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Abstract 32 

Background: The discordance between the macrocirculation and microcirculation in septic shock has 33 

been recognised but never explained. I present a novel mathematical hypothesis as to how 34 

heterogenous microcirculatory flow distribution directly induces a hyperdynamic circulation and 35 

how elevated central venous pressure induces microcirculatory dysfunction. 36 

Methods: I explore the tube law and modified Poiseuille resistance for compliant blood vessels. 37 

Using these equations a new equation is developed incorporating time constants, elastance of the 38 

vessel, unstressed volume and wave reflections that demonstrates the relationship between volume 39 

of a microcirculatory vessel and total flow through it.  40 

Results: The relationship is demonstrated to be constant at zero until the unstressed volume is 41 

reached after which it increases exponentially. By considering n of these vessels in parallel, I 42 

demonstrate that the summed flow is minimised when flow is equally distributed among the n 43 

vessels, while it is maximised when all flow goes through one vessel alone, thereby demonstrating 44 

that heterogenous microvascular perfusion leads to increased total flow. It is shown that if 45 

conditions of wave reflection are right then a hyperdynamic circulation with high cardiac output 46 

develops. It is also demonstrated that high central venous pressure increases wave reflections and 47 

necessarily leads to microvascular perfusion heterogeneity if cardiac output is to be maintained. 48 

Conclusions: Microvascular impairment in septic shock directly leads to a hyperdynamic circulation 49 

with high cardiac output. High central venous pressures impair the microcirculation. Decades of 50 

clinical findings can now be explained mathematically. Implications for hemodynamic therapy for 51 

septic shock are discussed.  52 
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Clinical Perspective 69 

Research in septic shock has focussed on two main components of the circulation; the 70 

macrocirculation and microcirculation. Very discordant findings have been observed between the 71 

two, to the point that the term ‘uncoupling’ has appeared in the literature in reference to these two 72 

circulations. Thus far nobody has put forward a satisfactory physiological explanation as to the 73 

mechanism of this discordance. There is a need to understand the physiological mechanisms to 74 

guide future attempts and research into methods of resuscitating the septic patient in order to 75 

improve circulatory function. 76 

This work provides the first theoretical mathematical groundwork as to not only how these 77 

circulations are linked, but how they directly influence one another. This sets the framework for 78 

future clinical and basic science research and helps us understand how our current resuscitation 79 

strategies may work to restore the microcirculation, and when they may start to impair it. 80 
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Introduction 103 

The aim of resuscitating the shocked patient is to restore cellular oxygen delivery and energy 104 

utilisation by restoring cellular blood flow (1). The adequacy of the circulation in this regard can be 105 

assessed using either ‘macrocirculatory’ or ‘microcirculatory’ variables. The former consists of things 106 

easily measured in clinical practice that reflect global oxygen delivery i.e. heart rate, cardiac output, 107 

blood pressure, and central venous pressure. The latter is difficult to measure at the bedside and 108 

includes parameters only used in research studies, such as the functional capillary density and 109 

perfused vessel density (2). While assessment of the microcirculation is the more important of the 110 

two, as it most closely reflects the end points of resuscitation, it is generally believed that optimising 111 

macrocirculatory parameters will optimise the microcirculation. 112 

Increasing evidence has accumulated that this is not the case. It is now well-known that in septic 113 

shock without concurrent hypovolemia that a hyperdynamic (high cardiac output) circulation 114 

develops, however severe microcirculatory derangements persist and are directly associated with 115 

mortality. These consist of reduced vessel density and heterogeneous flow distribution. Organ 116 

dysfunction develops despite elevated organ blood flows (3-6).  The nature of these paradoxical 117 

findings has never been fully explained. Traditional resuscitation paradigms have focussed on fluid 118 

resuscitation to increase central venous pressure (CVP) in order to further increase cardiac output 119 

and organ perfusion. Recently, it has been shown in sepsis that a high central venous pressure, 120 

independently of other hemodynamic variables, impairs organ function, particularly renal function 121 

