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Some statistical theory for interpreting reference
distributions

Berk A. Alpay"?* John M. Higgins>*® Michael M. Desai*®

Abstract Reference distributions quantify the extremeness of clinical test results,
typically relative to those of a healthy population. Intervals of these distributions are
used in medical decision-making, but while there is much guidance for constructing
them, the statistics of interpreting them for diagnosis have been less explored. Here
we work directly in terms of the reference distribution, defining it as the likelihood in
a posterior calculation of the probability of disease. We thereby identify assumptions
of the conventional interpretation of reference distributions, criteria for combining
tests, and considerations for personalizing interpretation of results from reference data.
Theoretical reasoning supports that non-healthy variation be taken into account when
possible, and that combining and personalizing tests call for careful statistical modeling.

Disease can perturb the abundances of analytes measurable by clinical laboratory technology.
However, even when an analyte is physiologically expected to be associated with a disease, it
is not immediately clear how to translate laboratory measurements to clinical decisions: how
should numbers be mapped to actions [1,2]?

Reference distributions, which represent the variation in test results among healthy people,
provide one way to interpret clinical results on the assumption that it is noteworthy if a
patient has an extreme enough value relative to the population [3]. Commonly, test results are
displayed alongside reference intervals, thresholds of extremeness with respect to the reference
distribution — a familiar sight to many who have had blood tests. One very large-scale
United Kingdom study of more than half a million patients, for example, inferred a reference
interval for albumin-adjusted serum calcium of 2.19 to 2.56 mmol/L [4]. Thus, if used in
practice, test results outside this interval might be flagged. Indeed, the authors speculated
that adopting this interval over the previous consensus interval of 2.20 to 2.60 mmol/L [5]
would affect rates of calcium metabolism disorder diagnosis.

Studies of simulated and clinical data over several decades have informed guidelines |3} 6]
about how to set these reference intervals. Topics of statistical recommendations include
inferring intervals from data |7-9], subgrouping when it is inappropriate to compare a patient’s
result against the entire population [10,11], and transferring intervals between laboratories [12].
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As more data is gathered, it has been of increasing concern to create new references and tune
existing ones. Reference intervals are reconsidered [13,/14], new ones are constructed [15], and
sources of healthy variation are accounted for [16}/17] with an enduring goal being references
personalized to the patient |18].

Although less abundant than studies on constructing intervals, important work has been
done about how to interpret them for diagnosis [2,[19-21]. Because, in clinical practice, results
are compared to reference intervals, previous theory has framed questions of interpretation
by viewing reference intervals as thresholds of diagnosis. (Indeed, a reference distribution
is generally seen as an intermediate object whose purpose is to yield a reference interval
[6,9,[22,23].) It has been shown, critically, that the diagnostic predictiveness of intervals
depends on the prevalence of the disease [19] and the distributions of results among both
the healthy and non-healthy population [2,]20,21]. However, it remains difficult to reason
precisely about some diagnostic questions by approaching them directly in terms of true and
false positives and negatives, even if these quantities are the valued endpoints.

Here, instead, we formalize the connection between reference values and the probability of
disease in terms of distributions of results. This framework allows us to expressively analyze
aspects of reference distributions and their resulting intervals. We identify assumptions of
current clinical interpretation and reason about how to interpret reference distributions with
respect to those of other analytes as well as features of each patient and the conditions
of their test. Our analysis often complements and expands on prior work. We synthesize
previous findings, recapitulate and counter various theoretical arguments, and highlight new
considerations for constructing references. Our approach is strictly theoretical and intended
to reason about interpreting reference distributions as generally as possible. Some of our
example cases are extreme and may not have direct analogs in clinical data, although they
are all intended to be useful for intuition of the underlying statistics.

Reference distributions express likelihoods of results

Suppose a patient’s blood test reports a result for some analyte of, say, 0.25 mg/dL. How
should this result be interpreted?

