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ABSTRACT

Root causal genes correspond to the first gene expression levels perturbed during pathogenesis by genetic or non-genetic
factors. Targeting root causal genes has the potential to alleviate disease entirely by eliminating pathology near its onset. No
existing algorithm discovers root causal genes from observational data alone. We therefore propose the Transcriptome-Wide
Root Causal Inference (TWRCI) algorithm that identifies root causal genes and their causal graph using a combination of
genetic variant and unperturbed bulk RNA sequencing data. TWRCI uses a novel competitive regression procedure to annotate
cis and trans-genetic variants to the gene expression levels they directly cause. The algorithm simultaneously recovers a
causal ordering of the expression levels to pinpoint the underlying causal graph and estimate root causal effects. TWRCI
outperforms alternative approaches across a diverse group of metrics by directly targeting root causal genes while accounting
for distal relations, linkage disequilibrium, patient heterogeneity and widespread pleiotropy. We demonstrate the algorithm
by uncovering the root causal mechanisms of two complex diseases, which we confirm by replication using independent
genome-wide summary statistics.

1 Introduction

Genetic and non-genetic factors can influence gene expression levels to ultimately cause disease. Root causal gene expression
levels – or root causal genes for short – correspond to the initial changes to gene expression that ultimately generate disease as a
downstream effect1. Root causal genes differ from core genes that directly cause the phenotype and thus lie at the end, rather
than at the beginning, of pathogenesis2. Root causal genes also generalize driver genes that only account for the effects of
somatic mutations primarily in protein coding sequences in cancer3.

Discovering root causal genes is critical towards identifying drug targets that modify disease near its pathogenic onset and
thus mitigate downstream pathogenesis in its entirety4. The problem is complicated by the existence of complex disease, where
the causal effects of the root causal genes may differ between patients even within the same diagnostic category. However, the
recently defined omnigenic root causal model posits that only a few root causal genes affect nearly all downstream genes to
initiate the vast majority of pathology in each patient1. We thus more specifically seek to identify personalized root causal
genes specific to any given individual.

Only one existing algorithm accurately identifies personalized root causal genes1, but the algorithm requires access to
genome-wide Perturb-seq data, or high throughput perturbations with single cell RNA sequencing readout5,6. Perturb-seq is
currently expensive and difficult to obtain in many cell types. We instead seek a method that can uncover personalized root
causal genes directly from widespread observational (or non-experimental) datasets.

We make the following contributions in this paper:

1. We introduce the conditional root causal effect (CRCE) that measures the causal effect of the genetic and non-genetic factors,
which directly affect a gene expression level, on the phenotype.

2. We propose a novel strategy called Competitive Regression that provably annotates both cis and trans-genetic variants to the
gene expression level or phenotype they directly cause without conservative significance testing.

3. We create an algorithm called Trascriptome-Wide Root Causal Inference (TWRCI) that uses the annotations to reconstruct a
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personalized causal graph summarizing the CRCEs of gene expression levels from a combination of genetic variant and bulk
RNA sequencing observational data.

4. We show with confirmatory replication that TWRCI identifies only a few root causal genes that accurately distinguish
subgroups of patients even in complex diseases – consistent with the omnigenic root causal model.

We provide an example of the output of TWRCI in Figure 1. TWRCI annotates both cis and trans genetic variants to the
expression level or phenotype they directly cause. We prove that the direct causal annotations allow the algorithm to uniquely
reconstruct the causal graph between the gene expression levels that cause the phenotype as well as estimate their CRCEs. The
algorithm summarizes the CRCEs in the graph by weighing and color-coding each vertex, where vertex size correlates with
magnitude, green induces disease and red prevents disease. TWRCI thus provides a succinct summary of root causal genes and
their root causal effect sizes specific to a given patient using observational data alone. TWRCI outperforms combinations of
existing algorithms across all subtasks: annotation, graph reconstruction and CRCE estimation. No existing algorithm performs
all subtasks simultaneously.
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Figure 1. Toy example of a root causal mechanism inferred by TWRCI for a specific patient. Rectangles denote sets of genetic
variants, potentially in linkage disequilibrium even between sets. Each set of variants directly causes a gene expression level in
𝑿 or the phenotype 𝑌 . Larger lettered vertices denote larger CRCE magnitudes and colors refer to their direction – green is a
positive CRCE and red is negative. TWRCI simultaneously annotates, reconstructs and estimates the CRCEs.

2 Results

2.1 Overview of TWRCI

2.1.1 Setup

We seek to identify not just causal but root causal genes. We must therefore carefully define the generative process. We consider
a set of variants 𝑺, the transcriptome 𝑿 and the phenotype 𝑌 . We represent the generative causal process using a directed graph
like in Figure 2 (a), where the variants cause the transcriptome, and the transcriptome causes the phenotype. Directed edges
denote direct causal relations between variables. In practice, the sets 𝑺 and 𝑿 contain millions and thousands of variables,
respectively. As described in Methods 4.2, we cannot measure the values of 𝑿 exactly using RNA sequencing but instead
measure values 𝑿 corrupted by Poisson measurement error and batch effects.

2.1.2 Variable Selection

Simultaneously handling millions of variants and thousands of gene expression levels currently requires expensive computational
resources. Moreover, most variants and gene expression levels do not inform the discovery of root causal genes for a particular
phenotype 𝑌 . The Transcriptome-Wide Root Causal Inference (TWRCI) thus first performs variable selection by eliminating
variants and gene expression levels unnecessary for root causal inference.

TWRCI first identifies variants 𝑻 ⊆ 𝑺 associated with 𝑌 using widely available summary statistics at a liberal 𝛼 threshold,
such as 5e-5, in order to capture many causal variants. The algorithm then uses individual-level data – where each individual
has variant data, bulk gene expression data from the relevant tissue and phenotype data (variant-expression-phenotype) – to
learn a regression model predicting 𝑿 from 𝑻. TWRCI identifies the subset of expression levels 𝑹 ⊆ 𝑿 that it can predict better
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Figure 2. Overview of the TWRCI algorithm. (a) We redraw Figure 1 in more detail. We do not have access to the underlying
causal graph in practice. (b) TWRCI first performs variable selection by only keeping variants and gene expression levels
correlated with 𝑌 (and their common cause confounders) as shown in black. (c) The algorithm then uses Competitive
Regression to find the variants that directly cause 𝑌 in orange. (d) TWRCI iteratively repeats Competitive Regression for each
gene expression level as well – again shown in orange. (e) The algorithm next performs causal discovery to identify the causal
relations between the gene expression levels and the phenotype in blue. (f) Finally, TWRCI weighs each vertex 𝑋𝑖 ∈ 𝑿 by the
magnitude of Γ𝑖 and color codes the vertex by its direction (green is positive, red is negative). TWRCI thus ultimately recovers
a causal graph like the one shown in Figure 1.

than chance. We refer the reader to Methods 4.4.2 for details on the discovery of additional nuisance variables required to
mitigate confounding. We prove that 𝑻 ∪ 𝑹 retains all of the causes of 𝑌 in 𝑺∪ 𝑿.

2.1.3 Annotation by Competitive Regression

We want to annotate both cis and trans-variants to the gene expression level that they directly cause in 𝑹. We also want to
annotate variants to the phenotype 𝑌 in order to account for horizontal pleiotropy, where variants bypass 𝑹 and directly cause 𝑌 .
TWRCI achieves both of these feats through a novel process called Competitive Regression.

TWRCI accounts for horizontal pleiotropy by applying Competitive Regression to the phenotype. We do not restrict the
theoretical results detailed in Methods to linear models, but linear models trained on genotype data currently exhibit competitive
performance7,8. TWRCI therefore trains debiased linear ridge regression models9 predicting 𝑌 from 𝑻∪ 𝑹 without requiring
Gaussian distributions; let 𝛾𝑌𝑖 refer to the coefficient for 𝑇𝑖 in the regression model. Similarly, let Δ−𝑌𝑖 correspond to the matrix
of coefficients for 𝑇𝑖 in the regression models predicting 𝑹 (but not 𝑌 ) from 𝑻; notice that we have not conditioned on the gene
expression levels in this case. If 𝑇𝑖 directly causes 𝑌 , then it will predict 𝑌 given 𝑻 \𝑇𝑖 and given 𝑻 ∪ 𝑹 \𝑇𝑖 (i.e., Δ𝑌𝑖 and 𝛾𝑌𝑖

will both be non-zero), but 𝑇𝑖 will not predict any gene expression level given 𝑻 \𝑇𝑖 (i.e., maxΔ2
−𝑌𝑖 will be zero). We also prove
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the converse direction in Methods 4.4.4. TWRCI therefore annotates 𝑇𝑖 to 𝑌 , if |Δ𝑌𝑖𝛾𝑌𝑖 | deviates away from zero even after
conditioning on gene expression so that |Δ𝑌𝑖𝛾𝑌𝑖 | ≥ maxΔ2

−𝑌𝑖 – i.e., Δ𝑌𝑖𝛾𝑌𝑖 “beats” Δ2
−𝑌𝑖 in a competitive process (Figure 2 (c)).

We prove in Methods 4.4.3 that Competitive Regression successfully recovers the direct causes of 𝑌 , denoted by 𝑺𝑌 ⊆ 𝑻, so
long as 𝑌 is a sink vertex that does not cause any other variable. We also require analogues of two standard assumptions used in
instrumental variable analysis: relevance and exchangeability10. In this paper, relevance means that at least one variant in 𝑻

directly causes each gene expression level in 𝑹; the assumption usually holds because 𝑻 contains orders of magnitude more
variants than entries in 𝑹. On the other hand, exchangeability assumes that 𝑻 and other sets of direct causal variants not in 𝑻

share no latent confounders (details in Methods 4.4.2); this assumption holds approximately due to the weak causal relations
emanating from variants to gene expression and the phenotype. Exchangeability also weakens as 𝑻 grows larger.

We further show that Competitive Regression can recover 𝑺𝑖 ⊆ 𝑻, or the direct causes of 𝑅𝑖 ∈ 𝑹 in 𝑻, when 𝑅𝑖 causes 𝑌 and
turns into a sink vertex after removing 𝑌 from consideration (Methods 4.4.4). As a result, TWRCI removes 𝑌 and appends it
to the empty ordered set 𝑲 to ensure that some 𝑅𝑖 ∈ 𝑹 is now a sink vertex. We introduce a statistical criterion in Methods
4.4.4 that allows TWRCI to find the sink vertex 𝑅𝑖 after removing 𝑌 . TWRCI then annotates 𝑺𝑖 to 𝑅𝑖 again using Competitive
Regression (Figure 2 (d)), removes 𝑅𝑖 from 𝑹 and appends 𝑅𝑖 to the front of 𝑲. The algorithm iterates until it has removed all
variables from 𝑹∪𝑌 and placed them into the causal order 𝑲.

2.1.4 Causal Discovery and CRCE Estimation

Annotation only elucidates the direct causal relations from variants to gene expression, but it does not recover the causal
relations between gene expression or the causal relations from gene expression to the phenotype. We want TWRCI to recover
the entire biological mechanism from variants all the way to the phenotype.

TWRCI thus subsequently runs a causal discovery algorithm with the causal order 𝑲 to uniquely identify the causal graph
over 𝑹∪𝑌 (Figure 2 (e)). The algorithm also estimates the personalized or conditional root causal effect (CRCE) of gene
expression levels that cause 𝑌 :

Γ𝑖 = E(𝑌 |

non-
genetic︷︸︸︷
𝐸𝑖 ∪

genetic︷︸︸︷
𝑺𝑖 ,𝑫) −E(𝑌 |𝑫),

= E(𝑌 |𝑋𝑖 ,𝑫) −E(𝑌 |𝑫),

(1)

where we choose 𝑫 ⊆ 𝑹∪𝑻 carefully to ensure that the second equality holds (Methods 4.3). The CRCE Γ𝑖 of 𝑋𝑖 ∈ 𝑹 thus
measures the causal effect of the genetic factors 𝑺𝑖 and the non-genetic factors 𝐸𝑖 on 𝑌 that perturb 𝑋𝑖 first. The CRCE values
differ between patients, so TWRCI can recover different causal graphs by weighing each vertex according to the patient-specific
CRCE values Γ = 𝛾 (Figure 2 (f)). The gene 𝑋𝑖 is a personalized root causal gene if |𝛾𝑖 | > 0. The omnigenic root causal model
posits that |𝛾 | ≫ 0 for only a small subset of genes in each patient even in complex disease.

2.2 TWRCI accurately annotates, reconstructs and estimates in silico

No existing algorithm recovers personalized root causal genes from observational data alone. However, existing algorithms can
annotate variants using different criteria and reconstruct causal graphs from observational data. We therefore compared TWRCI
against state of the art algorithms in annotation and causal graph reconstruction using 100 semi-synthetic datasets with real
variant data but simulated gene expression and phenotype data (Methods 4.6).