(7). This adds to identical findings in another group of patients, those with chronic heart failure, 122 

where the association is also independent of cardiac output (8). 123 

The aim of this study is to put forward a mathematical explanation as to how the macrocirculation 124 

and microcirculation are linked and to explain why elevated central venous pressures may impair the 125 

microcirculation despite being associated with improved global hemodynamics. 126 

 127 

Methods (Mathematical background) 128 

Understanding the novel mathematics in this paper requires us to explain some existing concepts. 129 

The circulation is composed of travelling flow (Q) and pressure (P) waves. At any given anatomical 130 

location in the circulation the relationship between the magnitude and shape of the pressure and 131 

flow waves is determined by the impedance (Z). The equation relating the two is; 132 

(1)  𝑃 = 𝑄𝑍  133 

P and Q are wave functions and Z is a complex number (i.e. it contains both real and imaginary parts) 134 

and multiplying Q by Z is not a straightforward exercise. However we can simplify this greatly by 135 

considering only the mean pressure and flow, which is what we are interested in, rather than the 136 

whole wave. In doing this Z reduces to a real function which is easy to multiply. 137 

A problem is encountered however as we pass along the circulation; the impedance changes. 138 

Imagine a junction between 2 segments of the circulation. Impedance of the upstream segment is Z1 139 

and the impedance of the downstream segment is Z2. At the junction the flow and pressure are the 140 

same yet there are two different values of Z. Mother nature solves this paradox by reflecting some 141 

of the upstream waves back at the junction (9). Thereby each segment of the circulation contains 142 

both a forward and backward travelling wave, and therefore a forward and reverse mean flow. The 143 

net flow is the same in each segment and results from subtracting the reverse flow from the forward 144 

flow. 145 
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(2) 𝑄 = 𝑄𝑓 − 𝑄𝑟   146 

Where Q is the net flow, Qf is the forward flow and Qr is the reverse flow. 147 

In contrast the forward and reverse pressures are additive; 148 

(3) 𝑃 = 𝑍1(𝑄𝑓 + 𝑄𝑟)  149 

This allows each segment to maintain its own Z, while allowing the net flow and net pressure at the 150 

junction to be equal between them. For example, the upstream segment may have a forward flow of 151 

5 L/min and a reverse flow of 2 L/min, while the downstream segment may have a single forward 152 

flow of 3 L/min. In both cases the net flow is the same. In fact the size of the reverse flow relative to 153 

the forward flow (C), assuming that the downstream segment does not have any reflected waves of 154 

its own, can be defined as follows; 155 

(4) 𝐶 =
𝑍2−𝑍1

𝑍2+𝑍1
  156 

The mathematical derivation of this is straightforward (10) and not reproduced here. The 157 

downstream segment in fact does have reflected waves of its own (from a segment even further 158 

downstream from itself) so the equation is not quite so simple. However the same principle remains; 159 

the greater the impedance of a downstream segment compared to the impedance of the upstream 160 

segment, the stronger the reflected waves. This is the same principle that governs the clinical utility 161 

of ultrasound waves.  162 

Now we must turn our attention to understanding the nature of the compliant segments of the 163 

circulation. The circulation is simplified for the benefit of clinicians’ understanding into a linear 164 

model. Linearity means that the flow through a vessel does not affect the characteristics of the 165 

vessel. Taking a stiff artery, and assuming that the vascular tone of the artery remains constant, 166 

doubling the flow through said artery will not change the volume of blood in the artery, its 167 

compliance, nor its resistance. A doubling of flow leads to a doubling of the pressure gradient. 168 

However in the microcirculation, composed of arterioles, capillaries and venules, this is not the case 169 

(11). Haemodynamics here are highly non-linear. Because the microcirculation (in particular the 170 

venules) is highly compliant, increasing flow through it will increase its volume, which will decrease 171 

its resistance, and the resultant change in the pressure gradient is not easily predictable.  172 

The importance of these observations has already been recognised in the venous function work of 173 

Guyton and other authors who have followed on from this (12). The venous system is recognised as 174 

having an unstressed volume, which does not generate any pressure in the veins. Anything above 175 

this volume is the stressed volume, which begins to generate pressure and therefore venous return. 176 

Increasing venous return increases the preload available to the heart, which will respond by 177 

increasing its cardiac output (in the long run venous return and cardiac output are the same) (13). 178 

