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Abstract:  
Effectively responding to drug-resistant tuberculosis (TB) requires accurate and timely 
information on resistance levels and trends. In contexts where use of drug susceptibility testing 
has not been universal, surveillance for rifampicin-resistance—one of the core drugs in the TB 
treatment regimen—has relied on resource-intensive and infrequent nationally-representative 
prevalence surveys. The expanded availability of rapid diagnostic tests (RDTs) over the past 
decade has increased testing coverage in many settings, however, RDT data collected in the 
course of routine (but not universal) use may provide biased estimates of resistance. Here, we 
developed a method that attempts to correct for non-random use of RDT testing in the context of 
routine TB diagnosis to recover unbiased estimates of resistance among new and previously 
treated TB cases. Specifically, we employed statistical corrections to model rifampicin resistance 
among TB notifications with observed Xpert MTB/RIF (a WHO-recommended RDT) results 
using a hierarchical generalized additive regression model, and then used model output to impute 
results for untested individuals. We applied this model to case-level data from Brazil. Modeled 
estimates of the prevalence of rifampicin resistance were substantially higher than naïve 
estimates, with estimated prevalence ranging between 28-44% higher for new cases and 2-17% 
higher for previously treated cases. Our estimates of RR-TB incidence were considerably more 
precise than WHO estimates for the same time period, and were robust to alternative model 
specifications. Our approach provides a generalizable method to leverage routine RDT data to 
derive timely estimates of RR-TB prevalence among notified TB cases in settings where testing 
for TB drug resistance is not universal.  
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Author Summary:  
While data on drug-resistant tuberculosis (DR-TB) may be routinely collected by National TB 
Control Programs using rapid diagnostic tests (RDTs), these data streams may not be fully 
utilized for DR-TB surveillance where low testing coverage may bias inferences due to 
systematic differences in RDT access. Here, we develop a method to correct for potential biases 
in routine RDT data to estimate trends in the prevalence of TB drug resistance among notified 
TB cases. Applying this approach to Brazil, we find that modeled estimates were higher than 
naïve estimates, and were more precise compared to estimates produced by the World Health 
Organization. We highlight the value of this approach to settings where testing coverage is low or 
variable, as well as settings where coverage may surpass existing coverage thresholds, but that 
could nonetheless benefit from additional statistical correction.  
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Introduction  
In 2022, 410,000 individuals were estimated to have developed tuberculosis (TB) that is resistant 
to rifampicin—a key component in the WHO-recommended first-line treatment regimen [1]. 
Even with prompt detection and appropriate treatment, drug-resistant TB is more challenging to 
treat than drug-susceptible TB [2]. As a result, individuals with drug-resistant disease experience 
worse health outcomes, such as higher rates of treatment failure and mortality [3,4]. In settings 
where routine use of drug susceptibility testing has not been universal, surveillance for TB drug 
resistance has historically relied on nationally representative prevalence surveys, which can be 
resource-intensive and are therefore conducted infrequently [5].  

Monitoring resistance to rifampicin is of particular importance for drug resistance surveillance 
[6]. Rifampicin resistance often occurs in the presence of resistance to isoniazid [7]. Together 
these drugs form the backbone of the first-line regimen, with resistance to both defining multi-
drug resistant TB (MDR-TB). Innovations in rapid diagnostic tests (RDTs), such as Xpert 
MTB/RIF, have enabled point-of-care detection of both tuberculosis and rifampicin resistance 
[8]. RDTs have progressively been integrated into routine TB care since arriving on the market 
[9,10]. As of 2023, nearly half of all cases newly diagnosed with TB were initially tested with a 
WHO-recommended RDT [1], and global TB strategy targets assume that RDT coverage will 
continue to increase [11].  

Increasing use of RDTs presents new opportunities for rifampicin-resistant TB (RR-TB) 
surveillance, as these tests provide information on the presence of resistance amongst tested 
individuals [12]. However, these data can yield biased estimates if RDT coverage is not 
universal, or there are systematic differences in access to testing. The potential for bias is likely 
to be more pronounced when testing coverage is lower. Predicting the direction of the potential 
bias is not obvious at the outset; if RDT use is more common in regions of a country, health 
facilities, or patient groups with a higher (lower) prevalence of resistance, then the simple 
average of RDT rifampicin resistance results will overestimate (underestimate) true resistance 
levels.  

Ensuring that routinely collected data are sufficiently complete before using them for resistance 
surveillance can minimize potential biases induced by non-random testing. For this reason, the 
WHO Global TB Programme does not use these routinely collected data for resistance 
surveillance unless at least 80% of bacteriologically confirmed pulmonary TB cases are routinely 
tested for drug susceptibility. As a result, however, estimates of TB drug resistance in countries 
where routinely-collected data are not sufficiently complete may still rely on potentially outdated 
prevalence surveys [1]. Thirty-three countries did not meet this threshold in 2022. Based on 
WHO estimates of TB incidence, countries that rely exclusively on national surveys to estimate 
prevalence among new cases accounted for almost 25.7% of the estimated annual number of 
incident TB cases, while 105 countries that exclusively rely on continuous surveillance 
accounted for 3.4% [13].  