Many different annotation methods exist with different objectives. Most methods nevertheless annotate variants by at least
considering proximity to the transcription start site (TSS), with the hope that variants near the TSS of a gene will directly affect
that gene’s expression level; for example, a variant in the exonic region of a gene may compromise its mRNA stability, while a
variant in the promoter region may affect its transcription rate. We thus compare a diverse range of methods in direct causal
annotation, or assigning variants to the gene expression levels they directly cause. This criterion accommodates other annotation
objectives from a mathematical perspective as well – solving direct causation automatically solves causation, colocalization and
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Figure 3. Semi-synthetic data results in terms of (a) direct causal annotation, (b) annotation focused on horizontal pleiotropy
only, (c) graph reconstruction, (d) combined annotation and graph reconstruction, and (e) CRCE estimation accuracy. Four of
the graphs summarize two evaluation metrics. Arrows near the y-axis denote whether a higher (upward arrow) or a lower
(downward arrow) score is better. We do not plot the results of cis-eQTL and SuSIE in (d) and (e) when they exhibit much
worse performance. The cis-window and cTWAS algorithms have the exact same CRCE estimates in (e) because accounting for
horizontal pleiotropy in cTWAS does not change the conditioning set 𝑫 in Equation (1); we thus denote cis-Window and
cTWAS as Win/cT for short. TWRCI in purple outperformed all algorithms across all nine evaluation metrics. Error bars
correspond to 95% confidence intervals.

correlation as progressively more relaxed cases. We in particular compare nearest TSS, a one mega-base cis-window1, the
causal transcriptome-wide association study (cTWAS)11, the maximally correlated gene within the cis-window (cis-eQTL)12,
colocalization with approximate Bayes factors (ABF)13, and colocalization with Sum of SIngle Effects model (SuSIE)14. We
then performed causal graph reconstruction using SIGNET15,16, RCI17, GRCI18 and the PC algorithm19,20. We evaluated
TWRCI against all combinations of annotation and graph reconstruction methods. See Methods 4.5 and 4.8 for a detailed
description of comparator algorithms and evaluation metrics, respectively. All statements about empirical results mentioned
below hold at a Bonferroni corrected threshold of 0.05 divided by the number of comparator algorithms according to two-sided
paired t-tests.

We first summarize the accuracy results for annotation of direct causes only. All existing annotation algorithms utilize
heuristics such as location, correlation or colocalization to infer causality. Only TWRCI provably identifies the direct causes of
each gene expression level (Theorem 1 in Methods 4.4.6). Empirical results corroborate this theoretical conclusion. TWRCI
achieved the highest accuracy as assessed by Matthew’s correlation coefficient (MCC) to the true direct causal variants of each
gene expression level and phenotype (Figure 3 (a) left). The algorithm also ranked the ground truth direct causal variants the
highest by assigning the ground truth causal variants larger regression coefficient magnitudes than non-causal variants (Figure 3
(a) right). Both TWRCI and cTWAS account for horizontal pleiotropy, but TWRCI again outperformed cTWAS even when we

1If multiple genes were present in the window, then we assigned the variant to the gene with the nearest TSS.
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only compared the true and inferred variants that directly cause the phenotype using MCC and the normalized rank (Figure 3
(b)). We conclude that TWRCI annotated the genetic variants to their direct effects most accurately.

We obtained similar results with causal graph reconstruction. TWRCI obtained the best performance according to the highest
MCC and the lowest structural hamming distance (SHD) to the ground truth causal graphs (Figure 3 (c)). We then assessed the
performance of combined annotation and graph reconstruction using the mean absolute correlation of the residuals (MACR), or
the mean absolute correlation between the indirect causes of a gene expression level and the residual gene expression level
obtained after partialing out the inferred direct causes; if an algorithm annotates and reconstructs accurately, then each gene
expression level should not correlate with its indirect causes after partialing out its direct causes, so the MACR should attain a
small value. TWRCI accordingly achieved the lowest MACR as compared to all possible combinations of existing algorithms
(Figure 3 (d)). The cis-eQTL and SuSIE algorithms obtained MACR values greater than 0.3 because many cis-variants did
not correlate or colocalize with the expression level of the gene with the nearest TSS; we thus do not plot the results of these
algorithms. We conclude that TWRCI used annotations to reconstruct the causal graph most accurately by provably accounting
for both cis and trans-variants.

We finally analyzed CRCE estimation accuracy. Computing the CRCE requires access to the inferred annotations and
causal graph. We therefore again evaluated TWRCI against all possible combinations of existing algorithms. The CRCE
estimates of TWRCI attained the largest correlation to the ground truth CRCE values (Figure 3 (e) left). Further, if an algorithm
accurately estimates the components E(𝑌 |𝑋𝑖 ,𝑫) and E(𝑌 |𝑫) of the CRCE in Equation (1), then the residual 𝑌 −E(𝑌 |𝑋𝑖 ,𝑫)
should not correlate with 𝑺𝑖 ∩𝑻. TWRCI accordingly obtained the lowest mean absolute correlation of these residuals (MACR)
against all combinations of algorithms (Figure 3 (e) right). The cis-eQTL and SuSIE algorithms again attained much worse
MACR values above 0.4 because they failed to annotate many causal variants to their gene expression levels. We conclude that
TWRCI outperformed existing methods in CRCE estimation. TWRCI therefore annotated, reconstructed and estimated the most
accurately according to all nine evaluation criteria. The algorithm also completed within about 3 minutes for each dataset
(Supplementary Figure 1).

2.3 Chronic and exaggerated immunity in COPD
We next ran the algorithms using summary statistics of a large GWAS of COPD21 consisting of 13,530 cases and 454,945
controls of European ancestry. We downloaded individual variant-expression-phenotype data of lung tissue from GTEx22 with
96 cases and 415 controls. We also replicated results using an independent GWAS consisting of 4,017 cases and 162,653
controls of East Asian ancestry21. COPD is a chronic inflammatory condition of the airways or the alveoli that leads to
persistent airflow obstruction23. Exposure to respiratory infections or environmental pollutants can also trigger acute on chronic
inflammation called COPD exacerbations that worsen the obstruction.

2.3.1 Accuracy

We first compared the accuracy of the algorithms in variant annotation, graph reconstruction and CRCE estimation. We can
compute the MACR metrics – representing two of the nine evaluation criteria used in the previous section – with real data. We
summarize the MACR for simultaneous variant annotation and graph reconstruction averaged over ten nested cross-validation
folds in Figure 4 (a). TWRCI achieved the lowest MACR out of all combinations of algorithms within about 3 minutes
(Supplementary Figure 2 (b) and (c)). Performance differed primarily by the annotation method rather than the causal discovery
algorithm. Conservative annotation algorithms, such as colocalization by SuSIE, again failed to achieve a low MACR because
they frequently failed to annotate at least one variant to every gene expression level. MACR values for CRCE estimation
followed a similar pattern (Figure 4 (b)) because accurate annotation and reconstruction enabled accurate downstream CRCE
estimation.

We next followed11,24 and downloaded a set of silver standard genes enriched in genes that cause COPD. The KEGG
database does not contain a pathway for COPD, so we downloaded the gene set from the DisGeNet database instead (UMLS
C0024117, curated)25,26. Many silver standard genes are causal but not root causal for COPD. If an algorithm truly identifies
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root causal genes, then partialing out the root causal genes from all of the downstream non-root causal genes and the phenotype
should explain away the vast majority of the causal effect between the non-root causal genes and the phenotype according to
the omnigenic root causal model. We therefore computed another MACR metric, the mean absolute correlation between the
residuals of the silver standard genes and the residuals of the phenotype after partialing out the inferred root causal genes.
TWRCI again obtained the lowest MACR value (Figure 4 (c)). We conclude that TWRCI identified the root causal genes most
accurately according to known causal genes in COPD.

2.3.2 Horizontal pleiotropy and trans-variants

We studied the output of TWRCI in detail to gain insight into important issues in computational genomics. Previous studies
have implicated the existence of widespread horizontal pleiotropy in many diseases28. TWRCI can annotate variants directly to
the phenotype, so we can use TWRCI to assess the existence of widespread pleiotropy. The variable selection step of TWRCI
identified fourteen gene expression levels surviving false discovery rate (FDR) correction at a liberal 10% threshold; eight of
these levels ultimately caused the phenotype, including two psoriasis susceptibility genes, a complement protein and five MHC
class II genes. TWRCI annotated 13.7% of the variants that cause COPD directly to the phenotype, despite competition for
variants between the phenotype and the eight gene expression levels (Figure 4 (d)). Many variants thus directly cause COPD by
bypassing expression. We conclude that TWRCI successfully identified widespread horizontal pleiotropy in COPD. In contrast,
cTWAS failed to identify any variants that bypass gene expression because all variants had very small effects on the phenotype,
especially after accounting for gene expression; as a result, no variants ultimately had a posterior inclusion probability greater
than 0.8 according to cTWAS.

TWRCI annotates both cis and trans-variants, so we examined the locations of the annotated variants relative to the TSS for
each of the eight causal genes. Most of the variants lying on the same chromosome as the TSS fell within a one megabase
distance from the TSS (Figure 4 (e) blue). However, 78% of the variants were located on different chromosomes. We thus
compared the variants annotated to causal genes by TWRCI against a previously published list of trans-eQTLs associated with
any phenotype in a large-scale search29 (Methods 4.7.3). Variants annotated by TWRCI were located 1.94 times closer to
trans-eQTLs than expected by chance (10,000 permutations, 𝑝 < 0.001, 95% CI [1.93,1.95]). We next examined the effect sizes
of the variants that cause the phenotype. We regressed the phenotype on variants inferred to directly or indirectly cause the
phenotype using linear ridge regression. We then computed the moving average of the magnitudes of the regression coefficients
over different distances from the TSS. The magnitudes remained approximately constant with increasing distance from the TSS
(Figure 4 (e) red). Moreover, the magnitudes for variants located on different chromosomes did not converge to zero (dotted
line). We thus conclude that trans-variants play a significant role in modulating gene expression to cause COPD.

2.3.3 Root Causal Mechanism

We next analyzed the output of TWRCI to elucidate the root causal mechanism of COPD. The pathogenesis of COPD starts
with inhaled irritants that trigger an exaggerated and persistent activation of inflammatory cells such as macrophages, T cells
and B cells23. These cells in turn regulate a variety of inflammatory mediators that promote alveolar wall destruction, abnormal
tissue repair and mucous hypersecretion obstructing airflow. The root causal genes of COPD therefore likely involve genes
mediating chronic and exaggerated inflammation in the lung.

Eight of the fourteen gene expression levels ultimately caused the COPD phenotype in the causal graph reconstructed by
TWRCI (Figure 4 (f)). The graph contained five MHC class II genes that present extracellular peptide antigens to CD4+ T cells
in the adaptive immune response30. Subsequent activation of T cell receptors regulates a variety of inflammatory mediators
and cytokines31. Moreover, the complement fragment C4a32 as well as the psoriasis susceptibility genes PSORS1C1 and
PSORS1C233 help initiate and maintain the exaggerated inflammatory response seen in COPD. The recovered causal graph thus
implicates chronic exaggerated inflammation as the root causal mechanism of COPD. TWRCI replicated these results by again
discovering C4A and the MHC class II genes in an independent GWAS dataset composed of individuals of East Asian ancestry
(Supplementary Figure 3 (a)).
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Figure 4. Results for COPD. (a) TWRCI outperformed all other combinations of algorithms in direct causal annotation and
graph reconstruction by achieving the lowest MACR; error bars correspond to one standard error of the mean in accordance
with the one standard error rule of cross-validation27. (b) TWRCI similarly achieved the lowest MACR for CRCE estimation.
(c) Silver standard genes exhibited the smallest correlation with the phenotype after partialing out the root causal genes inferred
by TWRCI. (d) More than 13% the causal variants exhibited horizontal pleiotropy. TWRCI annotated the remaining causal
variants to eight gene expression levels. (e) TWRCI assigned approximately 78% of the causal variants to genes located on
different chromosomes. Most causal variants annotated to a gene on the same chromosome fell within a one megabase distance
from the TSS (blue, left). The average magnitude of the regression coefficients remained approximately constant with
increasing distance from the TSS (red, right); the dotted line again corresponds to variants on different chromosomes. (f) The
COPD-wide causal graph revealed multiple MHC class II genes as root causal. (g) UMAP dimensionality reduction revealed
two clusters of COPD patients well-separated from the healthy controls. (h) The directed graphs highlighted different root
causal genes within each of the two clusters.
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We finally analyzed the personalized CRCE estimates in more detail. We can decompose the CRCE estimate of each gene
into genetic and non-genetic components according to Equation (1). The genetic variants explained only 6.4% of the estimated
variance of the CRCE for HLA-DRB5, 1.4% for C4A and <1% for the other six causal genes. We conclude that non-genetic
factors account for nearly all of the explained variance in the CRCE estimates. We then performed UMAP dimensionality
reduction34 on the causal gene expression levels. Hierarchical clustering with Ward’s method35 yielded three clear clusters of
patients with COPD (Figure 4 (g)) according to the elbow method on the sum of squares plot (Supplementary Figure 2 (a)).
UMAP differentiated two of the COPD clusters from healthy controls, each with different mean CRCE estimates (Figure 4 (h)
directed graphs). For example, HLA-DRB5 had a large positive CRCE in cluster one but a large negative CRCE in cluster two.
The CRCE estimates thus differentiated multiple subgroups of patients consistent with the known pathobiology of COPD; we
likewise obtained similar results in the second GWAS dataset (Supplementary Figure 3 (b) and (c)).