The test might have been taken to rule out or settle on some set of diagnoses, according
to which additional tests will be performed or treatment will be adjusted. So, the test result
y = 0.25mg/dL could be interpreted in terms of the probability of each diagnosis d given that
result [24]. Applying Bayes’ theorem shows that p(d|y) depends on p(y|d)p(d), a factor that
would need to be computed for separate diagnoses. Thus, for each diagnosis considered, a
prior probability, or “pre-test suspicion”, |25] would be required [26], as well as the probability
of the result given that diagnosis, estimable by measuring the frequency of that result among
a sample of patients with the diagnosis.

Grouping all the diagnoses together, focusing only on “healthy” (H) versus “non-healthy”
(H'), simplifies the matter. We need only compute

p(y|H)p(H)

ply) @

p(Hly) =
as illustrated in Fig. . (An intermediate simplification might be to group diagnoses into D,
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the set of diagnoses informed by the test, and D’, those that are not.) In Bayesian terms,
we call p(H|y) the posterior, p(y|H) the likelihood, and p(H) the prior. Indeed, there is
now only one prior to calculate: define criteria for who qualifies as healthy and ask what
proportion of the population is healthy. Testing this healthy population will estimate p(y|H).
To sample

p(y) = p(y|H)p(H) + p(y|H')(1 — p(H)), (2)

the overall distribution of results in the population, both healthy and non-healthy people
should be tested. It is not only the distribution of results in the healthy population that is
important, but also that of results among non-healthy people [2,20,21].
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Figure 1: An example showing that the distribution of results among healthy and non-healthy
people, combined with the prior probability of health, together influence the interpretation of
a result with respect to health. Here, results among healthy people are normally distributed
about zero, while results among non-healthy people are a mixture of two normal distributions
on either side of the healthy mode. Due to the shape of the non-healthy distribution, results
to the left of the healthy mode become concerning more quickly than to the right.

In practice, statistical interpretation of quantitative laboratory results is typically done
with just p(y|H), what is called a (health-associated) reference distribution, representing
results among apparently healthy patients [27]. Much has been written about how to
empirically construct reference distributions. The standard procedure is that a sample of
results from a healthy population is collected [3]. Then different methods, accounting for
outliers |7,[28] and the shape of the resulting distribution, may be used to estimate quantiles
of p(y|H) [9]. Parametric methods assume a form of the distribution while non-parametric
methods are interested directly in the sample quantiles. To calculate the commonly used 95%
interval, on the order of two hundred sample results are recommended |[7,[8,29].
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Different studies could enforce different criteria for who is healthy, the definition of which
can be controversial [30]. Some authors use a definition of health that seems aligned with
computing p(y|D) [27,[31], Grésbeck stating that “A person may be suitable as a healthy
reference individual for one test ...but unsuited for another,” while others use health criteria
that are constant across tests |9, which aligns with computing p(y|H). We will use the H
notation for simplicity, but in practice the particular criteria should be specified [3].

Interpreting reference distributions for diagnosis requires
assumptions about non-healthy results

The theoretical simplifications above result in an object, the reference distribution, that
is relatively easy to estimate by sampling but does not give the full picture about the
probabilities of different diagnoses given the patient’s test result [25]. An assumption that
underpins current clinical use is that the extremeness of a result with respect to the reference
distribution corresponds to how concerning it is. This is true, for example, if p(y|H’) is
more diffuse than p(y|H) as in both limits of Fig. [I] But the distribution of results among
non-healthy people can, in theory, flexibly change the implications of a patient’s result. If, to
take an exceptional example, values of y among non-healthy people were for some reason
concentrated at a high-probability interval of y|H, then extreme results would unintuitively
be reassuring (Fig. S1A). And using Eq. [l|and Eq. [2 we can also see that extremes of an
analyte unassociated with health (i.e. when y|H and y|H’ are identically distributed) would
not be informative with respect to disease no matter how extreme y is with respect to the
healthy population, although we should not expect this to ever be exactly the case especially
since analytes are often chosen based on physiological connection with disease.