Even when coverage is below WHO-suggested thresholds, RDT data could still deliver reliable 
and timely evidence on resistance trends if potential biases in coverage are identified and 
corrected using statistical methods. In this study we develop a novel surveillance approach that 
corrects for potential biases in routine RDT data from Xpert MTB/RIF tests in order to estimate 
levels and trends in the prevalence of rifampicin resistance among notified TB cases. We 
describe the conditions under which this approach will provide unbiased inference and 
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demonstrate the approach using data from Brazil, which began implementing routine rapid 
diagnostic testing in 2014, but has not yet met WHO-suggested thresholds for continuous 
surveillance.  

Methods 

Study setting 

As of 2023, Brazil was considered a high-burden country for TB but not for RR-TB by the WHO 
[1]. Brazil’s most recent nationally-representative TB drug resistance survey occurred in 2006-
2008, although these results are often regarded as preliminary and incomplete [14]. Brazil 
introduced Xpert MTB/RIF for routine TB diagnosis in 2014, and as of 2023, nearly 40% of 
notified TB cases had a conclusive Xpert resistance result.  

Data 

Case-level TB data was extracted from Brazil’s national Notifiable Disease Information System 
(SINAN). SINAN contains demographic and clinical data on all notified TB cases in the country. 
The sample was restricted to notified TB cases diagnosed between 2014-2023, which represents 
the period from when Xpert was initially rolled out through the most recent data available at the 
time of this study. We exclude individuals who were diagnosed with TB post-mortem (n = 6,112; 
0.7%), transferred to another facility (27,455; 2.9%), whose diagnosis type was unknown (4,274; 
0.5%), and who were misdiagnosed with TB (10,100; 1.1%). We stratified these data according 
to whether an individual was a ‘new’(no previous TB treatment, 738,922) or ‘previously treated’ 
(prior TB treatment, 153,202) case. Previously treated cases included individuals that had 
relapsed after previously being cured and individuals who defaulted from treatment for at least 
30 days.  

National and state population figures were based on Brazil’s 2010 Census from the Brazilian 
Institute of Demography and Statistics (IBGE), which was the most recently available [15]. 
Coordinates for municipality latitude and longitude were sourced from IBGE’s 2020 
municipality shapefile [16].  

Inference framework 

For each individual with notified TB disease i, from i = 1, ..., N, let Yi represent the presence of 
rifampicin resistance, equal to 1 for rifampicin-resistant disease and 0 otherwise. Let Ti be a 
binary indicator equal to 1 if the individual has a recorded Xpert resistance result, and 0 
otherwise. Ti = 0 includes individuals who are not tested with Xpert, who are not positive for TB 
with Xpert despite receiving a TB diagnosis, who have an indeterminant rifampicin susceptibility 
result, and where the result was not recorded. As a result, Yi(0) is by definition unobserved. 

We define the prevalence of rifampicin resistance among notified TB cases as E(Y): ���� �
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. If an individual’s potential rifampicin resistance outcome is independent of whether or 

not they have a recorded resistance result (���	1�, ��	0��
���

� � ��), then the prevalence of 
rifampicin resistance in a given sample, �i(1), will be an unbiased estimate of positivity among 
all notified cases, E[Y]. This is violated, however, if the probability of receiving Xpert is not the 
same for all i, and if differences in testing are correlated with differences in rifampicin resistance. 
As a result, the subset of individuals with a conclusive Xpert resistance result will systematically 
differ from those who do not. The prevalence of rifampicin resistance among individuals with 
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observed Xpert resistance results may not be equal to those who do not (E[Yi(1)|T = 1] � 
E[Yi(1)|T = 0]), which would lead to biased inferences about prevalence in the population of 
notified TB cases.  

However, unbiased estimates of rifampicin resistance can be identified if the factors inducing 
biases in the Xpert testing data (i.e., those jointly correlated with Xpert coverage and rifampicin 
resistance levels) are known and observable. In this setting, testing can be considered random (Yi 

� �� |Xi), conditional on a vector of covariates (Xi) that are jointly associated both with Ti and Yi. 
Assuming conditional independence holds such that P(Yi|Ti,Xi) = P(Yi|Xi), we can recover 
prevalence of rifampicin resistance among all notified TB cases: E[Y ] = E[E[Y |X]] ≡ 
E[E[Y|T,X]]. 

Based on this inference framework we implemented a two-step statistical procedure to recover 
unbiased estimates of rifampicin resistance prevalence by: 1) modeling the probability of 
rifampicin resistance among individuals with recorded Xpert resistance results (Pr(��	1� = 1| 
Xi)); and 2) using the modeled distribution, f(Y|X), to impute the probability of rifampicin 
resistance for individuals without recorded results (Yi(0)). This procedure will produce unbiased 
inferences if the set of predictors (Xi) that determine receipt of Xpert is known and observable in 
the data. Second, it requires there to be overlap in covariate distributions of individuals with and 
without recorded resistance results (0 < Pr(Ti = 1| Xi = x) < 1), such that Yi(0) can be imputed for 
all levels X = x.  