2.4 Oxidative stress in ischemic heart disease
We also ran the algorithms on summary statistics of ischemic heart disease (IHD) consisting of 31,640 cases and 187,152
controls from Finland36. We used variant-expression-phenotype data of whole blood from GTEx22 with 113 cases and 547
controls. We used whole blood because IHD arises from narrowing or obstruction of the coronary arteries most commonly
secondary to atherosclerosis with transcription products released into the bloodstream37. We replicated the results using an
independent set of GWAS summary statistics from 20,857 cases and 340,337 controls from the UK Biobank38.

2.4.1 Accuracy

We compared the algorithms in variant annotation, graph reconstruction and CRCE estimation accuracy. TWRCI achieved the
lowest MACR in both cases (Figure 5 (a) and (b)) within about one hour (Supplementary Figure 4 (b) and (c)). Cis-eQTLs and
colocalization with SuSIE failed to annotate many variants because many trans-variants again predicted gene expression. We
obtained similar results with a set of silver standard genes downloaded from the KEGG database (hsa05417)39, where TWRCI
outperformed all other algorithms (Figure 5 (c)).

2.4.2 Horizontal pleiotropy and trans-variants

The genetic variants predicted 27 gene expression levels at an FDR threshold of 10% with six genes inferred to cause the
phenotype. We plot the six genes in the directed graph recovered by TWRCI in Figure 5 (f). TWRCI sorted approximately
8-23% of the causal variants to each of the six genes (Figure 5 (d)). Moreover, TWRCI annotated approximately 17% of the
causal variants directly to the phenotype supporting widespread horizontal pleiotropy in IHD. In contrast, cTWAS again did not
detect any variants that directly cause the phenotype with a posterior inclusion probability greater than 0.8.

We analyzed the inferred causal effects of cis and trans-variants. Only 7.4% of the annotated variants were located on the
same chromosome, and those on the same chromosome were often located over 10 megabases from the TSS (Figure 5 (e)
blue). Moreover, variants annotated by TWRCI were located 4.46 times closer to a published list of trans-eQTLs than expected
by chance (10,000 permutations, 𝑝 = 0.0014, 95% CI [4.39,4.52]). The magnitudes of the regression coefficients remained
approximately constant with increasing distance from the TSS and converged to 0.002 – rather than to zero – on different
chromosomes (Figure 5 (e) red). We conclude that trans-variants also play a prominent role in IHD.

2.4.3 Root Causal Mechanism

We next examined the root causal genes of IHD. IHD is usually caused by atherosclerosis, where sites of disturbed laminar
flow and altered shear stress trap low-density lipoprotein (LDL)40. Reactive oxygen species then oxidize LDL and stimulate an
inflammatory response. T cells in turn stimulate macrophages that ingest the oxidized LDL. The macrophages then develop into
lipid-laden foam cells that form the initial fatty streak of an eventual atherosclerotic plaque. We therefore expect the root causal
genes of IHD to involve oxidative stress and the inflammatory response.

TWRCI identified MRPL1, TRBV6-2 and FAM241B as the top three root causal genes (Figure 5 (f)). MRPL1 encodes
a mitochondrial ribosomal protein that helps synthesize complex proteins involved in the respiratory chain41. Deficiency of
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MRPL1 can lead to increased oxidative stress. TRBV6-2 encodes a T-cell receptor beta variable involved in the inflammatory
response and accumulation of T-cells in the atherosclerotic plaque42. Moreover, knocking out FAM241B induces the cytoplasmic
buildup of large lysosome-derived vacuoles that generate foam cells43. We conclude that the root causal genes identified by
TWRCI correspond to known genes involved in the pathogenesis of IHD. Finally, TWRCI rediscovered MRPL1 in a second
independent GWAS dataset (Supplementary Figure 5 (a)).

We next dissected the CRCE estimates in detail. The annotated variants explained less than 1.5% of the CRCE variance for
MRPL1, TRBV6-2 and FAM241B (Figure 5 (g)). Non-genetic factors therefore account for the vast majority of the CRCE
variance. UMAP dimensionality reduction and then hierarchical cluster on the causal genes discovered by TWRCI revealed
two clusters of IHD patients (Supplementary Figure 4 (a)). The largest of the two clusters lied distal to the cluster of healthy
controls (Figure 5 (h)). Furthermore, the FAM241B, TRBV6-2 and MRPL1 genes retained the largest mean CRCEs in this
cluster (Figure 5 (i)). TWRCI likewise replicated the large mean CRCE estimate for MRPL1 in the independent GWAS dataset
(Supplementary Figure 5 (a) and (b)). We conclude that the CRCE estimates also identify genes that differentiate patient
subgroups in IHD.
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Figure 5. Results for IHD. (a) TWRCI again outperformed all other algorithms in combined annotation and graph
reconstruction by achieving the lowest MACR. (b) TWRCI also estimated the CRCEs most accurately relative to all possible
combinations of the other algorithms. (c) TWRCI outperformed all other algorithms with a silver standard set of genes causally
involved in atherosclerosis. (d) TWRCI annotated variegated numbers of variants to six causal expression levels as well as the
phenotype. (e) Nearly all of the annotated variants were located distal to the TSS (blue), and the magnitudes of their causal
effects did not consistently increase or decrease on average with greater distance from the TSS (red). (f) TWRCI estimated the
largest mean CRCEs for MRPL1, TRBV6-2 and FAM241B. (g) The annotated variants only explained a small proportion
(<1.5%) of the variance for all CRCE estimates. (h) UMAP dimensionality reduction identified one cluster of patients clearly
separated from healthy controls. (i) The mean CRCEs of MRPL1, TRBV6-2 and FAM241B remained the largest in this cluster.
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3 Discussion

We introduced the CRCE of a gene, a measure of the causal effect of the genetic and non-genetic factors that directly cause
a gene expression level on a phenotype. We then created the TWRCI algorithm that estimates the CRCE of each gene after
simultaneously annotating variants and reconstructing the causal graph for improved statistical power. TWRCI annotates,
reconstructs and estimates more accurately than alternative algorithms across multiple semi-synthetic and real datasets.
Applications of TWRCI to COPD and IHD revealed succinct sets of root causal genes consistent with the known pathogenesis
of each disease, which we verified by replication. Furthermore, clustering delineated patient subgroups whose pathogeneses
were dictated by different root causal genes.

Our experimental results highlight the importance of incorporating trans-variants in statistical analysis. TWRCI annotated
many variants distal to the TSS of each gene. These trans-variants improved the ability of the algorithm to learn models of gene
regulation consistent with the correlations in the data according to the MACR criteria. Moreover, variants annotated by TWRCI
were located closer to the positions of a previously published list of trans-eQTLs than expected by chance29. In contrast, nearest
TSS, cis-windows, cTWAS, cis-eQTLs and the colocalization methods all rely on cis-variants that did not overlap with many
GWAS hits both in the COPD and IHD datasets. Most GWAS hits likely lie distal to the TSSs in disease due to natural selection
against cis-variants with large causal effects on gene expression44. As a result, algorithms that depend solely on cis-variants can
fail to detect a large proportion of variants that cause disease in practice.

TWRCI detected widespread horizontal pleiotropy accounting for 13-17% of the causal variants in both the COPD and
IHD datasets. Previous studies have detected horizontal pleiotropy in around 20% of causal variants even after considering
thousands of gene expression levels as well28. Moreover, many of the variants annotated to the phenotype by TWRCI correlated
with gene expression (Supplementary Figures 2 (d) and 4 (d)). Accounting for widespread horizontal pleiotropy thus mitigates
pervasive confounding between gene expression levels and the phenotype.

The cTWAS algorithm did not detect widespread pleiotropy in the real datasets. The algorithm also underperformed TWRCI
in the semi-synthetic data, even when we restricted the analyses to variants that directly cause the phenotype. We obtained these
results because cTWAS relies on the SuSIE algorithm to identify pleiotropic variants. However, pleiotropic variants usually
exhibit weak causal relations to the phenotype, so most of these variants do not achieve a large posterior inclusion probability in
practice. Algorithms that depend on absolute measures of certainty, such as posterior probabilities or p-values, miss many causal
variants with weak causal effects in general. TWRCI therefore instead annotates variants by relying on relative certainty via a
novel process called Competitive Regression, which we showed leads to more consistent causal models across multiple metrics.

We re-emphasize that TWRCI is the only algorithm that accurately recovers root causal genes initiating pathogenesis. Other
methods such as colocalization and cTWAS identify causal genes involved in pathogenesis, regardless of whether the genes are
root causal or not root causal. As a result, only TWRCI inferred a few genes with large CRCE magnitudes even in complex
diseases. Moreover, genes with non-zero CRCE magnitudes explained away most of the causal effects of the non-root causal
genes in the silver standards. Both of these results are consistent with the omnigenic root causal model, or the hypothesis that
only a few root causal genes initiate the vast majority of pathology in each patient even in complex disease by affecting a very
large number of downstream genes1.

Recall that the above root causal genes differ from driver genes and core genes. Root causal genes generalize driver genes
by accounting for all of the factors that directly influence gene expression levels across all diseases, rather than just somatic
mutations in cancer3. Accounting for both genetic and non-genetic factors is especially important when non-genetic factors
explain the majority of the variance in the root causal effects, as we saw in COPD and IHD. Finally, root causal genes differ
from core genes, or the gene expression levels that directly cause a phenotype, by focusing on the beginning rather than the end
of pathogenesis2. Root causal genes may affect the expression levels of downstream genes so that many genes are differentially
expressed between patients and healthy controls including many core genes. A few root causal genes can therefore increase the
number of core genes.

TWRCI provably identifies root causal genes and attains high empirical accuracy, but the algorithm carries several limitations.
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The algorithm cannot accommodate cycles or directed graphs with different directed edges, even though cycles may exist
and direct causal relations may differ between patient populations in practice45. TWRCI also estimates CRCE values at the
patient-specific level, but the CRCEs may also vary between different cell types. Finally, the algorithm uses linear rather than
non-linear models to quantify the causal effects of the variants on gene expression or the phenotype. Future work should
therefore consider relaxing the single DAG constraint and accommodating non-linear relations. Future work will also focus on
scaling the method to millions of genetic variants without feature selection.

In summary, we introduced an algorithm called TWRCI for accurate estimation and interpretation of the CRCE using
personalized causal graphs. TWRCI empirically discovers only a few gene expression levels with large CRCE magnitudes even
within different patient subgroups of complex disease in concordance with the omnigenic root causal model46. We conclude
that TWRCI is a novel, accurate and disease agnostic procedure that couples variant annotation with graph reconstruction to
identify root causal genes using observational data alone.
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4 Methods

4.1 Background on Causal Discovery

Causal discovery refers to the process of discovering causal relations from data. We let italicized letters such as 𝑍𝑖 denote a
singleton random variable and bold italicized letters such as 𝒁 denote sets of random variables. Calligraphic letters such asZ
refer to sets of sets.

We consider a set of 𝑝 endogenous variables 𝒁. We represent a causal process over 𝒁 using a structural equation model
(SEM) consisting of a series of deterministic functions:

𝑍𝑖 = 𝑓𝑖 (Pa(𝑍𝑖), 𝐸𝑖) ∀𝑍𝑖 ∈ 𝒁, (2)

where Pa(𝑍𝑖) ⊆ 𝒁 \ 𝑍𝑖 denotes the parents, of direct causes, of 𝑍𝑖 and 𝐸𝑖 ∈ 𝑬 an exogenous variable, also called an error or a
noise term. We assume that the variables in 𝑬 are mutually independent. The set Ch(𝑍𝑖) refers to the children, or direct effects,
of 𝑍𝑖 where 𝑍 𝑗 ∈ Ch(𝑍𝑖) if and only if 𝑍𝑖 ∈ Pa(𝑍 𝑗 ).

We can associate an SEM with a directed graph G by a drawing a directed edge from 𝑍 𝑗 to 𝑍𝑖 when 𝑍 𝑗 ∈ Pa(𝑍𝑖). We thus
use the words variable and vertex interchangeably. A root vertex in G refers to a vertex without any parents, whereas a sink
or terminal vertex refers to a vertex without any children. A path between 𝑍0 and 𝑍𝑛 corresponds to an ordered sequence of
distinct vertices ⟨𝑍0, . . . , 𝑍𝑛⟩ such that 𝑍𝑖 and 𝑍𝑖+1 are adjacent for all 0 ≤ 𝑖 ≤ 𝑛−1. In contrast, a directed path from 𝑍0 to 𝑍𝑛

corresponds to an ordered sequence of distinct vertices ⟨𝑍0, . . . , 𝑍𝑛⟩ such that 𝑍𝑖 ∈ Pa(𝑍𝑖+1) for all 0 ≤ 𝑖 ≤ 𝑛−1. We say that 𝑍 𝑗

is an ancestor of 𝑍𝑖 , and likewise that 𝑍𝑖 is a descendant of 𝑍 𝑗 , if there exists a directed path from 𝑍 𝑗 to 𝑍𝑖 (or 𝑍 𝑗 = 𝑍𝑖). We
collect all ancestors of 𝑍 𝑗 into the set Anc(𝑍 𝑗 ), and all its non-descendants into the set Nd(𝑍 𝑗 ). We write 𝑍𝑖 ∈ Anc(𝑨) when
𝑍𝑖 is an ancestor of any variable in 𝑨, and likewise Nd(𝑨) for the non-descendants. The variable 𝑍 𝑗 causes 𝑍𝑖 if 𝑍 𝑗 is an
ancestor of 𝑍𝑖 and 𝑍 𝑗 ≠ 𝑍𝑖 . A root cause of 𝑍𝑖 corresponds to a root vertex that also causes 𝑍𝑖 .