It is often implicitly assumed that extremes are only at the left and/or right limit of y.
If true, the extremeness of the result can be quantified using the cumulative distribution
function F(y|H), with high F(y|H), for example, corresponding to high extremes. Depending
on the analyte, low extremes, high extremes, or both (as in Fig. could be concerning.
If both tails are concerning, one might quantify the extremeness of the result as, say,
min (F(y|H),1 — F(y|H)). Consider, however, a case in which there are two modes of y at
which people are healthy, and non-healthy people also exhibit these two modes but more
diffusely. (Perhaps they correspond to two modes of physical attributes, the sort of situation
we analyze later in this paper.) Then concerning extremes are not exclusively at the left
and right of the graph: they can also lie between the two modes (Fig. S1B). Directly
applying a non-parametric method, using the rank order of reference results rather than their
parametric form, to construct a reference interval would in this case obscure such nuances. It
is sometimes held that non-parametric methods make no “assumptions as to the specific form
of the underlying distribution of the data” [9] and that “they can be applied to any set of
data, regardless of how the parent population of values is distributed” [31]. It is true that
they can be applied as such, but as these cases show, there are assumptions in considering
only the tails of the reference distribution as regions of concerning extremes.

Even if we know where the concerning extremes lie with respect to the reference distribution,
there remains the question of how precisely to act on them. The risk of disease can vary
continuously with the extremeness of the test result; there are often no clean boundaries on
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the result that dictate the occurrence of disease. But clinical decisions are often discrete: an
action is taken or not. And so thresholds of extremeness, based on the available information,
are set between courses of action. A 95% interval is typically used to define thresholds for
concern [25}32,33], as it often is for other statistical analyses and illustrations (including in
this paper). It is a convenient but ultimately arbitrary choice [25,33H-35] — why not use,
say, 89% as a default for statistical analyses [36] ch. 4|7 Ideally, rather, the probability of
health combined with the costs and potential rewards of actions should dictate the optimal
threshold [2,21,26,[29,134,37]. As Fig. [l|illustrates, the former depends on p(y|H'), as do the
sensitivity and specificity of a threshold in detecting disease [21]. And indeed, a threshold
on min (F(y|H),1 — F(y|H)) may have different diagnostic ability according to the tail on
which the extreme result lies.

Jointly interpreting results depends on their relationship
with each other (and with health)

Y2

© (AL HE

Y1

Figure 2: Examples of how the joint distributions of two test results y; and y, among
healthy and non-healthy people are related to the posterior probability of health. Shown are
95% joint highest density regions of results among healthy (black ellipses) and non-healthy
(red ellipses) people, as well as the 95% marginal highest density intervals among healthy
people (dotted lines). In other words, the red ellipses contain 95% of the joint density of 1
and ys in the non-healthy population, and the black regions represent joint reference regions
as opposed to their univariate counterparts marked by dotted lines. The prior probability
of being healthy is p(H) = 0.9 and ¥ is associated with health, i.e. y;|H and y;|H' are
distributed differently, in every example. The analytes are independent in (A-B), and y, is
unassociated with health in (A) and (C).

Bayes’ theorem also allows us to interpret the levels of several analytes, say y; and s,
together with respect to health:

Py, 2| H)p(H) _ p(yalys, H)p(ye| H)p(H)
p(y1:y2) p(ly2)p(y2)

(3)

p(H|y1,y2) =

Conditioning on results of multiple tests would then seem to enable a more precise estimate
of the probability of health, but when using solely reference distributions we again miss the
non-healthy variation to exactly compute this probability. Thus it is not always advantageous
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to use the joint reference distribution of y; and y,. We illustrate a variety of circumstances
in Figs. 2] and S2.