i) Model for RR-TB among observed Xpert results 

We constructed a hierarchical generalized additive regression model to estimate whether an 
observed Xpert result is resistant, Yitj, in state j in quarter t. The probability of an RR-TB positive 
test result (Pr(Yijt = 1) = πijt) was modeled as: 

 Yijt ∼ Bernoulli(πijt) (1) 

 logit(πijt) = ζj + fj(quarterij) + f(latitudei,longitudei) + Xiβ (2) 

where (πijt) was a function of random intercept for state (ζj), a state-specific smooth time trend 
(f(quarterij)), time invariant spatial variation based on the centroid of individual’s municipality of 
residence (f(latitudei,longitudei)), and a set of time-invariant individual covariates (Xiβ) 
potentially associated with being tested as well as the risk of acquiring or developing RR-TB. 
The set of covariates – age, sex, HIV status, and level of care offered by the diagnosing health 
facility – were identified based on the set of covariates available in SINAN and through 
discussion with Brazil’s National TB Control Program. Thin-plate regression splines were used 
to reduce variance in state-level time trends (f(quarterij)) due to sampling uncertainty. Similarly, a 
two dimensional thin-plate regression spline was used to allow geographic differences within 
states (f(latitudei, longitudei)).  

The model was fit to the set of recorded Xpert resistance results, defined as being either 
Rifampicin resistant or susceptible. This excluded observations in which Xpert was not 
performed and where Xpert was performed, but where TB was not detectable, the result was 
inconclusive, or the result was not recorded. Separate models were fit for new and previously 
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treated patients. Our primary model was fit to 2017-2023 to exclude two periods of relatively 
low coverage when Xpert was rolled out in 2014-2015 and during a period of cartridge stocks 
outs in 2016.  

ii) Imputation of missing Xpert test results 

Among the subset of new and previously treated individuals with a missing Xpert result (i.e., not 
tested, TB undetectable, or an indeterminant susceptibility result), we used the fitted models 
from part i) to impute the probability of a rifampicin resistant test result. These revised data 
(including both observed and imputed values) were then used to produce estimates of rifampicin 
resistance among all TB notifications. 

Statistical analysis 

Point estimates of rifampicin-resistance prevalence and number of total notifications by quarter 
and year were calculated by summing non-missing resistance results and the imputed 
probabilities to the national or state-level. We calculated the prevalence of rifampicin resistance 
among notified TB cases as the modeled number of rifampicin-resistant cases divided by the 
number of notified TB cases and total rifampicin-resistant notifications per 100,000 person-years 
by dividing the modeled number of cases by the national or state-level population. We compared 
these to a naïve approach assuming Xpert results were missing at random, where prevalence of 
rifampicin resistance was calculated as the share of conclusive Xpert resistance results that were 
resistant, and total RR-TB notifications per 100,000 person-years by dividing the number of 
resistant Xpert tests scaled by the fraction tested by the national or state-level population. Finally, 
to account for under-detection, we calculated total rifampicin-resistance incidence by adjusting 
estimates according to Brazil’s annual case detection rate (CDR), as estimated by WHO under 
the assumption that the probability of resistance was the same across notified and non-notified 
TB cases [17]. Since CDR estimates were only available through 2022, we applied 2022 
estimates to 2023.  

We constructed 95% uncertainty intervals using a simulation approach. First, we generated 1,000 
samples from the uncertainty distribution of the coefficients of the fitted regression models. We 
summed the recorded resistant Xpert results and the simulated probabilities imputed for missing 
test results to obtain the modeled number of RR-TB cases for each simulation. We then 
calculated the 2.5th and 97.5th percentiles from the simulated cases counts, aggregating at the 
national- and state-level by quarter or year. All analyses were performed in R (2022.12.0+353) 
using the mgcv package (1.9-0) [18].  

Comparison to WHO annual estimates 

Modeled estimates were compared to the WHO Global TB Program annual estimates of the 
proportion of notified TB cases with rifampicin resistance by case type and total rifampicin 
resistance incidence for Brazil. Since WHO estimates were only available through 2022, 2022 
estimates were carried over for comparisons in 2023 [13].   

Alternative model specifications 

We compared 2017-2023 model results to estimates for the full period since Xpert 
implementation (2014-2023) to understand how the model performed with low levels of Xpert 
coverage among notified TB cases. We also fit two alternative model specifications to explore 
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whether estimates were robust to these design choices. First, we refit the regression model with 
additional patient characteristics (educational attainment, race, and indicators for diabetes, illicit 
drug consumption, tobacco consumption, alcohol consumption, housing status, incarceration 
status, and immigration status) included as fixed effects. Second, we refit the regression model 
with separate interactions between the patient characteristics included in the main model (e.g., 
age, sex, HIV status, and health unit) and the smooth time trend, to explore whether the type of 
patients being tested with Xpert was static overtime, as assumed in the main model. 

Human subjects protections 

The Institutional Review Board of the Harvard T.H. Chan School of Public Health determined 
that this study did not qualify as human subjects research (Protocol Number: IRB24-0009).  