A cycle exists in G when 𝑍 𝑗 causes 𝑍𝑖 and vice versa. A directed acyclic graph (DAG) corresponds to a directed graph
without cycles. A collider corresponds to 𝑍 𝑗 in the triple 𝑍𝑖 → 𝑍 𝑗 ← 𝑍𝑘 . Two vertices 𝑍𝑖 and 𝑍 𝑗 are d-connected given
𝑾 ⊆ 𝒁 \ {𝑍𝑖 , 𝑍 𝑗 } if there exists a path between 𝑍𝑖 and 𝑍 𝑗 such that no non-collider is in 𝑾 and all colliders are ancestors of
𝑾. We denote d-connection by 𝑍𝑖 ̸⊥⊥𝑑 𝑍 𝑗 |𝑾 for shorthand. The two vertices are d-separated given 𝑾, likewise denoted by
𝑍𝑖 ⊥⊥𝑑 𝑍 𝑗 |𝑾, if they are not d-connected. The Markov boundary of 𝑍𝑖 , denoted by Mb(𝑍𝑖), corresponds to the not necessarily
unique but smallest set of variables in 𝒁 \ 𝑍𝑖 such that 𝑍𝑖 ⊥⊥𝑑 (𝒁 \Mb(𝑍𝑖)) |Mb(𝑍𝑖). A path is blocked by 𝑾 if 𝑾 contains at
least one non-collider on the path or does not contain an ancestor of a collider (or both).

A probability density that obeys an SEM associated with the DAG G also factorizes according to the graph:

𝑝(𝒁) =
𝑝∏
𝑖=1

𝑝(𝑍𝑖 |Pa(𝑍𝑖)).

Any density that factorizes as above obeys the global Markov property, where 𝑍𝑖 and 𝑍 𝑗 are conditionally independent given 𝑾,
or 𝑍𝑖 ⊥⊥ 𝑍 𝑗 |𝑾, if 𝑍𝑖 ⊥⊥𝑑 𝑍 𝑗 |𝑾47. A density obeys d-separation faithfulness when the converse holds: if 𝑍𝑖 ⊥⊥ 𝑍 𝑗 |𝑾, then
𝑍𝑖 ⊥⊥𝑑 𝑍 𝑗 |𝑾. The Markov boundary of 𝑍𝑖 uniquely corresponds to the parents, children and parents of the children (or spouses)
of 𝑍𝑖 under d-separation faithfulness.
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4.2 Causal Modeling of Variants, Gene Expression and the Phenotype

We divide the set of random variables 𝒁 into disjoint sets 𝑌 ∪ 𝑺∪ 𝑳∪ 𝑿 corresponding to the phenotype 𝑌 , 𝑞 genetic variants 𝑺,
latent variables 𝑳 modeling linkage disequilibrium (LD) and 𝑚 gene expression levels 𝑿. We model the causal process over 𝒁
using the following SEM associated with a DAG G:

𝐿𝑖 = 𝑓𝑖 (Pa(𝐿𝑖), 𝐸𝑖), ∀𝐿𝑖 ∈ 𝑳

𝑆 𝑗 = 𝑓 𝑗 (Pa(𝑆 𝑗 ), 𝐸 𝑗 ), ∀𝑆 𝑗 ∈ 𝑺

𝑋𝑘 = 𝑓𝑘 (Pa(𝑋𝑘), 𝐸𝑘), ∀𝑋𝑘 ∈ 𝑿,

𝑌 = 𝑓𝑌 (Pa(𝑌 ), 𝐸𝑌 ),

(3)

where Pa(𝐿𝑖) ⊆ 𝑳, Pa(𝑆 𝑗 ) ⊆ 𝑳, Pa(𝑋𝑘) ⊆ (𝑿 ∪ 𝑺) and Pa(𝑌 ) ⊆ (𝑿 ∪ 𝑺) for any latent variable, any genetic variant, any gene
expression level and the phenotype, respectively. In other words, linkage disequilibrium 𝑳 generates variants 𝑺, and variants
and gene expression generate other gene expression levels 𝑿 and the phenotype 𝑌 (example in Figure 6 (a)). We assume that 𝑌
is a sink vertex such that gene expression and variants cause 𝑌 but not vice versa.

Let 𝑺𝑖 denote the direct causes of 𝑿𝑖 in 𝑺. We require 𝑺𝑖 ≠ ∅ for all 𝑋𝑖 ∈ 𝑿 so that at least one variant directly causes each
gene expression level. We also assume that any single variant can only directly cause one gene expression level or the phenotype
(but not both). Investigators have reported only a few rare exceptions to this latter assumption in the literature46. A variant may
however indirectly cause many gene expression levels.

We unfortunately cannot measure the exact values of gene expression using RNA sequencing (RNA-seq) technology.
Numerous theoretical and experimental investigations have revealed that RNA-seq suffers from independent Poisson measurement
error48,49:

𝑋𝑖 ∼ Pois(𝑋𝑖𝜋𝑖 𝑗 ),

where 𝜋𝑖 𝑗 denotes the mapping efficiency of 𝑋𝑖 in batch 𝑗 . We thus sample 𝑌 ∪ 𝑺∪ 𝑳∪ 𝑿∪𝐵 from the DAG like the one shown
in Figure 6 (b) in practice, where 𝐵 denotes the batch. With slight abuse of terminology, we will still call 𝑋𝑖 a sink vertex if it
has only one child 𝑋𝑖 .

We can perform consistent regression under Poisson measurement error. Let 𝑁 =
∑𝑚

𝑖=1 𝑋𝑖 denote the library size and let
𝑁 𝑗 =

∑𝑚
𝑖=1 𝑋𝑖𝜋𝑖 𝑗 denote the true unobserved total gene expression level weighted by the mapping efficiencies in batch 𝑗 . Also

let 𝑼 ⊆ 𝑿 and 𝑽 ⊆ 𝑺 refer to any subset of gene expression levels and variants, respectively. The following result holds:

𝐿1
𝐿2

𝑆1
𝑆2 𝑆𝑌

𝑋1
𝑋2 𝑌

(a)

𝐿1
𝐿2

𝑆1
𝑆2 𝑆𝑌

𝑋1
𝑋2 𝑌

𝑋1 𝑋2

𝐵
(b)

𝐿1
𝐿2

𝐸𝐿1
𝐸𝐿2

𝑆1
𝑆2 𝑆𝑌𝐸𝑆1

𝐸𝑆2 𝐸𝑆𝑌
𝑋1

𝑋2 𝑌𝐸
𝑋1

𝐸
𝑋2

𝐸𝑌

(c)

Figure 6. (a) An example of a DAG over 𝒁. In (b), the additional vertices 𝑿 denote counts corrupted by batch 𝐵 effects and
Poisson measurement error. (c) We can also augment the DAG in (a) with root vertex error terms 𝑬.
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Lemma 1. Assume Lipschitz continuity of the conditional expectation for all 𝑁 ≥ 𝑛0:

E
���E(𝑍𝑖 |𝑼,𝑽) −E(𝑍𝑖 |𝑼,𝑽, 𝐵)

��� ≤ E𝐶𝑁

�����𝑼− 𝑼

𝑁

𝑁𝐵

𝜋𝑼𝐵

����� ,
where 𝐶𝑁 ∈ 𝑂 (1) is a positive constant, and we have taken an outer expectation on both sides. Then E(𝑍𝑖 |𝑼,𝑽) =
lim𝑁→∞E(𝑍𝑖 |𝑼,𝑽, 𝐵) almost surely.

We delegate proofs to the Supplementary Materials. Intuitively, 𝑼
𝑁

𝑁𝐵

𝜋𝑼𝐵
approaches 𝑼 as the library size increases, so the above

lemma states that accurate estimation of 𝑼 implies accurate estimation of E(𝑍𝑖 |𝑼,𝑽). We can thus consistently estimate any
conditional expectation E(𝑍𝑖 |𝑼,𝑽) using E(𝑍𝑖 |𝑼,𝑽, 𝐵) when the library size approaches infinity. We only apply the asymptotic
argument to bulk RNA-seq, where the library size is on the order of at least tens of millions. We henceforth implicitly assume
additional conditioning on 𝐵 whenever regressing to or on bulk RNA-seq data in order to simplify notation.

4.3 Conditional Root Causal Effects
We define the root causal effect of a gene expression level on the phenotype 𝑌 . We focus on Equation (3) with the endogenous
variables 𝒁 and the exogenous variables 𝑬. If the error terms 𝑬 are mutually independent, then we can augment the associated
DAG G with 𝑬 by drawing a directed edge from each 𝐸𝑍𝑖

to its direct effect 𝑍𝑖 (Figure 6 (c)). We denote the resultant graph by
G′, where we always have 𝐸𝑍𝑖

∈ PaG′ (𝑍𝑖) and the subscript emphasizes the augmented DAG; if we do not place a subscript,
then we refer to the original DAG G. Only the error terms are root vertices in G′, so only exogenous variables that cause 𝑌 can
be root causes of 𝑌 .

The root causal effect of 𝑍𝑖 on 𝑌 given the exogenous variables 𝑬 is the causal effect of its direct causes in 𝑬 on 𝑌 :

P(𝑌 |PaG′ (𝑍𝑖) ∩𝑬) −P(𝑌 ) = P(𝑌 |𝐸𝑍𝑖
) −P(𝑌 ). (4)

The variable 𝑍𝑖 is the first variable in 𝒁 affected by 𝐸𝑍𝑖
, and 𝑍𝑖 may in turn causally affect 𝑌 . The exogenous variable 𝐸𝑍𝑖

models the effects of environmental, epigenetic and other non-genetic factors on 𝑍𝑖 because the set of endogenous variables
𝒁 = 𝑌 ∪ 𝑺∪ 𝑳∪ 𝑿 includes the genetic factors 𝑺. The root causal effect is a special case of the conditional root causal effect
(CRCE) given the exogenous variables 𝑬:

P(𝑌 |𝐸𝑍𝑖
,𝑫) −P(𝑌 |𝑫)

where (1) 𝑫 ⊆ NdG′ (𝑍𝑖) \ (𝐸𝑍𝑖
∪ 𝑍𝑖) and (2) 𝑌 ⊥⊥𝑑 𝐸𝑍𝑖

|𝑍𝑖 ∪𝑫. The first condition ensures that 𝑫 does not block any directed
path from 𝑍𝑖 to 𝑌 . The second ensures that 𝑫 eliminates any confounding between 𝐸𝑍𝑖

and 𝑌 . The first condition actually
implies the second in this case because 𝑬 are root vertices. If we set 𝑫 = ∅, then we recover the unconditional root causal effect
in Equation (4).

We are however interested in identifying the causal effects of both genetic and non-genetic factors on 𝑌 through gene
expression 𝑿 with potential confounding between members of 𝑺 due to LD. We therefore expand the set of exogenous variables
to 𝑬 ∪ 𝑺 representing the non-genetic and genetic factors, respectively. We define the conditional root causal effect of 𝑋𝑖 ∈ ˜𝑿

given the exogenous variables 𝑬 ∪ 𝑺 as:

P(𝑌 |PaG′ (𝑋𝑖) ∩ (𝑬 ∪ 𝑺),𝑫) −P(𝑌 |𝑫)

= P(𝑌 |𝐸𝑖 ∪ 𝑺𝑖 ,𝑫) −P(𝑌 |𝑫),

where we write 𝐸
𝑋𝑖
∪ 𝑺

𝑋𝑖
as 𝐸𝑖 ∪ 𝑺𝑖 to prevent cluttering of notation. The set 𝐸𝑖 ∪ 𝑺𝑖 thus refers to the direct causes of 𝑋𝑖 in

𝑬 ∪ 𝑺. The above conditional root causal effect measures the causal effect of the root vertices 𝑬 on 𝑌 as they pass through
𝐸𝑖 ∪ 𝑺𝑖 to 𝑋𝑖 .
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We can likewise choose any 𝑫 such that 𝑫 ⊆ NdG′ (𝑋𝑖) \ (𝐸𝑖 ∪ 𝑺𝑖 ∪ 𝑋𝑖) and 𝑌 ⊥⊥𝑑 (𝐸𝑖 ∪ 𝑺𝑖) |𝑋𝑖 ∪ 𝑫. We choose 𝑫

carefully to satisfy these two conditions as well as elicit favorable mathematical properties by setting 𝑫 = 𝑽𝑖 ∪ (𝑻 \ 𝑺𝑖), where
𝑽𝑖 = PaG′ (𝑋𝑖) ∩ 𝑿 and 𝑻 = {𝑆𝑖 ∈ 𝑺 : 𝑆𝑖 ̸⊥⊥𝑑 𝑌 }. This particular choice of 𝑫 allows us to write:

Ψ𝑖 = P(𝑌 |𝐸𝑖 ∪ 𝑺𝑖 ,𝑫) −P(𝑌 |𝑫),

= P(𝑌 |𝑋𝑖 ,𝑫) −P(𝑌 |𝑫),

so that we do not need to recover 𝐸𝑖 as an intermediate step. We prove the second equality in Proposition 1 of the Supplementary
Materials under exchangeability, or no latent confounding by 𝑳 between any two entries of 𝑻 ∪ {𝑺𝑖 \𝑻 : 𝑋𝑖 ∉ Anc(𝑌 )}; this
union corresponds to a set of sets including 𝑻 and each entry of {𝑺𝑖 \𝑻 : 𝑋𝑖 ∉ Anc(𝑌 )} in the set. Exchangeability holds
approximately in practice due to the weak causal relations emanating from variants to gene expression and the phenotype.
Moreover, the assumption weakens with more variants in 𝑻. Now the first gene expression level in 𝑿 affected by 𝐸𝑖 ∪ 𝑺𝑖 is 𝑋𝑖 .
We thus call 𝑋𝑖 a root causal gene if 𝑋𝑖 also causes 𝑌 such that Ψ𝑖 ≠ 0.