The degrees to which y; and y, are each associated with health matter for whether to
jointly consider them. For the sake of intuition, take the extreme case that y, is distributed
identically among healthy and non-healthy people, in other words that ys is independent of
health. This fact would be taken into account when computing the posterior, but not in the
reference distribution p(yy, y2|H). In Figs. and C, for example, extreme 5 is not in itself
concerning, but the degree to which a particular y; is extreme can be inappropriately altered
by the inclusion of y, [38]. It can thus be misleading to combine the reference distribution of
y1 with yo, an effect alleviated as the association of y, with health increases (Figs. , D).

Whether it is advantageous to consider the joint distribution also depends on the relation-
ship between y; and ys. If y; and y, are independent among healthy people (Fig. —B), the
joint reference distribution p(y1, y2|H) simply separates into p(y,|H)p(y2|H), the product of
the individual reference densities. The advantage of using joint reference distributions can be
seen when y; and gy, covary with a similar correlation among healthy and non-healthy people
and are both associated with health; in Fig. 2D, the values of the posterior are diagonally
symmetric and the reference distribution captures the shape. Even if y; and y, covary only
among healthy people or non-healthy people, the posterior can follow a diagonal, sometimes
behaving in ways unpredicted by the shape of the reference distribution (Fig. S2). The
general advice that tests that are combined be “systematically” [39] or “physiologically” [40]
related is sound: this implies that they covary. But these are not sufficient conditions because
if they do not covary in a similar way between healthy and non-healthy populations, the
reference distribution could be a poor proxy of the shape of the posterior distribution (Fig.
being an especially illustrative example).

The relationship between three blood analytes illustrates some of these concepts. The
product of mean corpuscular hemoglobin (MCH) and red blood cell (RBC) count determines
the hemoglobin concentration (HGB), a common measure of anemia as it quantifies how much
oxygen a particular volume of blood can deliver. Based on this logic, MCH and RBC would
better diagnose anemia together than apart, but is it better to use the reference distribution
of HGB (a function of the MCH and RBC) or the joint distribution of MCH and RBC? The
latter was observed in one study to be better diagnostic of mortality risk [15], suggesting it
can be important to know whether MCH and RBC are jointly extreme even if HGB is not.

As others have noted, jointly considering analytes affects how one interprets the extreme-
ness of a set of results. For example, a set of results that have no extremes apart may be
extreme together [40] or vice-versa [41]. Proponents of joint reference regions have argued
that the former effect makes the reference region more specific for interpretation [39]. Other
proponents have argued that the latter effect controls for false positives due to multiple
testing [41H43|, while it has also been regretted that joint reference regions can bury the
extremeness of a single test [40]. But as we have shown, the diagnostic impact of jointly
considering analytes depends on their relationship with each other and with health. Joint
reference distributions can be useful in some cases and misleading in others.
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Conditioning on features personalizes reference distribu-
tions

What if y depends on some random variable, a feature x unassociated with health, i.e. for
which z|H and x|H’ are identically distributed? An implication of our analysis above is that
jointly considering two covarying analytes where y is associated with health and x is not (as in
Fig. , taking y to be y; and x to be ys), risks a misleading interpretation of the extremeness
of x with respect to health. The joint reference distribution is p(y, z|H) = p(y|z, H)p(z|H).
But from Eq. [3] we see that p(x|H) = p(x|H’) implies

_ plyle. Fp(H)
P 2) = 2 )

, (4)

and so p(x|H) becomes irrelevant in the calculation of the posterior probability of health. The
reference distribution that remains is p(y|x, H), which we can call the reference distribution
of y specified to x.

This logic provides the theoretical justification for when the reference distribution of x can
be disregarded. There may be other reasons to do so, including to avoid risks in interpreting
joint distributions that we highlighted earlier, or simply to keep interpretation focused on
y. It may be useful, for example, to measure the extremeness of a result adjusted to the
patient’s age [441/45] while not compounding this quantity with age itself as an indicator of
concern; a 97-year-old’s result should not be flagged just because the patient is elderly.