The stressed volume can either be increased by fluid or blood infusion, or by catecholamine induced 179 

increases in venous tone, the latter decreasing the venous compliance and the unstressed volume. 180 

 181 

Results (Mathematical development) 182 

The pressure-volume relationship of veins has been extensively modelled in the works of Pedley et 183 

al. (14-15). The same principle can be applied to the other compliant/non-linear vessels of the 184 

microcirculation. Pressure as a function of volume of a vessel segment is described with the 185 

following equation; 186 
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(5) 𝑃(𝑣) = 𝐾 ((
𝑣

𝑣0
)

𝑚
− (

𝑣

𝑣0
)

𝑛
)  187 

This is known as the tube law. 188 

P is the transmural pressure, although we assume the external pressure to be zero, so the internal 189 

pressure equals the transmural pressure. K is a constant, v is the volume of the vessel segment, v0 is 190 

the unstressed volume, m is some positive integer and n is some negative integer. 191 

In a non-compliant tube the resistance is described by the traditional Poiseuille equation. This is 192 

inadequate for modelling the resistance in compliant vessels. As the volume and/or transmural 193 

pressure of a compliant vessel decreases, the vessel undergoes partial collapse. The shape of the 194 

cross-sectional area changes from tubular to elliptical, which imparts greater viscous resistance to 195 

the tube. Thankfully Pedley has derived a modified Poiseuille equation to account for this behaviour 196 

(14). Resistance as a function of volume is described by; 197 

(6) 𝑅(𝑣) =
8𝜋𝜇𝑙

(
𝑣

𝑣0
)

2+𝑎
(

𝑣0
𝑙

)
2  198 

R is the resistance of the vessel segment, µ is the viscosity, l is the length of the segment (assumed 199 

to remain constant), and a is some positive integer (0.5 was the value used by Pedley et al. (14)). 200 

There are other assumptions inherent in using the modified Poiseuille equation to model resistance. 201 

Firstly flow must be laminar and secondly the fluid involved must be Newtonian. Blood is known to 202 

be non-Newtonian, meaning that its viscosity falls as its shear stress increases. Turbulent blood flow 203 

also occurs in parts of the circulation, although in the microcirculation Reynolds numbers have been 204 

found to be in the range indicating laminar flow (16). Either way these assumptions produce only 205 

minor deviations from observed values and are acceptable in modelling the circulation (17). 206 

All distensible tubes with both a compliance and a resistance that either empty or fill with flow will 207 

exhibit a time constant τ. Such a tube will empty at an initial rate that then decreases in an 208 

exponential fashion with time, until the tube has completely emptied. The time constant represents 209 

the time that would be required for the system to empty to zero if emptying had continued at that 210 

initial rate (18). Therefore the initial flow rate of emptying in units of volume per time is; 211 

(7) 𝑄𝑒 =
𝑣

𝜏
  212 

Qe is the initial flow rate of emptying and v is the initial volume. 213 

Usefully, the time constant is determined by the elastance and resistance of the tube. 214 

(8) 𝜏 =
𝑅

𝐸
  215 

E is elastance. The elastance of a distensible tube segment is simply the derivative of its pressure 216 

with respect to volume. Therefore; 217 

(9) 𝐸(𝑣) =
𝑑𝑃

𝑑𝑣
=

𝐾(𝑚(
𝑣

𝑣0
)

𝑚−1
−𝑛(

𝑣

𝑣0
)

𝑛−1
)

𝑣0
  218 

Eq. 9 is simply the first derivative of Eq. 5.  219 

When the circulatory system is in steady state the mean volume of a compliant tube segment is 220 

constant. Therefore the rate of emptying of the tube segment equals the inflow into the segment. 221 
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Since the segment is not changing volume, the emptying rate continues at the initial rate. We know 222 

the elastance and resistance of the tube segment, therefore; 223 

(10) 𝑄𝑡(𝑣) = 𝑄𝑒(𝑣) =

𝑣

𝑣0
 𝐾(𝑚(

𝑣

𝑣0
)

𝑚−1
−𝑛(

𝑣

𝑣0
)

𝑛−1
)(

𝑣

𝑣0
)