We finally focus on the expected version of Ψ𝑖 to enhance computational speed, improve statistical efficiency and overcome
Poisson measurement error according to Lemma 1:

Γ𝑖 = E(𝑌 |𝑋𝑖 ,𝑫) −E(𝑌 |𝑫), (5)

The omnigenic root causal model posits that |𝛾 | ≫ 0 for only a small subset of gene expression levels in each patient with Γ = 𝛾.
We thus seek to estimate the values 𝛾 for each patient. We use the acronym CRCEs to specifically refer to Γ from here on.

4.4 Algorithm
4.4.1 Strategy Overview

We seek to accurately annotate, reconstruct and estimate the CRCEs using (1) summary statistics as well as (2) linked
variant-expression-phenotype data. We summarize the proposed Transcriptome-Wide Root Causal Inference (TWRCI)
algorithm in Algorithm 1. TWRCI first uses summary statistics to identify variants 𝑻 associated with the phenotype at a
liberal 𝛼 threshold in Line 1. The algorithm also identifies gene expression levels 𝑹 ⊆ 𝑿 predictable by 𝑻 in Line 1 from the
variant-expression-phenotype data. TWRCI then annotates non-overlapping sets of variants to the phenotype in Line 2 and each
gene expression level in Line 3 using a novel process called Competitive Regression; we prove that annotated variants include
all of the direct causes in 𝑻. TWRCI identifies the causal ordering 𝑲 among 𝑹 during the annotation process. The algorithm
finally recovers the directed graph uniquely given 𝑲 in Line 4 and estimates the CRCE of each gene inferred to cause 𝑌 using
the estimated graph Ĝ and the annotations P in Line 5. TWRCI can thus weigh and color-code each node in Ĝ that causes 𝑌 by
the CRCE estimates for each patient. We will formally prove that TWRCI is sound and complete at the end of this subsection.

Algorithm 1 Transcriptome-Wide Root Causal Inference (TWRCI)
Input: summary statistics, 𝑺∪ 𝑿 ∪𝑌
Output: P,𝑲, Ĝ,Γ

1: 𝑻,𝑹,𝑵← Variable selection with Algorithm 2
2: 𝑷𝑌 ← Annotate some variants in 𝑻 to 𝑌 using Algorithm 3
3: P,𝑲← Annotate remaining variants in 𝑻 to gene expression levels and obtain the causal order using Algorithm 4
4: Ĝ← Recover DAG using Algorithms 5 and 6
5: Γ← Compute CRCE of each gene inferred to cause 𝑌 using Ĝ and P

4.4.2 Variable Selection

We summarize the variable selection portion of TWRCI in Algorithm 2. TWRCI first reduces the number of variants using
summary statistics by only keeping variants with a significant association to the phenotype at a very liberal 𝛼 threshold (Line 1);
we use 5e-5, or a three orders of magnitude increase from the usual threshold of 5e-8. We do not employ clumping or other
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pre-processing methods that may remove more variants from consideration. Let 𝑻 denote the variants that survive this screening
step so that 𝑻 = {𝑆𝑖 ∈ 𝑺 : 𝑆𝑖 ̸⊥⊥𝑑 𝑌 }.

The variable selection algorithm then identifies the gene expression levels predictable by 𝑻 using the variant-expression-
phenotype data in Line 2. We operationalize this step by linearly regressing 𝑿 on 𝑻 using half of the samples, and then testing
whether the predicted level 𝑋𝑖 and the true level 𝑋𝑖 linearly correlate in the second half for each 𝑋𝑖 ∈ 𝑿50. This sample splitting
procedure ensures proper control of the Type I error rate51. We keep gene expression levels 𝑹 ⊆ 𝑿 that achieve a q-value below
a liberal FDR threshold of 10%52. We say that 𝑻 is relevant if it contains at least one variant that directly causes each member
of 𝑹. We finally repeat the above procedure after regressing out 𝑹 from 𝑿 \ 𝑹 and 𝑻 in Line 3 in order to identify 𝑵, or all
parents of 𝑹 in 𝑿 \𝑹. We call 𝑵 the set of nuisance variables, since we will need to condition on them, but they do not contain
the ancestors of 𝑌 . Algorithm 2 formally identifies the necessary ancestors needed for downstream inference:

Lemma 2. Assume d-separation faithfulness and relevance. Then, (1) 𝑻∪𝑹 contains all of the ancestors of 𝑌 in 𝑺∪ 𝑿, and (2)
(Mb(𝑅𝑖) ∩ 𝑿) ⊆ (𝑹 \𝑅𝑖) ∪𝑵 for any 𝑅𝑖 ∈ 𝑹.

Algorithm 2 Variable Selection
Input: summary statistics, 𝑺∪ 𝑿 ∪𝑌
Output: 𝑻,𝑹,𝑵

1: 𝑻← 𝑆𝑖 ∈ 𝑺 such that 𝑆𝑖 ̸⊥⊥ 𝑌 using summary statistics
2: 𝑹← 𝑋𝑖 ∈ 𝑿 such that 𝑋𝑖 ̸⊥⊥ 𝑻 using variant-expression-phenotype data
3: 𝑵← 𝑋𝑖 ∈ 𝑿 \ 𝑹 such that 𝑋𝑖 ̸⊥⊥ 𝑻 |𝑹 using variant-expression-phenotype data

4.4.3 Annotation for Horizontal Pleiotropy

TWRCI next annotates the associated variants 𝑻 to their direct effects in 𝑹∪𝑌 . The algorithm first annotates a sink vertex and
then gradually works its way up the DAG until it annotates the final root vertex.

TWRCI assumes that 𝑌 is a sink vertex, so it first annotates to 𝑌 . A variant exhibits horizontal pleiotropy if it directly causes
𝑌 . We propose a novel competitive regression scheme to annotate all members of 𝑻 ∩Pa(𝑌 ) = 𝑺𝑌 to 𝑌 .

We mildly assume equality in conditional expectation implies equality in conditional distribution and vice versa. Let
𝑸 = 𝑹 ∪𝑌 and likewise 𝑸 = 𝑹 ∪𝑌 . We also mildly assume that the following contribution scores exist and are finite:
Δ𝑖 𝑗 = E|𝜕E(𝑄𝑖 |𝑻)/𝜕𝑇𝑗 | and 𝛾𝑖 𝑗 = E|𝜕E(𝑄𝑖 |𝑸 \𝑄𝑖 ,𝑻)/𝜕𝑇𝑗 |. The scores correspond to the variable coefficients in linear
regression. We use the contribution scores to annotate any 𝑇𝑗 ∈ 𝑻 such that |Δ𝑌 𝑗𝛾𝑌 𝑗 | ≥ maxΔ2

𝑹 𝑗
to 𝑌 , since this set of variants

corresponds to a superset of 𝑺𝑌 by the following result:

Corollary 1. Under d-separation faithfulness, relevance and exchangeability, |Δ𝑌 𝑗𝛾𝑌 𝑗 | ≥ maxΔ2
𝑹 𝑗

if and only if 𝑇𝑗 ∉ Anc(𝑹)
or 𝑇𝑗 ∈ Pa(𝑌 ) (or both).

The proof follows directly from Lemma 3 in the Supplementary Materials.
The Competitive Regression (CR) algorithm summarized in Algorithm 3 computes the contribution scores in order

to annotate variants to 𝑌 . Let Δ−𝑖 denote the removal of the 𝑖th row from Δ corresponding to 𝑄𝑖 = 𝑌 . We use debiased
linear ridge regression9 to compute Δ in Line 1 and 𝛾𝑖 in Line 2. CR compares the two quantities and outputs the set
𝑷𝑖 = {𝑇𝑗 : |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 }, or a superset of 𝑺𝑖 ∩𝑻 not including any other variants with children in 𝑸 \𝑄𝑖 according to
Corollary 1, in Line 3.

4.4.4 Annotation and Causal Order

The CR algorithm requires the user to specify a known sink vertex. We drop this assumption by integrating CR into the
Annotation and Causal Order (ACO) algorithm that automatically finds a sink vertex at each iteration.

ACO takes 𝑹,𝑵,𝑌 ,𝑻,𝑷𝑌 as input as summarized in Algorithm 4. The algorithm constructs a causal ordering over 𝑹∪𝑌 in
𝑲 by iteratively eliminating a sink vertex from 𝑹 and appending it to the front of 𝑲. ACO also instantiates a list P and assigns
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Algorithm 3 Competitive Regression (CR)
Input: 𝑻, 𝑸, 𝑵, 𝑄𝑖

Output: 𝑷𝑖

1: Δ←Matrix of coefficients with rows obtained after regressing 𝑄 𝑗 on 𝑻 for all 𝑄 𝑗 ∈ 𝑸
2: 𝛾𝑖← Row vector of coefficients obtained after regressing 𝑄𝑖 on 𝑻 and (𝑸 \𝑄𝑖) ∪𝑵
3: 𝑷𝑖← {𝑇𝑗 : |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 }

Algorithm 4 Annotation and Causal Order (ACO)
Input: 𝑹, 𝑵, 𝑌 , 𝑻, 𝑷𝑌
Output: 𝑲,P

1: P ← Empty list
2: 𝑲← 𝑌 ; 𝑶← 𝑷𝑌
3: repeat
4: Δ← Contributions after regressing 𝑹 on 𝑻 \𝑶
5: 𝑪← ∅
6: for all 𝑅𝑖 ∈ 𝑹 do
7: 𝛾𝑖← Contributions after regressing 𝑅𝑖 on (𝑹 \𝑅𝑖) ∪𝑵∪ (𝑻 \𝑶)
8: 𝑼𝑖← {𝑇𝑗 : |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 }
9: if 𝑼𝑖 = ∅ then

10: 𝐶𝑖←∞
11: else
12: 𝐶𝑖←Measure of dependence between 𝑅𝑖 and 𝑻 \ (𝑶∪𝑼𝑖) given (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖

13: end if
14: end for
15: 𝑅𝑖←Most independent variable in 𝑹 according to 𝑪
16: 𝑲← Append 𝑅𝑖 to the front of 𝑲
17: 𝑹← 𝑹 \𝑅𝑖

18: 𝑷𝑖←𝑼𝑖

19: 𝑶← 𝑶∪ 𝑷𝑖

20: until 𝑹 = ∅

genetic variants 𝑷𝑖 = {𝑇𝑗 : |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2
−𝑖 𝑗 } ∈ P to each gene expression level 𝑅𝑖 ∈ 𝑹 in Lines 8 and 18 using the following

generalization of Corollary 1:

Lemma 3. Assume d-separation faithfulness, relevance and exchangeability. Further assume that 𝑄𝑖 is a sink vertex. Then,
|Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 if and only if 𝑇𝑗 ∉ Anc(𝑸 \𝑄𝑖) or 𝑇𝑗 ∈ Pa(𝑄𝑖) (or both).

The set 𝑷𝑖 is thus again a superset of 𝑺𝑖 ∩𝑻, and any additional variants in 𝑷𝑖 do not directly cause another gene expression
level or the phenotype.

ACO determines whether 𝑅𝑖 is indeed a sink vertex from data using the following result:

Lemma 4. 𝑅𝑖 is a sink vertex if and only if 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 in Line 12 of ACO under d-separation faithfulness,
relevance and exchangeability.