However, z should not be disregarded with respect to the reference distribution of y.
Suppose such a feature z exists: a feature of patients or their test conditions (e.g. the testing
instrument or the time of day) not associated with health, or whose prevalence among healthy
people one would like to disregard, but which is associated with the result y. Then while a
random sample of the healthy population would exhibit the healthy variation in results in
general 31|, p(y|H), it might not estimate well the healthy variation p(y|x, H) one should
expect given the patient’s feature |25]. Suppose the patient is an athlete and exercises far
more than most people sampled. The greater the effect of exercise on healthy results, the
more likely is a false positive for the patient when using a reference interval derived from the
general healthy population. Creatine kinase, for example, is elevated under both dystrophy
and after intense physical exercise [46].

Note that Eq. 4] shows that the interpretation of the reference distribution with respect to
the probability of health may change depending on the features conditioned on. This would
occur if, as features are conditioned on, the distribution of results among non-healthy people
does not mirror changes in the reference distribution. Thus two results of the same analyte,
under different feature values, which each fall outside their specified 95% reference interval
may not necessitate the same level of concern [47]. (One consequence of this fact is that the
argument that intra-person reference intervals, derived only from previous results from the
patient, are preferable to inter-person ones [48] may not be so straightforward: how should
thresholds be calibrated for each patient?)

With this caveat in mind, to adjust for a dichotomy in test results, perhaps if certain
statistical criteria [10,[11,122] indicate to do so, we might opt to consider only samples from
people who share the differentiating feature, such as fellow athletes. This process is called


https://doi.org/10.1101/2024.07.23.24309680
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.07.23.24309680; this version posted July 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

subgrouping and it is the current practice for making reference intervals specific to certain
features [3|. In reality, however, there are many features about the patient’s body and the
conditions under which the test was performed [31,/49]. Progressively conditioning on each
such z further limits the people who can be sampled and the test conditions under which
they can be sampled.

It is also infeasible to collect a new reference sample specific to each patient. Instead,
there might be data for a sample of patients, similar in some respects to the patient and
dissimilar in others. Even if we were to subset the data to even two levels of specificity —
say, to athletes over 25 years old — the number of samples with which to construct a more
specific reference distribution would be substantially reduced. Framed in this way, it seems
we must be satisfied with reference distributions in which we are confident (i.e. derived from
a large reference sample) but which are perhaps not as specific as we might like.

Reference distributions can be seen as posterior predic-
tives of regression

We will see that regression provides a potential solution to this problem. Regression as a
technique for constructing reference distributions is not new [50-52]. We will now motivate it
and describe some of its principles from a theoretical perspective.

Let us begin by considering the problem of specifying reference distributions more formally.
We have spent much of this paper discussing how to interpret reference distributions when
they are exactly known. Let us adjust our notation to speak of inferring them from data. Let
X be a matrix, the ¢th row of which comprises the ith reference individual’s values of the k
features x1, ..., x, and let y be the vector of reference values, the ith element of which is the
test result of the ith reference individual. We can call X and y together the reference data.
Now let & represent the features of the patient’s test (which was not part of the reference
sample). A T of the patient consisting of k = 3 features could be (1,1,0), possibly meaning:
over 25 years old, athlete, not ambidextrous.

The reference distribution specified to the patient’s test is then the distribution of the
result conditional on its features and the reference data: in probabilistic terms, p(g|z, X, y, H).
To infer a random variable’s relationship with features is to perform regression, and the
distribution of new data based on observed data is called the posterior predictive. Thus, a
reference distribution can be interpreted as the posterior predictive distribution of a regression.