2+𝑎
𝑣0

2

8𝜋𝜇𝑙3   224 

Qt is both the inflow and outflow and therefore the total flow through the segment. This is where we 225 

need to recall the forward and reverse wave phenomena covered in the previous section. The tube 226 

segment both empties and fills in both the forward and reverse directions. Therefore; 227 

(11) 𝑄𝑡 = 𝑄𝑓 + 𝑄𝑟   228 

If we plot Eq. 10 we observe the following (Fig 1.). 229 

We see that as the tube fills with volume this does not generate any flow at first until it reaches a 230 

critical volume, after which flow starts to rise exponentially. By choosing an appropriately small 231 

value for K in the equation, this critical volume becomes v0. The difference between the red curve 232 

and the green curve is that v0 has been decreased in the red curve. 233 

That Qt is the summation of both the forward and reverse mean flow may be difficult for some 234 

readers to accept. We can see however how it is consistent with our clinical observations. If the 235 

generated flow was only the net forward flow then we would expect an increase in volume of 236 

compliant vessels to always result in an increased cardiac output. However in a failing heart a large 237 

volume may exist in the venous circulation despite a low cardiac output; in this case the reverse flow 238 

is large, so Qt remains high, however the net forward flow is low. 239 

Now let us consider the vascular bed of a single organ. Considering the microvascular, compliant 240 

portion, we have a bed made up of ŋ vessel segments in parallel, each represented by Eq. 10. Since 241 

they exist in the same bed, let us assume they are identical in all the constants in Eq. 10. That is, the 242 

only thing that changes between them is their volume. The Qt of that organ bed as a whole will be 243 

the summation of Qt in the ŋ vessel segments. 244 

(12) 𝑄𝑡𝑜𝑟𝑔𝑎𝑛
= 𝑄𝑡 = ∑ 𝑄𝑡𝑖

𝜂
𝑖=1   245 

Any organ bed will contain a given total volume, which we will call B, which can be distributed 246 

amongst the ŋ vessel segments in any combination. The pattern of volume distribution will therefore 247 

affect the total Qt. For example, to take an extreme hypothetical, if there are two total vessel 248 

segments, the total flow will be different if the total volume is distributed evenly amongst them 249 

compared to if all the volume is contained in only one of the vessel beds. In fact the total flow can be 250 

described with the following equation; 251 

(13) 𝑄𝑡(𝐵) = 𝑓(𝐵 − 𝑘1) + 𝑓(𝑘1 − 𝑘2) + 𝑓(𝑘2 − 𝑘3) + ⋯ + 𝑓(𝑘𝜂−2 − 𝑘𝜂−1) + 𝑓(𝑘𝜂−1)  252 

We use the notation 𝑓() for the simplification of the math that is to follow to represent each 𝑄𝑡𝑖
(𝑣), 253 

or the flow in each vessel segment. The k terms are simply a way of splitting up the total volume B 254 

amongst the ŋ segments. You need ŋ-1 k terms to create ŋ vessel segments, where 𝐵 ≥ 𝑘1 ≥ 𝑘2 ≥255 

⋯ ≥ 𝑘𝑛−1. 256 

Now we want to find the values of k that minimise the function Qt(B). Taking the partial derivative of 257 

the function with respect to any one of the k variables, termed generically as kΦ; 258 

(14) 
𝜕𝑄𝑡

𝜕𝑘∅
= −

𝜕𝑓

𝜕𝑘∅
(𝑘∅−1 − 𝑘∅) +

𝜕𝑓

𝜕𝑘∅
(𝑘∅ − 𝑘∅+1)  259 
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When kΦ = k1, then kΦ-1 = B. 260 

To find the minimum or maximum the partial derivative is set equal to 0. Therefore; 261 

