. P-value was calculated 501 

using the two-sided log-rank test (*p<0.05, ** p<0.001). Plot were generated using lifelines 502 

package in Python 3.11.5  503 

DFS=disease-free survival, DL=Deep Learning, MRD=molecular residual disease, 504 

HR=Hazard ratio, CI=Confidence interval. 505 

 506 

 507 
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508 
Supplementary Figure 3: Morphological and molecular features for DL low-risk score 509 

 (A) Highly predictive tiles and Whole slide heatmaps for patients with lowest DL risk score. 510 

Red indicating high-risk, and blue indicating low-risk. DL= Deep Learning, MRD= molecular 511 

residual disease. 512 
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