To compute this distribution, it is necessary to specify a model that sets the form of
the relationship between X; and y;. A possible regression model is one that disregards the
features and explains the result as simply a mean value 5, plus normal random error e:

yilH = Bo + €. (5)

Reference distributions are usually constructed assuming this model, computing only p(7|y, H).
(Uncertainty in the parameters is ignored if p(g|8y = By, e=¢ H ) is computed, where By and
€ represent estimates of the parameters, e.g., when the reference distribution is assumed to
be normal around the sample mean with variance equal to the sample variance [9].)

To calculate separate reference distributions for all combinations of k£ binary subgroups, it
seems 2 of these models must be created, 3y and e inferred separately for each possible X;.


https://doi.org/10.1101/2024.07.23.24309680
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.07.23.24309680; this version posted July 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

We again see our original problem; we would need to separately sample test results arising
from 2% combinations of features.

With a good model, regression efficiently infers specific
reference distributions

Note, however, that with this approach the effect of a feature is inferred anew for each
combination of the remaining features; the effect of being an athlete would be inferred
independently for younger and older patients. (We use “effects” to refer to regression
coefficients; features need not be causal.) What if instead of modeling subgroups separately,
we treated them as features which contribute, independently at least to some degree, to the
result [22]7 For example, in the form of a linear model in which

yilH = o+ f1 X1 + - + BiXuk + € (6)

Returning to our example, this kind of regression infers the effect of being an athlete from
both younger and older athletes, potentially extracting more value from the data [50].

This approach has risks. First, reference distributions can always be made more specific,
increasing k, and at some level of specificity the data will be too limited to precisely infer
feature effects. Uncertainty in the model parameters 6 increases the variance of the posterior
predictive distribution, which integrates over uncertainty in the parameters:

p(§1, X, y, H) = / P30, H)p(6] Xy, H)do. (7)

This equation reflects, for example, that if we are uncertain that the effect of a feature is
as negative as it seems to be, then we should not be as surprised to see a large result than
if we were certain in the effect. Well-considered, informative priors allow features to be
incorporated into the model without unnecessarily increasing uncertainty in the reference
distribution or overfitting the reference data, leading to more accurate reference intervals
(Fig. . Setting priors such that in total they agree with the expected prior predictive
variance [53, ch. 12| could also help; we should not expect variance in results to be arbitrary
large or small.

Second, models are always wrong to some degree, causing inaccuracies downstream in
posterior predictive distributions. For example, we thus far assumed the variance of the error
is constant, or homoscedastic. Suppose instead that error varies with some binary feature z;,
lower when it is present and higher when absent. Fitting a homoscedastic model to this data,
we may find that the error when z; = 1 is overestimated and underestimated when z; = 0,
the posterior predictives being too wide and too narrow, respectively. The functional form of
the feature effects may also be incorrect. This can occur, for example, when effects of some
binary features x; and z; are modeled additively, but in fact their combined effect differs
from their effects apart. This mis-specification skews coefficient estimates of the features that
are accounted for (Fig. S3).
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Figure 3: Inferring the 95% reference interval as two present binary features are progressively
accounted for. Each point represents one reference interval, inferred from a sample of 100
simulated observations. One (informative) feature x; occurs among 50% of people and its
presence is associated with a unit increase in the result. The other (spurious) feature x5 occurs
among 5% of people and has no association with the result. The model is y = By+B1x1+Fox2+€
and the true coefficients are 5y = f; = 0 and B; = 1 with ¢ ~ Normal(0,3/4). Different
priors of the effect size 5y of the spurious feature are considered: Normal(0, 10) (wide prior),
Normal(—1,1/4) (biased prior), and Normal(0,1/4) (regularizing prior). Including xs should
have no effect on the 1 = 1 posterior predictive since 5 = 0.