Results 

Xpert coverage and observed RR-TB trends 

Except during a period of stock outs in 2016, national coverage of Xpert among notified TB 
cases in Brazil increased in all years between 2014-2023, from 2.8% in 2014 to 41.0% of cases 
in 2023 (Fig 1A). Among those tested over the period, 1.6% of cases had an inconclusive result 
and 4.9% had a non-detectable TB result. Xpert coverage among previously treated cases was 
consistently about 4-5 percentage points higher than new cases, from 2015 onwards. During the 
period of lowest Xpert coverage between 2014-2016, naïve estimates of rifampicin-resistance 
prevalence was, on average, 5.9% and 10.6% among new and previously treated cases, 
respectively. Between 2017-2023 (when Xpert coverage was substantially higher), 4,553 new 
(2.7%) and 2,380 previously treated (5.8%) cases had a rifampicin resistant Xpert test result. 

Table 1 presents descriptive statistics on all notified TB cases. The majority of cases were male, 
aged 20-50, and sought care at a low complexity health facility. Appendix Table S1 presents 
evidence of systematic differences in Xpert access and rifampicin resistance levels according to 
predictors included in the main model. Among certain factors, such as a sex and age, greater 
Xpert access is inversely associated with lower rifampicin resistance.  

Estimated national trends in RR-TB prevalence 

Fig 1B compares estimates of rifampicin resistance produced by our proposed approach 
compared to naïve estimates calculated by averaging recorded Xpert resistance results, relative to 
the changes in Xpert coverage among notified TB cases over time. Modeled estimates of the 
prevalence of rifampicin resistance were higher than the naïve estimates for new and previously 
treated cases. This indicates that the coverage of Xpert testing differed systematically across 
notified TB cases and was negatively correlated with the probability of rifampicin resistance. 
The extent to which the naïve estimates underestimated RR-TB burden was more apparent for 
new cases than for previously treated cases. Fig 2 quantifies this difference as the ratio of 
modeled to observed RR-TB prevalence per 100,000 person-years. Between 2017-2023, the 
average bias was higher for new cases (34%; 95% uncertainty interval (UI): 28%, 43%) 
compared to previously treated cases (10%; 95% UI: 3%, 20%). Bias declined over the study 
period alongside increases in testing coverage, with greater declines for new compared to 
previously treated cases.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.24310845doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310845
http://creativecommons.org/licenses/by/4.0/


 

 

In 2023, we estimated the annual number of notified TB cases with rifampicin resistance to be 
1.8 per 100,000 person-years (95% UI: 1.7, 1.9) (Fig 3). When accounting for under-detection of 
TB, this increased to 2.1 cases per 100,000. We estimated prevalence of rifampicin resistance 
among notified TB cases to be 2.8% for new cases (95% UI: 2.7%, 3.0%) and 4.6% for 
previously treated cases (95% UI: 4.5%, 5%). Both new and previously-treated individuals 
experienced declines in prevalence of rifampicin resistance between 2017 and 2023 – a 31.8% 
reduction for new cases and a 23.1% reduction for previously treated cases. 

Estimated state-level RR-TB trends 

Fig 4 presents the prevalence of rifampicin resistance by state in 2023. For new cases, this ranged 
from 8.4% in Mato Grosso (95% UI: 6.3%, 12.0%) to 0.3% in Roraima (95% UI: 0.2%, 0.6%), 
and several states with the highest positivity were located in the Northeast region. For previously 
treated cases, prevalence of rifampicin resistance ranged from 14.3% in Maranhão (95% UI: 
11.7%, 18.5%) to 0.2% in Sergipe (95% UI: 0.1%, 0.9%). Fig 5 presents trends in rifampicin-
resistant cases per 100,000 person-years for states with the highest modeled prevalence in 2023. 
While modeled trends in the national prevalence of resistance declined between 2017-2023, there 
was heterogeneity in trends by state. Several states, such as Amazonas and Maranhão, exhibited 
declines in estimated resistance levels during the COVID-19 pandemic followed by increases in 
RR-TB notifications per 100,000 person-years through 2022.  

Comparison to WHO estimates 

Our results differed from most recent estimates published by WHO’s Global Tuberculosis 
program (Fig 3). For 2022, our point estimate of rifampicin-resistance prevalence among notified 
TB cases was higher for new cases (3.1% (95% UI: 3.0%, 3.3%) compared to WHO’s estimate 
1.6% (95% UI: 0.6%, 3.6%)) and lower for previously treated cases (5.1% (95% UI: 4.9%, 
5.4%) compared to WHO’s estimate of 7.3% (95% UI: 1.1%, 24.0%)). Uncertainty intervals of 
our estimates were also narrower than those reported for WHO estimates. Our estimates of total 
rifampicin-resistant notifications per 100,000 person-years and incidence after accounting for 
under-detection were higher than WHO estimates in every year. Whereas we estimated a 
declining trend between 2017-2020, WHO estimated an increase over the entire period, although 
the uncertainty intervals for these estimates were wide.  