(15) 
𝜕𝑓

𝜕𝑘∅
(𝑘∅−1 − 𝑘∅) =  

𝜕𝑓

𝜕𝑘∅
(𝑘∅ − 𝑘∅+1)  262 

The entire function is either maximised or minimised when all values of k satisfy the above 263 

formulation. This occurs when all the terms on the right side of Eq. 13 are identical i.e. when the 264 

total volume B is divided evenly among the ŋ vessel segments. Progressing on to the second 265 

derivative; 266 

(16) 
𝜕2𝑄𝑡

𝜕𝑘∅
2 =

𝜕2𝑓

𝜕𝑘∅
2 (𝑘∅−1 − 𝑘∅) +

𝜕2𝑓

𝜕𝑘∅
2 (𝑘∅ − 𝑘∅+1)    267 

Since 𝑘∅−1 − 𝑘∅ = 𝑘∅ − 𝑘∅+1 at this maximum/minimum, then; 268 

(17) 
𝜕2𝑄𝑡

𝜕𝑘∅
2 = 2

𝜕2𝑓

𝜕𝑘∅
2 (𝑘∅ − 𝑘∅+1)  269 

The function 𝑓(𝑘∅ − 𝑘∅+1) is just the curve from Fig 1. It can be seen that all order derivatives of this 270 

curve will be a similarly shaped curve that also has only positive values. Therefore 2
𝜕2𝑓

𝜕𝑘∅
2 (𝑘∅ − 𝑘∅+1) 271 

will always be a positive value and 𝑘∅−1 − 𝑘∅ = 𝑘∅ − 𝑘∅+1 must be a local minimum. Total organ Qt 272 

is therefore minimised when the total volume, B, of the organ is distributed evenly amongst all ŋ 273 

vessel segments.  274 

Plotting the curve graphically for Eq. 13 shows it to be u-shaped. We have identified the value for 275 

the minimum. The maximum with respect to any value of kΦ exists at either end of the curve i.e. 276 

when either 𝑘∅−1 − 𝑘∅ = 0 or when 𝑘∅ − 𝑘∅+1 = 0.  277 

If 𝑘∅−1 − 𝑘∅ = 0, then the neighbouring terms to the right become; 278 

(18) 𝑓(𝑘∅ − 𝑘∅+1) + 𝑓(𝑘∅+1 − 𝑘∅+2) 279 

Now to maximise these with respect to 𝑘∅+1 either 𝑘∅−1 − 𝑘∅+1 = 0 or 𝑘∅+1 − 𝑘∅+2 = 0. Let us say 280 

now that 𝑘∅+1 − 𝑘∅+2 = 0. The new adjacent pair of terms becomes  281 

(19)  𝑓(𝑘∅ − 𝑘∅+1) + 𝑓(𝑘∅+1 − 𝑘∅+3) 282 

This can again be maximised with respect to 𝑘∅+1 283 

We can continue this exercise in both directions maximising pairs of adjacent 𝑓() terms with respect 284 

to different k terms until we are left with just one term that contains the entire volume B. Therefore 285 

total organ Qt is maximised when the total volume, B, of the organ is distributed into just one vessel 286 

segment and the other vessel segments contain zero volume. 287 

 288 

Discussion 289 

I have demonstrated a model wherein the total flow in a compliant segment of the microcirculation 290 

is dependent on its volume. The total flow represents the mean of both forward and reverse 291 

travelling waves. Total flow in an organ bed is related to the distribution of volume, and therefore 292 

arterial inflow, amongst parallel microvascular segments, as well as total volume. High total flow 293 

results from heterogeneous volume distribution, while low total flow results from homogenous 294 

volume distribution. For volume to be redistributed, arterial inflow into the microvasculature must 295 
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be redistributed. Therefore a better way to think of the overall findings is that microvascular flow 296 

heterogeneity increases total flow, and vice-versa. Despite a high overall cardiac output, segments of 297 

the microcirculation may receive inadequate flow while others receive excessive flow. 298 

This redistribution phenomenon provides a much needed theoretical model that explains the 299 

contradictory and paradoxical associations of the microcirculation and macrocirculation. Clinicians 300 

such as myself have long struggled to understand why patients with elevated cardiac output, warm 301 

peripheries and increased blood flow to all organ beds nevertheless exhibit clear signs of organ 302 

hypoperfusion. Maldistributed flow to the microcirculation has long been recognised, however this 303 

is the first work to suggest that there is a causative association; maldistribution directly induces a 304 

hyperdynamic circulation.  305 

The traditional explanation for the hyperdynamic circulation has centred on generalised vasodilation 306 

causing low systemic vascular resistance and therefore reduced load on the heart, increasing its 307 

cardiac output. The generalised vasodilation hypothesis does not have strong grounding (19-20). It 308 