ACO practically determines whether any 𝑅𝑖 is indeed a sink vertex post variable elimination by first computing the residuals 𝐹𝑖
after regressing 𝑅𝑖 on 𝑹 \𝑅𝑖 , the nuisance variables 𝑵 and the identified variants 𝑼𝑖 . A sink vertex 𝑅𝑖 has residuals 𝐹𝑖 that are
uncorrelated with the variants in 𝑻 \ (𝑶∪𝑼𝑖) in Line 12 by Lemma 4, so ACO can identify the sink vertex 𝑅𝑖 in Line 15 as the
variable with the smallest absolute linear correlation. The algorithm then appends 𝑅𝑖 to the front of 𝑲 and eliminates 𝑅𝑖 from
𝑹 in Lines 16 and 17, respectively. ACO finally adds 𝑼𝑖 to P in Line 18, so 𝑼𝑖 can be removed from 𝑻 of the next iteration
through 𝑶. We formally prove the following result:
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Lemma 5. Under d-separation faithfulness, relevance and exchangeability, ACO recovers the correct causal order 𝑲 over 𝑹

and (𝑺𝑖 ∩𝑻) ⊆ 𝑷𝑖 for all 𝑅𝑖 ∈ 𝑹.

4.4.5 Causal Graph Discovery

TWRCI uses the causal order 𝑲 and the annotations P to perform causal discovery. The algorithm runs the (stabilized)
skeleton discovery procedure of the Peter-Clark (PC) algorithm to identify the presence or absence of edges between any two
gene expression levels (Algorithm 5)19,53. We modify the PC algorithm so that it tests whether 𝑅𝑖 and 𝑅 𝑗 are conditionally
independent given 𝑷𝑖 ∪𝑵 and subsets of the neighbors of 𝑅𝑖 in 𝑹 \𝑅𝑖 in Line 12 to ensure that we condition on all parents of
𝑅𝑖 . Finally, we orient the edges using the causal order 𝑲 in Line 19 to uniquely recover the DAG over 𝑹:

Lemma 6. Under d-separation faithfulness, relevance and exchangeability, the graph discovery algorithm outputs the true
sub-DAG over 𝑹 given a conditional independence oracle, 𝑲 and P.

We next include the phenotype 𝑌 into the causal graph. We often only have a weak causal effect from gene expression and
variants to the phenotype. We therefore choose to detect any causal relation to 𝑌 rather than just direct causal relations using
Algorithm 6. Algorithm 6 only conditions on 𝑽𝑖 ∪ 𝑷𝑖 in Line 4 to discover both direct and indirect causation in concordance
with the following result:

Lemma 7. Under d-separation faithfulness, relevance and exchangeability, 𝑅𝑖 causes 𝑌 – and likewise the vertices 𝑺𝑖 ∪𝐸𝑖

cause 𝑌 – if and only if 𝑌 ̸⊥⊥ 𝑅𝑖 |𝑽𝑖 ∪ 𝑷𝑖 .

Algorithm 5 Graph Discovery
Input: 𝑹, 𝑵, P, 𝑲, type I error rate 𝛼

Output: DAG Ĝ over 𝑹
1: Form a fully connected undirected graph Ĝ over 𝑹
2: 𝑙←−1
3: repeat
4: Let 𝑙 = 𝑙 +1
5: repeat
6: for each 𝑅𝑖 ∈ 𝑹 do
7: AdjĜ (𝑅𝑖) ← Vertices adjacent to 𝑅𝑖 in Ĝ
8: end for
9: Select a new ordered pair of vertices (𝑅𝑖 , 𝑅 𝑗 ) that are adjacent in Ĝ and satisfy |AdjĜ (𝑅𝑖) \𝑅 𝑗 | ≥ 𝑙

10: repeat
11: Choose a new set 𝑾 ⊆ AdjĜ (𝑅𝑖) \𝑅 𝑗 with |𝑾 | = 𝑙

12: Test whether 𝑅𝑖 and 𝑅 𝑗 are independent given 𝑾̃ ∪𝑵∪ 𝑷𝑖 to obtain p-value 𝑝

13: if 𝑝 > 𝛼 then
14: Delete the edge 𝑅𝑖 −𝑅 𝑗 from Ĝ
15: end if
16: until 𝑅𝑖 and 𝑅 𝑗 are no longer adjacent in Ĝ or all such subsets with |𝑾 | = 𝑙 have been considered
17: until all ordered pairs of adjacent vertices (𝑅𝑖 , 𝑅 𝑗 ) in Ĝ with |AdjĜ (𝑅𝑖) \𝑅 𝑗 | ≥ 𝑙 have been considered
18: until all pairs of adjacent vertices (𝑅𝑖 , 𝑅 𝑗 ) in Ĝ satisfy |AdjĜ (𝑅𝑖) \𝑅 𝑗 | ≤ 𝑙

19: Orient the edges of Ĝ according to the causal order 𝑲

4.4.6 Conditional Root Causal Effect Estimation

TWRCI finally estimates the CRCEs of the genes that cause 𝑌 given the recovered graph Ĝ and the annotations P. We estimate
the two conditional expectations in Equation (5) using kernel ridge regression54. We embed 𝑋𝑖 and PaĜ (𝑅𝑖) = 𝑽𝑖 using a radial
basis function kernel but embed 𝑻 \ 𝑷𝑖 using a normalized linear kernel. We normalize the latter to prevent the linear kernel
from dominating the radial basis function kernel, since the variables in 𝑻 \ 𝑷𝑖 typically far outnumber those in 𝑽𝑖 .

We now integrate all steps of TWRCI by formally proving that TWRCI is sound and complete:
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Algorithm 6 CRCE Graph Discovery
Input: 𝑹, 𝑵, 𝑌 , P, Ĝ over 𝑹, type I error rate 𝛼

Output: DAG Ĝ over 𝑹∪𝑌
1: Add vertex 𝑌 in Ĝ
2: Draw a directed edge from each vertex in 𝑹 to 𝑌 in Ĝ
3: for each 𝑅𝑖 ∈ 𝑹 do
4: Test whether 𝑅𝑖 and 𝑌 are independent given PaĜ (𝑅𝑖) ∪𝑵∪ 𝑷𝑖 to obtain p-value 𝑝

5: if 𝑝 > 𝛼 then
6: Delete the edge 𝑅𝑖→ 𝑌 from Ĝ
7: end if
8: end for

Theorem 1. (Fisher consistency) Under d-separation faithfulness, relevance and exchangeability, TWRCI identifies all of the
direct causal variants of 𝑌 ∪ (Anc(𝑌 ) ∩ 𝑿), the unique causal graph over 𝑌 ∪ (Anc(𝑌 ) ∩ 𝑿) and the CRCEs of Anc(𝑌 ) ∩ 𝑿
almost surely as 𝑁→∞ with Lipschitz continuous conditional expectations and a conditional independence oracle.

We perform conditional independence testing by correlating the regression residuals of smooth non-linear transformations of
the gene expression levels and phenotype55. As a result, Lemma 1 also enables accurate conditional independence testing over
subsets of 𝑻 ∪ 𝑹∪𝑵, even though we only have access to 𝑻 ∪ 𝑹∪𝑵.

4.4.7 Time Complexity

We analyze the time complexity of TWRCI in detail. TWRCI can admit different regression procedures, so we will assume that
each regression takes 𝑂 (𝑐3) time, where 𝑐 denotes the dimensionality of the conditioning set typically much larger than the
sample size 𝑛. Most regression procedures satisfy the requirement.

TWRCI first runs Algorithm 2 which requires 𝑂 (𝑞) time in Line 1 with summary statistics, 𝑂 (𝑞3𝑚) time in Line 2 with
at most 𝑚 regressions on 𝑻, and 𝑂 (𝑚3 (𝑚 + 𝑞)) time for at most 𝑚 + 𝑞 regressions on 𝑹 in Line 3. Algorithm 2 thus takes
𝑂 (𝑚4 +𝑚3𝑞) +𝑂 (𝑞3𝑚) time in total.

TWRCI next annotates to 𝑌 using Algorithm 3 which takes 𝑂 (𝑞3𝑚) +𝑂 ((𝑚 + 𝑞)3) time for Lines 1 and 2, respectively.
Annotation to 𝑌 therefore carries a total time complexity of 𝑂 (𝑚3𝑞3). TWRCI then runs Algorithm 4. Each iteration of
the repeat loop in Line 3 of Algorithm 4 takes 𝑂 (𝑞3) time for the regression in Line 4 and 𝑂 (𝑚(𝑚 + 𝑞)3) time for the at
most 𝑚 regressions in Line 7. The repeat loop iterates at most 𝑚 times, so Algorithm 4 has a total time complexity of
𝑂 (𝑚(𝑞3 +𝑚(𝑚 + 𝑞)3)) =𝑂 (𝑚5𝑞3).

Algorithm 5 dominates Algorithm 6 in time during the causal graph discovery portion of TWRCI. Algorithm 5 runs in
𝑂 (𝑚𝑒 (𝑚 + 𝑞)3) =𝑂 (𝑚𝑒+3𝑞3) time, where 𝑒 denotes the maximum neighborhood size19. Finally, CRCE estimation in Line 5
requires 𝑂 (2𝑚(𝑚 + 𝑞)3) =𝑂 (𝑚4𝑞3) time for at most 2𝑚 regressions on expression levels and variants. Thus TWRCI in total
requires 𝑂 (𝑚4 +𝑚3𝑞) +𝑂 (𝑞3𝑚) +𝑂 (𝑚3𝑞3) +𝑂 (𝑚5𝑞3) +𝑂 (𝑚𝑒+3𝑞3) +𝑂 (𝑚4𝑞3) =𝑂 (𝑚5𝑞3) +𝑂 (𝑚𝑒+3𝑞3) time. We conclude
that the ACO and Graph Discovery sub-algorithms dominate the time complexity of TWRCI.

4.5 Comparators
We compared TWRCI against state of the art algorithms enumerated below.

Annotation:

1. Nearest TSS: annotates each variant to its closest gene according to the TSS.

2. Cis-window: annotates a variant to a gene if the variant lies within a one megabase window of the TSS. If a variant lies in
multiple windows, then we assign the variant to the closest TSS.

3. Causal transcriptome-wide association study (cTWAS)11: annotates variants to genes using cis-windows and then accounts
for horizontal pleiotropy using the Sum of SIngle Effects (SuSIE) algorithm.
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4. Cis-eQTLs12: annotates a variant to a gene if (1) the variant lies in the cis-window of the gene per above, and (2) the variant
correlates most strongly with that gene expression level relative to the other levels.

5. Colocalization with approximate Bayes factors13: annotates each variant to the gene expression level with the highest
colocalization probability according to approximate Bayes factors. We could not differentiate this method from cis-windows
using the MACR criteria for the real data (Methods 4.8), since the algorithm always assigns higher approximate Bayes
factors to cis-variants.

6. Colocalization with SuSIE13,14: same as above but with probabilities determined according to SuSIE. We could differentiate
this method from cis-windows using the MACR criteria for the real data.

Causal Graph Reconstruction:

1. SIGNET15,16: predicts gene expression levels from variants using ridge regression and then recovers the genetic ancestors of
each expression level by running the adaptive LASSO on the predicted expression levels. The method thus assumes linearity.

2. RCI17: assumes a linear non-Gaussian acyclic model56, and recovers the causal order by maximizing independence between
gene expression level residuals obtained from linear regression.

3. GRCI18: same as above but assumes an additive noise model57 and uses non-linear regression.

4. PC/CausalCell20: runs the stabilized PC algorithm19,53 on the gene expression levels using a non-parametric conditional
independence test55.

4.6 Semi-Synthetic Data
The causal graph reconstruction algorithms all require a variable selection step with gene expression data, since they cannot scale
to the tens of thousands of genes with the neighborhood sizes seen in practice1,20. We therefore assessed the performance of the
algorithms independent of variable selection by first instantiating a DAG directly over 𝑸 with 𝑝 = 30 variables including 29
gene expression levels and a single phenotype. We generated a linear SEM obeying Equation (3) such that 𝑄𝑖 = 𝑸𝛽𝑖 + 𝑺𝑖𝜃𝑖 +𝐸𝑖

for every 𝑄𝑖 ∈ 𝑸 with 𝐸𝑖 ∼ N(0,1/25) to enable detection of weak causal effects from variants. We drew the coefficient matrix
𝛽 from a Bernoulli(2/(𝑝−1)) in the upper triangular portion of the matrix and then randomly permuted the ordering of the
variables. The resultant DAG has an expected neighborhood size of 2. We then weighted the coefficient matrix between the
gene expression levels and phenotype by sampling uniformly from [−1,−0.25] ∪ [0.25,1].

We instantiated the variants 𝑻 and 𝜃 as follows. We downloaded summary statistics from a wide variety of IEU datasets
listed in Table 1 and filtered variants at a liberal 𝛼 threshold of 5e-5. We selected a variant to be closest to the TSS of each
gene uniformly at random and assigned direct causal variants to the 29 gene expression levels with probability proportional
to the inverse of the absolute distance from the closest variant plus one. As a result, variants closer to the TSS are more
likely to have a direct causal effect on the gene expression level. We assigned the remaining variants to the phenotype.
We sampled 𝑻 by bootstrap from the GTEx version 822 individual-level genotype data and the weights 𝜃 uniformly from
[−0.15,−0.05] ∪ [0.05,0.15] because variants usually have weak causal effects.