Alternative model specifications 

Fig 6 presents comparisons between the results of the main analysis and alternative regression 
specifications. During the initial roll-out of Xpert in 2014, coverage was less than 3% of all 
notified TB cases, and average observed positivity for new and previously treated cases was 
10.5% and 15%, respectively. For 2014, the model produced implausibly high estimates for both 
new and previously treated cases. Prevalence of rifampicin resistance was 22.0% in new cases 
(95% UI: 19.1%, 25.9%) and 21.3% in previously treated patients (95% UI: 17.3%, 26.8%). 

The overall trend in the proportion of notified TB cases that were rifampicin resistant was robust 
to the inclusion of additional time invariant patient covariates. The level of prevalence of 
rifampicin resistance differed by 0.07 and 0.12 percentage points, on average, among new and 
previously treated cases, respectively. The results were also robust to the interaction of age, sex, 
and HIV status with time to account for any changes which patients were selected into testing 
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over time, reflecting a 0.07 percentage point difference in new cases and a 0.01 percentage point 
difference in previous cases, on average.  

Discussion 

We developed a novel surveillance approach to produce unbiased estimates of rifampicin 
resistance among notified TB cases using routinely reported RDT data. We demonstrated this 
approach using data from Brazil where coverage of Xpert MTB/RIF was increasing overtime, 
though not yet high enough to meet the threshold for continuous surveillance applied by the 
WHO Global TB Programme. Through a two-step approach, we modeled the risk of rifampicin 
resistance among individuals with recorded Xpert results and used the fitted values to impute 
unobserved Xpert results. After adjusting for potential biases due to systematic differences in 
Xpert access, the modeled number of rifampicin-resistant cases among TB notifications was 
higher than naïve estimates, especially for new cases. Modeled estimates of prevalence of 
rifampicin resistance among notified cases and total incidence exhibited declines between 2017-
2023, and results were robust to alternative model specifications.   

One would expect RDT use to be positively associated with the prevalence of resistance, 
resulting in naïve estimates that overestimate true resistance levels. However, our results indicate 
that in Brazil the naïve approach underestimated the prevalence of resistance; RDT access was 
higher in patient populations with a lower prevalence of resistance, specifically when looking at 
sex and age. While it is difficult to explore explanations for these relationships in the routine 
data, previous analyses have found higher probabilities of resistance among women and children 
in some settings, though the majority of existing evidence suggests the absence of any sex- or 
age-specific differences in resistance risk [19,20]. These results demonstrate the difficulty of 
predicting the potential direction of the bias in raw RDT resistance data, and the utility of an 
approach that can adjust for multiple potential sources of bias.  

Our modeled estimates for Brazil between 2017-2022 differed from the WHO’s estimates and 
were more precise. There are several likely reasons for these differences. WHO uses a Bayesian 
hierarchical model that pools data across neighboring countries to estimate levels and trends 
informed by continuous surveillance data and/or nationally representative surveys of notified TB 
patients with bacteriologically confirmed pulmonary TB [21]. Notably, WHO estimates for 
Brazil rely on results from national MDR-TB/RR-TB prevalence survey from 2006-2008 and 
estimates the time trend using data from neighboring countries. Our model estimates both the 
level and time trend from case-level testing data on a much more recent time scale (2017-2023) 
with a sample of over 800,000 notified TB cases. Importantly, these data are already accessible 
to Brazil’s National TB Program.  

Similar approaches for estimating prevalence from data with known biases are well-developed 
for other surveillance topics (e.g. for HIV prevalence [22]). To our knowledge, there is no 
existing literature that has proposed comparable approaches for correcting potential biases in 
RDT data for the purposes of RR-TB surveillance. We demonstrate that our model can deliver 
plausible results in a setting where testing coverage is below 80%, and can be adapted to account 
for factors that affect selection into testing that are likely to vary across country contexts.   

Our approach has several limitations. First, the approach is not theoretically guaranteed to 
deliver unbiased estimates of rifampicin resistance. This is only possible when the full set of 
factors determining testing assignment (or reasonable proxies for these factors) are known and 
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recorded with notification data. If important factors are not available (or available but not 
included in imputation models) then residual bias may remain. Although this assumption is 
fundamentally untestable, confidence in modelled estimates can be reinforced by a strong 
understanding of Xpert implementation in a given context as well as by comparing results from 
several alternative specifications (as demonstrated in this study), and where the opportunity 
exists, validation against estimates from recent national prevalence surveys. The sensitivity of 
model estimates to very low levels of testing coverage between 2014-2016 suggests that when 
coverage is low, the impact of unobserved predictors may be magnified, and therefore the 
approach is less reliable. Further, estimated intervals will not appropriately capture uncertainty 
induced by model misspecification if there are omitted or unobserved predictors. Second, our 
proposed approach requires analyses of line-listed notification data. Access to these data may be 
restricted, and so the approach we have proposed is primarily applicable to national TB programs 
and other agencies with access to these detailed data. This approach may not be suitable in 
contexts where a large fraction of TB cases are diagnosed in the private sector and thus, are not 
included in public sector data available to national TB programs [23]. Third, our proposed 
approach is not designed to investigate the causal mechanisms driving changes in RR-TB 
prevalence, and only reveals associations between various variables. Fourth, by design our 
approach estimates the prevalence of rifampicin resistances at the point of TB diagnosis, and 
therefore omits the acquisition of TB drug resistance by individuals receiving TB treatment. 
Finally, unless otherwise indicated, the interpretation of most of our results is restricted to RR-
TB prevalence among notified TB cases, as we do not observe Xpert coverage among individuals 
not ultimately diagnosed with TB. We attempt to correct for this by adjusting estimates for 
underreporting. However, this assumes that the probability of resistance is the same across 
notified and non-notified TB cases, which may not be valid [24]. 