Discussion

So how should we interpret a patient’s test result? Ideally, based on the results and
prevalence of people with and without the diagnoses of interest, we could weigh the probability
of the diagnoses. It is easier to consider just the likelihood that the result arose under
healthy conditions, assuming the more extreme the result, the more concerning it is. A
reference distribution, estimated from reference data of a sample of healthy people, provides
these likelihoods. If other health-associated analytes covary with the one measured, it
may, depending on the nature of the covariance, be useful to consider their joint reference
distribution. Finally, it is possible that the effects of features recorded in the reference data
could be inferred using a carefully specified regression model and be used to generate a
posterior predictive distribution — a reference distribution that corresponds more specifically
to the patient’s test.

In contrast to reference intervals, decision limits use clinical outcomes to define thresholds,
thus taking healthy and non-healthy populations into account with respect to specific diagnoses.
Decision limits are now used to interpret some tests [54,55|, but data to construct them is
limited [29] and not many of them have been set [47|. It is generally agreed that they are
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preferable over their reference interval counterparts for interpreting tests [3429,47,56]. Our
theoretical reasoning supports this conclusion; when the underlying healthy and non-healthy
distributions and prior are exactly known, computation of the posterior probability of health
(or a particular diagnosis) as in Eq. [1]is more precise and avoids the interpretive risks of
relying solely on the reference distribution. (Likelihood ratios [57], e.g. p(y|d)/p(y|d’), capture
one component of Eq. [I| but should be adjusted by the prior, e.g. p(d) [25].) Much of our
reasoning about reference distributions would also apply to construction of decision limits.

We simulated univariate regression with respect to binary features to illustrate general
considerations of using regression to specify reference distributions. With additional model
assumptions, joint reference distributions could be derived by multivariate regression [58,
ch. 16]. There are opportunities and risks in incorporating continuous features [59|. Assuming
a functional form of the effect of a feature with respect to its value risks further model
mis-specification. But if the function is correct, this approach has advantages over the
traditional practice [45] of binning continuous features and sampling results independently
within each bin. For one, intervals could be specified to the patient’s exact feature value, e.g.
age rather than age bin. There can be additional complications in regression to the ones
we showed, such as covariance between modeled features, which increases uncertainty about
their effects [53, ch. 10| and thereby widens posterior predictives. We repeatedly assumed
results are normally distributed for sake of demonstration, but this should not hastily be
assumed in practice [60].

The Bayesian formulation of reference distributions could be applied to additional prob-
lems in constructing them. One such problem is reconciling differences between different
laboratories [61,/62]. For example, multi-level modeling — which splits samples into groups,
in each of which parameter estimates are partially pooled with those of other groups [63]
— could be used to capture the dependence of effects on the laboratory. Current practice
in transference of reference intervals between laboratories, important for reducing costs, is
through validation: using a smaller number of samples than recommended for constructing an
interval from scratch, validate that an existing interval applies to the new laboratory, and use
it if it does [3]. Although intervals can align well with one another [12], there is a dead end in
the procedure if they do not. Multi-level modeling would allow data from other laboratories
to be used to reduce the sample burden even if intervals are not strictly consistent.

Overall, a theme of our work has been the importance of the marginal likelihood, p(y), or
in the case of regression, p(y|x), in interpreting reference distributions. Bayes’ theorem uses
it directly. If it is not available, however, reference distributions can be used, provided the
assumptions on the missing factors are acknowledged. Regression can be applied to take more
and more features into account, gradually personalizing interpretation of results from limited
data. Fortunately, there is much wisdom about Bayesian modeling and regression [36453/58}/63].
Perhaps by further tracking technical and physiological details of tests |26], sharing our ever-
increasing data [64], and iterating through careful modeling and criticism [65], we will be
able to realize clinical laboratory diagnostics with growing precision.
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Methods

Linear regression was performed using rstanarm [66], built on the Stan programming lan-
guage [67]. We set a Normal(0, 10) prior over coefficients unless otherwise stated, and a
Exponential(1) prior over the standard deviation of the error e. Code can be accessed at
https://github.com/berkalpay/reference-distributions.
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