We converted the above linear SEM to a non-linear one by setting 𝑄𝑖← softplus(𝑄𝑖) for each 𝑄𝑖 ∈ 𝑸. We obtained each
measurement error corrupted surrogate 𝑅𝑖 by sampling from Pois(𝑅𝑖𝜋𝑖1) for each 𝑅𝑖 ∈ 𝑹. We drew the mapping efficiencies
𝜋·1 for a single batch from the uniform distribution between 100 and 10000 for the bulk RNA sequencing data. We repeated the
entirety of the above procedure 100 times to generate 100 independent variant-expression-phenotype datasets. We ran TWRCI
and all combinations of the comparator algorithms on each dataset.

4.7 Real Data
4.7.1 Data Availability

All real datasets analyzed in this study have been previously published and are publicly accessible. The COPD datasets include:
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Dataset Trait # Variants # Cases # Controls
ieu-b-5067 Alzheimer’s 669 954 487331
ieu-b-4967 Appendicitis 736 4604 481880
ieu-b-4972 Endocarditis 300 1080 485404
ieu-b-4971 Cholecystitis 691 4052 482432
ieu-b-4973 Lower respiratory tract infection 1116 14135 472349
ieu-a-1187 Major depression 566 135458 344901
ieu-b-4965 Colorectal cancer 1791 5657 372016
ieu-b-5063 Upper respiratory tract infection 451 2795 483689
ieu-b-4956 Lymphoid leukemia 988 760 372016
ieu-b-4953 Liver cell carcinoma 517 168 372016

Table 1. Variant data used during semi-synthetic data generation.

1. Summary statistics: ebi-a-GCST90018807

2. Individual level variant and phenotype data: GTEx V8 Protected Access Data

3. Gene expression data: GTEx V8 Lung

4. Replication summary statistics: ebi-a-GCST90018587

The IHD datasets include:

1. Summary statistics: finn-b-I9_ISCHHEART

2. Individual level variant and phenotype data: GTEx V8 Protected Access Data

3. Gene expression data: GTEx V8 Whole Blood

4. Replication summary statistics: ukb-d-I9_IHD

4.7.2 Quality Control

We selected variants 𝑻 at an 𝛼 threshold of 5e-5 for both the COPD and IHD summary statistics. We harmonized the variant
data of the IEU and GTEx datasets by lifting the GTEx variant data from the hg38 to hg19 build using the liftover command in
BCFtools version 1.1858. We ensured that the reference and alternative alleles matched in both datasets after lifting for every
variant. We removed gene expression levels with a mean count of less than five. We subjected the gene expression data to an
inverse hyperbolic sine transformation to mitigate the effects of outliers. We regressed out the first 5 principal components,
sequencing platform (Illumina HiSeq 2000 or HiSeq X), sequencing protocol (PCR-based or PCR-free) and sex from all
variables in the linked GTEx variant-expression-phenotype data. Then, we either included age as a covariate for algorithms that
accept a nuisance covariate, or regressed out age from the expression and phenotype data for algorithms that do not accept a
nuisance covariate.

4.7.3 Comparison to trans-eQTLs

TWRCI annotated many trans-variants in both of the real datasets. Other authors have proposed trans-eQTLs as variants that lie
distal to the TSS and correlate with at least one reported phenotype in the Catalog of Published GWAS59. TWRCI annotates
variants based on direct causality rather than correlation and an overlap with another phenotype. However, we hypothesized
that the variants discovered by TWRCI should still lie close to at least a subset of the trans-eQTLs. To test this hypothesis,
we downloaded trans-eQTL results from the eQTLGen database29. We then standardized the positions of the variants within
each chromosome by their standard deviation to account for variable chromosome length and polymorphism density. Next, we
computed the nearest neighbor distances between the variants annotated to causal genes by TWRCI and the trans-eQTLs. We
used the median of these normalized distances 𝑀 as a robust statistic of central tendency.
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We used a permutation test to test the null hypothesis that the variants annotated to causal genes by TWRCI are distributed
arbitrarily far from the trans-eQTLs. We recomputed the median statistic 10,000 times after permuting the positions of the
trans-eQTL variants. The p-value corresponds to the proportion of permuted statistics smaller than 𝑀. We reject the null
hypothesis – and thus conclude that the variants annotated to causal genes by TWRCI lie close to trans-eQTLs – when the
p-value falls below 0.05.

4.8 Metrics
We evaluated the accuracy of the algorithms using the nine metrics listed below for the synthetic data. We evaluated annotation
quality using the following two metrics:

1. Matthew’s Correlation Coefficient (MCC)60 between the estimated annotations and the ground truth direct causal variants.
Larger is better.

2. Rank of the estimated coefficients 𝜃̂ normalized by the rank of the ground truth coefficients 𝜃. Larger is better.

We also computed the above two quantities only using the variants that directly cause the phenotype in order to evaluate the
ability of the algorithms to account for horizontal pleiotropy (3. and 4.). We evaluated the causal graph reconstruction quality
using the following two metrics:

5. Structural Hamming Distance (SHD)61 between the estimated and the ground truth causal graph. Smaller is better.

6. MCC between the estimated and the ground truth causal graph. Larger is better.

We evaluated combined annotation and graph reconstruction quality using Lemma 4:

7. Mean absolute correlation of the residuals (MACR) defined as the mean absolute correlation between (a) the variants 𝑻 and
ancestral gene expression levels, and (b) the gene expression residuals after partialing out the inferred parents. Smaller is
better under the global Markov property and exchangeability. If the algorithm infers no direct causal variants in 𝑻 and no
parents in Ĝ for some 𝑅𝑖 , then this situation violates the relevance assumption, where at least one variant in 𝑻 directly causes
𝑅𝑖 . We thus set the absolute correlation of 𝑅𝑖 to one in this case.

We assessed the accuracy in CRCE estimation using the following metrics:

8. Root mean squared error between the estimated CRCE and the ground truth CRCE averaged over all gene expression levels.
We do not have access to the ground truth CRCE, so we estimate it to negligible error with kernel ridge regression using the
ground truth parents. Smaller is better.

9. MACR between (a) the residuals 𝑌 − Ê(𝑌 |𝑅𝑖 ,𝑫) and (b) the inferred set 𝑷𝑖 , which should be zero under the global Markov
property and exchangeability. Smaller is better. We again set the absolute correlation to one for 𝑅𝑖 if the algorithm infers no
direct causal variants and no parents in Ĝ under relevance.

We can compute the MACR metrics 7. and 9. on real data, so we evaluate the algorithms using these two metrics in the
IHD and COPD datasets. We also have access to silver standard sets of genes known to be causally involved in disease from
either the DisGeNet26 or KEGG database39. We therefore compute a third MACR metric with the real data:

10. A causal gene should at least correlate with the phenotype, so we first correlate the silver standard genes with the phenotype
and only keep silver standard genes with a signification correlation (𝑝 < 0.05 uncorrected). We then compute a MACR
metric between (a) the kept silver standard genes after partialing out genes with non-zero CRCEs and (b) the phenotype after
partialing out genes with non-zero CRCEs.

4.9 Code Availability
R code needed to replicate all experimental results is available on GitHub.
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5 Supplementary Materials

5.1 Additional Semi-Synthetic Data Results

Supplementary Figure 1. Timing results for the semi-synthetic datasets split into the variant annotation and graph
reconstruction portions because they took the longest by far. (a) TWRCI took the longest time during annotation, but (b) all
algorithms spent the majority of the time in causal graph reconstruction over 𝑹 in congruence with the time complexity results
of Methods 4.4.7. TWRCI completed within about 3 minutes overall.
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5.2 Additional COPD Data Results

Supplementary Figure 2. Additional results for COPD. (a) Sum of squares plot for hierarchical clustering using Ward’s
method revealed three clusters according to the elbow method, or the cluster size with the maximum distance from the
imaginary line drawn between the first and last cluster sizes. TWRCI took the second longest time to complete in annotation (b)
and the second longest time to complete in graph reconstruction (c). RCI, GRCI and PC all took a much smaller amount of time
to reconstruct the causal graph because they ignore the genetic variants. (d) Histogram of Pearson correlation test p-values
computed between variants annotated to the phenotype and gene expression levels. The p-values did not follow a uniform
distribution according to the Kolomogorov-Smirnov test with statistic 𝐷 indicating the presence of confounding between the
variants annotated to the phenotype and gene expression.

Supplementary Figure 3. Replication results in an independent set of individuals of East Asian ancestry (dataset
ebi-a-GCST90018587). We summarize results for (a) all patients, (b) cluster one in Figure 4 (g) and (c) cluster two. TWRCI
again identified C4A and multiple MHC class II genes involving the adaptive immune system.
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5.3 Additional IHD Data Results

Supplementary Figure 4. Additional results for IHD. (a) Sum of squares plot revealed two clusters according to the elbow
method. (b) TWRCI took the longest to annotate, but (c) the timing results for graph reconstruction dominated in this case.
Methods using SIGNET thus took the longest overall in this dataset. (d) Histogram of Pearson correlation test p-values were
again non-uniform, indicating confounding between the variants annotated to the phenotype and gene expression.

Supplementary Figure 5. Replication results in an independent set of patients from the UK Biobank (dataset
ukb-d-I9_IHD). We summarize results for (a) all patients, and (b) cluster one. TWRCI again identified MRPL1 as a root causal
gene with a large positive CRCE.
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5.4 Proofs

Lemma 1. Assume Lipschitz continuity of the conditional expectation for all 𝑁 ≥ 𝑛0:

E
���E(𝑍𝑖 |𝑼,𝑽) −E(𝑍𝑖 |𝑼,𝑽, 𝐵)

��� ≤ E𝐶𝑁

�����𝑼− 𝑼

𝑁

𝑁𝐵

𝜋𝑼𝐵

����� ,
where 𝐶𝑁 ∈ 𝑂 (1) is a positive constant, and we have taken an outer expectation on both sides. Then E(𝑍𝑖 |𝑼,𝑽) =
lim𝑁→∞E(𝑍𝑖 |𝑼,𝑽, 𝐵) almost surely.

Proof. We can write the following sequence:

E

����E(𝑍𝑖 |𝑼,𝑽) − lim
𝑁→∞

E(𝑍𝑖 |𝑼,𝑽, 𝐵)
���� = E lim

𝑁→∞

���E(𝑍𝑖 |𝑼,𝑽) −E(𝑍𝑖 |𝑼,𝑽, 𝐵)
���

≤ E lim
𝑁→∞

𝐶𝑁

�����𝑼− 𝑼

𝑁

𝑁𝐵

𝜋𝑼𝐵

����� ≤ E𝐶

�����𝑼− lim
𝑁→∞

𝑼

𝑁

𝑁𝐵

𝜋𝑼𝐵

����� = E𝐶

�����𝑼− 𝑼𝜋𝑼𝐵

𝑁𝐵

𝑁𝐵

𝜋𝑼𝐵

����� = 𝐶E
���𝑼−𝑼��� = 0,

where we have applied the Lipschitz continuity assumption at the first inequality. We have 𝐶𝑁 ≤ 𝐶 for all 𝑁 ≥ 𝑛0 in the second
inequality because 𝐶𝑁 ∈ 𝑂 (1). With the above bound, choose 𝑎 > 0 and invoke the Markov inequality:

P
(����E(𝑍𝑖 |𝑼,𝑽) − lim

𝑁→∞
E(𝑍𝑖 |𝑼,𝑽, 𝐵)

���� ≥ 𝑎

)
≤ 1

𝑎
E

����E(𝑍𝑖 |𝑼,𝑽) − lim
𝑁→∞

E(𝑍𝑖 |𝑼,𝑽, 𝐵)
���� = 0.

The conclusion follows because we chose 𝑎 arbitrarily.

Proposition 1. We have P(𝑌 |𝐸𝑖 ∪ 𝑺𝑖 ,𝑫) −P(𝑌 |𝑫) = P(𝑌 |𝑋𝑖 ,𝑫) −P(𝑌 |𝑫) under exchangeability.

Proof. We can write:

P(𝑌 |𝐸𝑖 ∪ 𝑺𝑖 ,𝑫) = P(𝑌 |𝐸𝑖 ,𝑽𝑖 ,𝑻 ∪ 𝑺𝑖) = E
𝑋𝑖 |𝐸𝑖 ,𝑽𝑖 ,𝑻 ,𝑺𝑖

P(𝑌 |𝑋𝑖 , 𝐸𝑖 ,𝑽𝑖 ,𝑻 ∪ 𝑺𝑖)

= P(𝑌 |𝑋𝑖 , 𝐸𝑖 ∪ 𝑺𝑖 ,𝑽𝑖 ,𝑻 \ 𝑺𝑖) = P(𝑌 |𝑋𝑖 ,𝑽𝑖 ,𝑻 \ 𝑺𝑖) = P(𝑌 |𝑋𝑖 ,𝑫).