RDT data streams can deliver valuable insight on country-level RR-TB levels and trends, 
complementing existing WHO efforts, even when countries do not meet established thresholds 
for continuous surveillance nor have recent prevalence survey data available. Of the countries 
reporting data to the World Health Organization’s Global Tuberculosis Programme, 27 countries, 
as of 2022, still relied on data from surveys conducted before 2015 for prevalence estimates 
among new cases [21]. Our method could be useful for deriving insights from existing data 
streams, especially where testing assignment mechanisms are known, and could potentially 
inform priority locations that stand to benefit the most from greater testing access as countries 
continue to expand coverage. While the benefits of this method are most apparent for countries 
that have yet to meet established testing standards for continuous surveillance, it may also prove 
useful in settings where coverage is already high, given that there still may be differences in 
access to testing.  
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Figures 
 

 

Fig 1. Trends in Xpert test coverage and modeled prevalence of rifampicin resistance 
among notified TB cases. (A) The proportion of new and previously treated TB cases tested 
with Xpert between 2014-2023 with a conclusive rifampicin resistance result, defined as being 
either susceptible (RR-TB negative) or resistant (RR-TB positive). This excludes observations 
where patients were tested with Xpert, but their result was labeled as indeterminant, not 
recorded, or was not positive for TB with Xpert despite receiving a TB diagnosis. (B) Lines 
reflect the modeled prevalence of rifampicin resistance among all notified TB cases for a given 
quarter by case type for 2017-2023. Points reflect the prevalence of rifampicin resistance 
calculated using the naïve approach, defined as the share of all conclusive Xpert results with 
rifampicin resistance. Point size indicates the number of notified TB cases with a recorded Xpert 
rifampicin test result.  
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Fig 2. Extent to which naive Xpert results underestimates the prevalence of rifampicin 
resistance among notified TB cases (2017-2023). Each line reflects the bias in observed data as 
function of the ratio of modeled to naïve prevalence among notified TB cases per 100,000 
person-years. Prevalence of rifampicin resistance is calculated as either the modeled number of 
RR-TB cases (modeled) or the observed number of RR-TB cases scaled by the fraction with 
conclusive Xpert rifampicin results (naïve), divided by the national population in 2010. 
Numerators are calculated quarterly and are scaled to obtain person-years. This should be 
interpreted as how much higher estimates of rifampicin resistance prevalence using our approach 
are relative to naïve estimates. The dashed line at 1 indicates where there would be no bias 
between modeled and naïve estimates. 95% uncertainty intervals are shaded.  
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Fig 3. Rifampicin resistance prevalence among notified TB cases and total incidence 
comparing modeled to WHO estimates (2017-2023). (A) and (B) Modeled prevalence of 
rifampicin resistance by case type and 95% uncertainty intervals that are shaded. (C) Modeled 
total number of RR-TB cases among notified TB cases per 100,000 person-years and 
corresponding 95% uncertainty intervals (“Modeled”). It also presents total incidence after 
adjusting modeled estimates by Brazil’s case detection rate (CDR) to account for underreporting 
of TB cases (“CDR-inflated”) (16). Naïve refers to the number of RR-TB cases calculated from 
Xpert MTB/RIF only (“Naïve (Xpert)”) and from all DST results (“Naïve (Xpert + DST)”) test 
results, scaled by the fraction of notified TB cases that were tested. DST results are included if 
resistance to at least rifampicin is indicated. All three panels are overlaid by the corresponding 
estimates and 95% uncertainty intervals from the World Health Organization’s Global 
Tuberculosis [13]. Since CDR and RR-TB estimates from WHO are only available through 2022, 
2023 estimates were carried over from 2022.  
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Fig 4. Modeled levels of prevalence of rifampicin resistance by state, 2023. Each panel 
presents a map of the modeled prevalence of rifampicin resistance among notified TB cases by 
state (left) and point estimates with 95% uncertainty intervals by each state and region (right). 
Two-digit codes associated with each state are listed alongside the state name on the right.   
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Fig 5. Selected state-level trends in RR-TB prevalence among notified TB cases per 100,000 
person-years by case type (2017-2023). Selected states are those with the highest number of 
RR-TB cases among notified TB cases per 100,000 person-years and who tested at least 30% of 
notified TB cases in 2023. “Modeled” reflects modeled estimates and shaded 95% uncertainty 
intervals. “Naïve” estimates are only among Xpert MTB/RIF test results. States are ordered 
highest to lowest based on the number of RR-TB cases among notified TB cases per 100,000 
person-years in 2023.  
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Figure 6. Alternative model specifications. The above compares modeled results several 
alternative models by time period (A) and specification (B). (A) Extends the primary 
specification from 2017-2023 to include the early period of Xpert MTB/RIF implementation 
from 2014-2016. Across both panels, points reflect the naively estimated prevalence of 
rifampicin resistance - proportion of conclusive Xpert tests that are resistant. Point size indicates 
the number of cases with a conclusive Xpert test result. Lines reflect the modeled prevalence of 
rifampicin resistance among all notified TB cases for a given quarter, where line type 
corresponds to an alternative model. (A) Results from two alternative model specifications. The 
first model controls for additional patient covariates, including for educational attainment, 
diabetes, drug consumption, tobacco consumption, alcohol consumption, whether they are 
experiencing homelessness, whether they are incarcerated, their immigration status, and race 
(“Additional Patient Covariates”). The second model fits smooth interactions between the 
original set of patient covariates in the model with time to determine whether there are any 
changes in selection over time (“Time-varying Selection”). These are compared to output from 
the primary specification (“Reference”).  
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Table 1. Descriptive characteristics of notified TB cases (2017-2023) 