has mostly been inferred from calculating global resistance by taking arterial pressure and dividing 309 

by cardiac output and is at direct odds with microcirculatory observations. It has been demonstrated 310 

in other mathematical work that heterogeneous vessel distribution of a fixed total volume lowers 311 

the overall resistance of a vessel bed (21). Therefore microcirculatory heterogeneity may better 312 

explain the reduced systemic vascular resistance. Adequate circulatory volume is also a factor; in 313 

cases of concurrent hypovolemia patients with septic shock do not become hyperdynamic and 314 

actually develop low cardiac output with increased systemic vascular resistance (3). It can be seen 315 

from Eq. 6 that resistance of a compliant bed falls as its volume increases.  316 

Of course, as emphasised, this is the total flow we are discussing. Assuming the ratio of forward to 317 

reverse waves is unchanged, an increase in total flow will increase the net flow (cardiac output), 318 

allowing the creation of a hyperdynamic circulation at sufficient total flow. If however wave 319 

reflections increase, this may not be the case. The Starling curve (22) demonstrates the relationship 320 

between the pressure in the right atrium (x axis) and the flow through it (y-axis) as a function of 321 

increasing cardiac fluid volume. It is curvilinear in nature. At low right atrial pressures relatively large 322 

increases in flow are associated with small increases in right atrial pressure, and at high right atrial 323 

pressures relatively small (or no) increases in flow are associated with high increases in right atrial 324 

pressure.  325 

Therefore anything that causes either a rightward shift along the Starling curve or a rightward shift 326 

of the entire curve will increase the right atrial impedance. This will increase wave reflections. In 327 

order for cardiac output to not fall, total flow has to increase, so either the volume of the 328 

microcirculation or its flow heterogeneity has to increase. Excessive exogenous fluid administration 329 

causes a rightward shift along the curve. If the heart cannot respond to the fluid load by increasing 330 

its pumping the extra volume will not be delivered to the microcirculation. Therefore to maintain 331 

cardiac output the microvascular flow heterogeneity must increase. A failing heart, either 332 

endogenous or in response to excessive vasoconstrictor medication will result in a rightward shift of 333 

the entire curve. Again, the volume of the microvasculature cannot be increased in such a situation, 334 

and the microcirculation will become impaired if cardiac output is to be maintained. In either 335 

situation a rise in the central venous pressure without a concomitant rise in cardiac output will 336 

impair microcirculatory function. This provides a hypothetical explanation as to why high central 337 

venous pressures are an independent predictor of organ dysfunction in both sepsis and heart failure. 338 

This is one clinical application of the hypothesis of this paper. Traditional therapies for hyperdynamic 339 

septic shock are fluid resuscitation and vasopressor medication. Fluid resuscitation, if the heart is 340 
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able to deliver the administered fluid into the microcirculation, may increase the volume of the 341 

“low-volume-low-flow” microcirculatory segments, thereby increasing their flow. Vasopressors are 342 

another therapy in use, and it has never been quite clear how they should improve organ function 343 

when they constrict flow to vessel beds. In fact, vasopressors may decrease v0 of the “oversupplied” 344 

segments, thereby decreasing the volume required for a given flow, and this now excess volume 345 

may be shunted back to the “undersupplied” segments. However if either fluid resuscitation or 346 

vasopressor therapy is excessive and increases central venous pressure without the heart being able 347 

to pump more, then microcirculatory function is impaired, or cardiac output falls. During the 348 

development of sepsis concomitant hypovolemia and reduced microcirculatory volume may 349 

outweigh the effect of microvascular heterogeneity and total flow and cardiac output may be 350 

reduced. Administration of vasopressors may shrink the microvascular volume more than it 351 

decreases v0 and be insufficient to restore cardiac output. Therefore it is important to monitor both 352 

central venous pressure and indicators of cardiac output during resuscitation. 353 

The limitations of this study is that it is theoretical and it would be difficult to develop experimental 354 

protocols to test the hypothesis. The applicability of the mathematics is related to the underlying 355 

assumptions. The non-Newtonian nature of blood may have a large effect than anticipated. There 356 

may be other physiological phenomena present that are not accounted for in the model.  357 
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