Variable 

New Previously Treated 

All TB 
notifications  
(N = 458,101) 

Recorded 
Xpert 

resistance 
result  

(N = 155,820) 

Missing 
Xpert 

resistance 
result  

(N = 302,281) 

All TB 
notifications  
(N = 100,370) 

Recorded 
Xpert 

resistance 
result  

(N = 39,614) 

Missing 
Xpert 

resistance 
result  

(N = 60,756) 
TB notifications with 
recorded Xpert resistance 
result 0.34 - - 0.39 - - 
Recorded Xpert result 
with resistance indicated - 0.03 - - 0.05 - 
Malea 0.69 0.72 0.67 0.77 0.79 0.75 
Agea 40.08 (17.62) 38.88 (16.38) 40.70 (18.20) 39.78 (14.42) 38.89 (13.44) 40.36 (15.00) 
Race 

Brown 0.50 0.52 0.50 0.50 0.51 0.50 
White 0.28 0.26 0.29 0.24 0.24 0.24 
Black 0.13 0.14 0.12 0.17 0.18 0.16 
Asian 0.01 0.01 0.01 0.01 0.01 0.01 

Indigenous 0.01 0.01 0.01 0.01 0.00 0.01 
HIV Positivea 0.09 0.08 0.09 0.17 0.16 0.17 
Has diabetes 0.09 0.09 0.09 0.06 0.06 0.06 
Level of care at diagnosing health unita 

Low complexity  0.55 0.61 0.52 0.53 0.56 0.50 
Medium complexity 0.26 0.25 0.26 0.30 0.30 0.30 

High complexity 0.16 0.13 0.18 0.13 0.12 0.15 
Other 0.03 0.02 0.04 0.04 0.02 0.05 

Educational attainment 
No education 0.04 0.03 0.05 0.04 0.03 0.04 

Some primary school 0.30 0.33 0.29 0.39 0.41 0.38 
Completed 8th grade 0.06 0.06 0.05 0.06 0.06 0.06 

Some secondary school 0.13 0.15 0.12 0.07 0.14 0.11 
Completed secondary 

school 0.11 0.11 0.11 007 0.07 0.07 
Some university 0.03 0.03 0.03 0.01 0.01 0.01 

Completed university 0.03 0.02 0.04 0.01 0.01 0.01 
Immigrant 0.01 0.01 0.01 0.01 0.01 0.00 
Homeless 0.03 0.04 0.02 0.10 0.13 0.08 
Incarcerated 0.10 0.14 0.08 0.15 0.17 0.14 
Uses tobacco 0.24 0.29 0.20 0.35 0.40 0.31 
Uses alcohol 0.17 0.21 0.15 0.30 0.33 0.28 
Uses illicit drugs 0.14 0.20 0.11 0.31 0.38 0.27 

Means with standard deviations presented in parentheses. Sample is restricted to TB notifications for new and previously treated 
cases between 2017-2023. This excludes individuals diagnosed with TB post-mortem, transferred to another facility, whose 
diagnosis type was unknown, and those who were misdiagnosed with TB. “Recorded Xpert resistance result” refers to all notified 
TB cases with either a recorded resistant or susceptible Xpert resistance result. “Missing Xpert resistance result” includes 
individuals who were not tested with Xpert, who were not positive for TB with Xpert despite receiving a TB diagnosis, who had 
an indeterminant rifampicin resistance result, and where the result was not recorded. Level of the notifying health unit includes: 
Low complexity (first level of care), Medium complexity (second level of care, including TB referral networks), High complexity 
(tertiary level of care, including TB referral networks), and Other (e.g. lab, surveillance, clinics). 

aIndicates covariates included in main model. 
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SI Table 1. Descriptive associations between patient characteristics, selection into testing, 
and recorded rifampicin resistance 

 New Cases Previously Treated Cases 

Variable Tested with Xpert 
(Odds) 

Resistant Xpert result 
(Odds) 

Tested with Xpert 
(Odds) 

Resistant Xpert result 
(Odds) 

(1) (2) (3) (4) (5) (6) (7) (8) 
Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate 

Male (Ref: 
Female) 

1.30 1.28 0.79 0.82 1.24 1.21 0.75 0.81 
 (1.28, 1.31)  (1.27, 1.30)  (0.75, 0.84)  (0.77, 0.86)  (1.20, 1.27) (1.18, 1.24)  (0.69, 0.81) (0.75, 0.89) 

HIV Positive 
(Ref: Negative) 

0.88 0.93 1.24 1.09 0.86 0.88 1.57 1.11 
(0.86, 0.89)  (0.91, 0.94)  (1.14, 1.36)  (0.99, 1.19)  (0.84, 0.89) (0.86, 0.91)  (1.44, 1.72)  (1.01, 1.22) 

Age (Ref: 25-34)  

0-4 
0.25 0.28 1.82 1.53 0.23 0.24 2.16 1.72 

 (0.23, 0.27)  (0.26, 0.30)  (1.30, 2.55) (1.09, 2.15) (0.17, 0.30) (0.18, 0.32)  (0.92, 5.06)  (0.73, 4.05) 

5-14 
0.38 0.42 1.88 1.64 0.32 0.34 2.37 2.03 

(0.36, 0.40)  (0.40, 0.44)  (1.51, 2.34) (1.31, 2.04)  (0.26, 0.40) (0.27, 0.42)  (1.26, 4.48)  (1.07, 3.85) 

15-24 
0.99 0.99 1.02 1.02 0.96 0.96 0.96 0.98 

(0.97, 1.00)  (0.97, 1.01) (0.94, 1.11)  (0.94, 1.11)  (0.92, 0.99) (0.92, 0.99)  (0.84, 1.09)  (0.86, 1.12) 

35-44 
0.87 0.89 1.19 1.15 0.99 1.00 1.14 1.05 

(0.86, 0.89)  (0.87, 0.90)  (1.10, 1.29)  (1.05, 1.24) (0.96, 1.02)  (0.97, 1.03) (1.03, 1.26) (0.95,1.17) 

45-54 
0.79 0.81 1.29 1.23 0.86 0.87 1.10 1.01 

 (0.78, 0.81)  (0.79, 0.82)  (1.18, 1.40)  (1.13, 1.35)  (0.83, 0.89) (0.84, 0.90) (0.98, 1.24) (0.90, 1.13) 

55-64 
0.75 0.76 1.27 1.22 0.77 0.79 1.23 1.16 

 (0.73, 0.76) (0.75, 0.78)  (1.16, 1.40) (1.11, 1.34) (0.74, 0.80)  (0.75, 0.82)  (1.08, 1.41)  (1.01,1.33) 

65+ 
0.62 0.64 1.51 1.41 0.60 0.62 1.15 1.07 

 (0.60, 0.63) (0.63, 0.66)  (1.36, 1.67)  (1.28, 1.57) (0.57, 0.63) (0.59, 0.66) (0.96, 1.38) (0.89, 1.29) 
Level of the notifying health unit (Ref: High complexity)  

Low 
complexity 

1.68 1.58 0.62 0.65 1.46 1.36 0.43 0.45 
 (1.66, 1.71)  (1.55, 1.60) (0.57, 0.67)  (0.60, 0.71)  (1.41, 1.51)  (1.32, 1.41) (0.39, 0.48) (0.40, 0.50) 

Medium 
complexity 

1.26 1.22 1.02 1.04 1.22 1.18 1.18 1.17 
 (1.23, 1.28)  (1.20, 1.24)  (0.94, 1.10)  (0.95, 1.12)  (1.17, 1.26) (1.13, 1.22) (1.06, 1.32) (1.05, 1.31) 

Other 
0.66 0.63 0.76 0.80 0.57 0.55 0.54 0.56 

 (0.63, 0.68) (0.60, 0.65) (0.62, 0.93)  (0.65, 0.98)  (0.53, 0.61) (0.51, 0.59) (0.40, 0.74) (0.41, 0.77) 
Previously treated case type (Ref: Re-entry)  

Relapse 
- - - - 0.91 0.94 0.87 0.95 
     (0.89, 0.93)  (0.91, 0.96) (0.81, 0.94) (0.88, 1.03) 

Odds with 95% confidence intervals in parentheses. Sample is restricted to TB notifications for new and previously treated cases 
between 2017-2023. This excludes individuals diagnosed with TB post-mortem, transferred to another facility, whose diagnosis 
type was unknown, and those who were misdiagnosed with TB. “Tested with Xpert” refers to the odds of receiving an Xpert test 
among all notified TB cases. “Resistant Xpert result” refers to the odds of having either a resistant or susceptible Xpert resistance 
result, among individuals who were tested with Xpert. This excludes individuals who were not tested with Xpert, who were not 
positive for TB with Xpert despite receiving a TB diagnosis, who had an indeterminant rifampicin result, and where the result 
was not recorded. For previously treated cases, “relapse” cases refer to individuals whose previous treatment outcome was cure. 
“Re-entry” cases are those who defaulted from treatment for at least 30 days. Level of the notifying health unit includes: Low 
complexity (first level of care), Medium complexity (second level of care, including TB referral networks), High complexity 
(tertiary level of care, including TB referral networks), and Other (e.g. lab, surveillance, clinics). 
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