The third equality follows because 𝑋𝑖 is a constant given 𝐸𝑖 and Pa(𝑋𝑖) = 𝑽𝑖 ∪ 𝑺𝑖 . For the fourth equality, all paths
between 𝑺𝑖 and 𝑌 are blocked by 𝑋𝑖 ∪𝑽𝑖 ∪𝑻 \ 𝑺𝑖 under exchangeability. We thus have 𝑌 ⊥⊥𝑑 (𝐸𝑖 ∪ 𝑺𝑖) | (𝑋𝑖 ,𝑽𝑖 ,𝑻 \ 𝑺𝑖) and
𝑌 ⊥⊥ (𝐸𝑖 ∪ 𝑺𝑖) | (𝑋𝑖 ,𝑽𝑖 ,𝑻 \ 𝑺𝑖) by the global Markov property.

Lemma 2. Assume d-separation faithfulness and relevance. Then, (1) 𝑻∪𝑹 contains all of the ancestors of 𝑌 in 𝑺∪ 𝑿, and (2)
(Mb(𝑅𝑖) ∩ 𝑿) ⊆ (𝑹 \𝑅𝑖) ∪𝑵 for any 𝑅𝑖 ∈ 𝑹.

Proof. We first prove (1). If 𝑆𝑖 is an ancestor of 𝑌 , then 𝑆𝑖 ̸⊥⊥𝑑 𝑌 , so 𝑆𝑖 ̸⊥⊥𝑌 by d-separation faithfulness. It follows that 𝑆𝑖 ∈ 𝑻
by Line 1 of Algorithm 2. If 𝑋𝑖 is an ancestor of 𝑌 , then so is 𝑺𝑖 ⊆ 𝑻. Hence 𝑋𝑖 ̸⊥⊥𝑑 𝑻, so 𝑋𝑖 ̸⊥⊥ 𝑻 and 𝑋𝑖 ∈ 𝑹 by d-separation
faithfulness and Line 2, respectively. We chose 𝑆𝑖 and 𝑋𝑖 arbitrarily, so the set 𝑻 ∪ 𝑹 contains all of the ancestors of 𝑌 in 𝑺∪ 𝑿.

We now prove (2). We need to show that (𝑹 \𝑅𝑖) ∪𝑵 contains the parents, children and spouses of any 𝑅𝑖 , provided that
these relatives are also in 𝑿. Note that 𝑅𝑖 ̸⊥⊥𝑑 𝑻 by Line 2 under the global Markov property. Hence, the parents and children
of 𝑅𝑖 in 𝑿 are also d-connected to 𝑻 and hence dependent on 𝑻 under d-separation faithfulness. It follows that 𝑹 \𝑅𝑖 contains
all of the parents and children of 𝑅𝑖 also by Line 2. Next, suppose 𝑹 \𝑅𝑖 does not contain a spouse of 𝑅𝑖 , which we denote by
𝑋 𝑗 . Then we have 𝑋 𝑗 → 𝑅𝑖← 𝑆𝑖 and 𝑆𝑖 ∈ 𝑻 under relevance. Hence 𝑋 𝑗 ̸⊥⊥𝑑 𝑻 |𝑹, so 𝑋 𝑗 ̸⊥⊥ 𝑻 |𝑹 by d-separation faithfulness
and 𝑋𝑖 ∈ 𝑵 by Line 3. It follows that 𝑵∪ (𝑹 \𝑅𝑖) contains all of the spouses of 𝑅𝑖 . We conclude that (𝑹 \𝑅𝑖) ∪𝑵 contains all
members of Mb(𝑅𝑖) ∩ 𝑿 of any 𝑅𝑖 ∈ 𝑹.
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Lemma 8. Under d-separation faithfulness, relevance and exchangeability, (1) 𝑇𝑗 ∉ Anc(𝑄𝑖) if and only if 𝑄𝑖 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 and
(2) 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 | (𝑸 \𝑄𝑖 ,𝑵,𝑻 \𝑇𝑗 ) and 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 if and only if 𝑇𝑗 ∈ Pa(𝑄𝑖).

Proof. For the first statement and forward direction, if 𝑇𝑗 ∉ Anc(𝑄𝑖), then 𝑄𝑖 ⊥⊥𝑑 𝑇𝑗 |𝑻 \𝑇𝑗 under exchangeability, so
𝑄𝑖 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 by the global Markov property. For the backward direction, if 𝑄𝑖 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 , then 𝑄𝑖 ⊥⊥𝑑 𝑇𝑗 |𝑻 \𝑇𝑗 by
d-separation faithfulness. No directed path can thus exist from 𝑇𝑗 to 𝑄𝑖 , so 𝑇𝑗 ∉ Anc(𝑄𝑖).

We next address the second statement. The backward direction follows immediately from d-separation faithfulness. For the
forward direction, if 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 , then 𝑇𝑗 ∈ Anc(𝑄𝑖) from statement (1). Furthermore, if 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 | (𝑸 \𝑄𝑖 ,𝑵,𝑻 \𝑇𝑗 ) then
𝑄𝑖 ̸⊥⊥𝑑 𝑇𝑗 | (𝑸 \𝑄𝑖 ,𝑵,𝑻 \𝑇𝑗 ) under the global Markov property. Note that (𝑸 \𝑄𝑖) ∪𝑵∪𝑻 contains Mb(𝑄𝑖) ∩ 𝑿 by Lemma 2
under d-separation faithfulness and relevance. Therefore, if 𝑇𝑗 is not in the Markov boundary of 𝑄𝑖 , then (𝑸 \𝑄𝑖) ∪𝑵∪𝑻 \𝑇𝑗

contains Mb(𝑄𝑖) ∩ (𝑿∪𝑻). As a result, all paths between 𝑇𝑗 and 𝑄𝑖 are blocked by (𝑸 \𝑄𝑖) ∪𝑵∪𝑻 \𝑇𝑗 under exchangeability.
We thus arrive at the contradiction 𝑄𝑖 ⊥⊥𝑑 𝑇𝑗 | (𝑸 \𝑄𝑖 ,𝑵,𝑻 \𝑇𝑗 ). It follows that 𝑇𝑗 must be in the Markov boundary of 𝑄𝑖 and
therefore can only be a parent or a spouse of 𝑄𝑖 (or both). If 𝑇𝑗 is a spouse but not a parent of 𝑄𝑖 , then we arrive at another
contradiction that 𝑇𝑗 ∉ Anc(𝑄𝑖). Hence 𝑇𝑗 ∈ Pa(𝑄𝑖).

Lemma 3. Assume d-separation faithfulness, relevance and exchangeability. Further assume that 𝑄𝑖 is a sink vertex. Then,
|Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 if and only if 𝑇𝑗 ∉ Anc(𝑸 \𝑄𝑖) or 𝑇𝑗 ∈ Pa(𝑄𝑖) (or both).

Proof. Assume |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2
−𝑖 𝑗 for the forward direction. We have two cases. If |Δ𝑖 𝑗𝛾𝑖 𝑗 | > 0, then 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 | (𝑸 \𝑄𝑖 ,𝑵,𝑻 \

𝑇𝑗 ) and 𝑄𝑖 ̸⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 , so 𝑇𝑗 ∈ Pa(𝑄𝑖) by Lemma 8. If |Δ𝑖 𝑗𝛾𝑖 𝑗 | = 0, then maxΔ2
−𝑖 𝑗 = 0, so 𝑄𝑘 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 for all 𝑄𝑘 ∈ 𝑸 \𝑄𝑖 .

We conclude that 𝑇𝑗 ∉ Anc(𝑸 \𝑄𝑖) by again invoking Lemma 8.
For the backward direction, if 𝑇𝑗 ∉ Anc(𝑸 \𝑄𝑖), then 𝑄𝑘 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 for all 𝑄𝑘 ∈ 𝑸 \𝑄𝑖 by Lemma 8. Thus maxΔ2

−𝑖 𝑗 = 0
so |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2

−𝑖 𝑗 . If 𝑇𝑗 ∈ Pa(𝑄𝑖), then 𝑇𝑗 ∉ Anc(𝑸 \𝑄𝑖) because 𝑄𝑖 is a sink vertex. Hence 𝑄𝑘 ⊥⊥ 𝑇𝑗 |𝑻 \𝑇𝑗 for all
𝑄𝑘 ∈ 𝑸 \𝑄𝑖 by Lemma 8, so maxΔ2

−𝑖 𝑗 = 0. We conclude that |Δ𝑖 𝑗𝛾𝑖 𝑗 | ≥ maxΔ2
−𝑖 𝑗 .

Lemma 4. 𝑅𝑖 is a sink vertex if and only if 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 in Line 12 of ACO under d-separation faithfulness,
relevance and exchangeability.

Proof. Assume that 𝑅𝑖 is a sink vertex for the forward direction. We have two cases:

1. If 𝑅𝑖 ∈ Anc(𝑌 ), then Pa(𝑅𝑖) ⊆ (𝑹 \ 𝑅𝑖) ∪𝑼𝑖 by the first statement of Lemma 2 and Lemma 3. Note that 𝑵 Hence,
𝑅𝑖 ⊥⊥𝑑 (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 because 𝑅𝑖 is a sink vertex, and 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 in Line 12 by the global
Markov property.

2. If 𝑅𝑖 ∉ Anc(𝑌 ), then (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 contains all of the parents of 𝑅𝑖 in 𝑿 and 𝑻 by Lemma 2 and Lemma 3, respectively.
Moreover, the other direct causal variants of 𝑅𝑖 , or 𝑺𝑖 \𝑻, share no latent confounders with𝑻 or any other direct causal variant set
excluding 𝑻 by exchangeability. Hence, we also have 𝑅𝑖 ⊥⊥𝑑 (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 , and 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖

in Line 12 by the global Markov property.

We have exhausted all possibilities and thus conclude that 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 .
For the backward direction, assume 𝑅𝑖 ⊥⊥ (𝑻 \𝑼𝑖) | (𝑹 \ 𝑅𝑖) ∪ 𝑵 ∪𝑼𝑖 so that 𝑅𝑖 ⊥⊥𝑑 (𝑻 \𝑼𝑖) | (𝑹 \ 𝑅𝑖) ∪ 𝑵 ∪𝑼𝑖 by d-

separation faithfulness. Assume for a contradiction that 𝑅𝑖 is not a sink vertex. Then there exists a path 𝑅𝑖 → 𝑅 𝑗 ← 𝑇𝑘 for
some 𝑇𝑘 ∈ 𝑺 𝑗 ∩𝑻 by relevance. We thus have Δ𝑖𝑘 = 0 but Δ2

𝑗𝑘
> 0, so 𝑇𝑘 ∉𝑼𝑖 and 𝑇𝑘 ∈ 𝑻 \𝑼𝑖 . We arrive at the contradiction

𝑅𝑖 ̸⊥⊥𝑑 (𝑻 \𝑼𝑖) | (𝑹 \𝑅𝑖) ∪𝑵∪𝑼𝑖 . The variable 𝑅𝑖 must therefore be a sink vertex.

Lemma 5. Under d-separation faithfulness, relevance and exchangeability, ACO recovers the correct causal order 𝑲 over 𝑹

and (𝑺𝑖 ∩𝑻) ⊆ 𝑷𝑖 for all 𝑅𝑖 ∈ 𝑹.
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Proof. We use proof by induction. Base: Suppose 𝑹 contains one variable 𝑅𝑖 . Then 𝑲 = (𝑅𝑖 ,𝑌 ) because 𝑅𝑖 is trivially the
most independent variable in 𝑹 according to 𝑪 of Line 15. The variable 𝑅𝑖 is a sink vertex after 𝑌 is eliminated, so we have
(𝑺𝑖 ∩𝑻) ⊆ 𝑷𝑖 under d-separation faithfulness, relevance and exchangeability by Lemma 3. Step: Assume that the conclusion
holds when 𝑹 contains 𝑝−1 variables. We need to prove the statement when 𝑹 contains 𝑝 variables. Assume for now that
𝑅𝑝 is an arbitrary sink vertex in 𝑹. Lemma 3 then guarantees |Δ𝑝 𝑗𝛾𝑝 𝑗 | ≥ maxΔ2

−𝑝 𝑗
for each 𝑆 𝑗 ∈ 𝑺𝑝 ∩𝑻 in Line 8 under

d-separation faithfulness, relevance and exchangeability. We thus have (𝑺𝑝 ∩𝑻) ⊆ 𝑷𝑝 and no variant of any other parent set is
in 𝑷𝑝 . Finally, the measure of dependence 𝐶𝑝 in Line 15 identifies 𝑅𝑝 as a sink vertex by Lemma 4. ACO thus eliminates 𝑅𝑝

from 𝑹 and appends it to the front of 𝑲. The conclusion follows by the inductive hypothesis.

Lemma 6. Under d-separation faithfulness, relevance and exchangeability, the graph discovery algorithm outputs the true
sub-DAG over 𝑹 given a conditional independence oracle, 𝑲 and P.

Proof. The set 𝑵∪𝑹 contains all of the parents of any 𝑅𝑖 ∈ 𝑹 in 𝑿 by Lemma 2. Furthermore, 𝑷𝑖 contains all of the parents of
𝑅𝑖 in 𝑻 for any 𝑅𝑖 ∈ 𝑹 by Lemma 4. The stabilized skeleton discovery procedure of the PC algorithm thus recovers all and only
the undirected edges in the true DAG over 𝑹 under d-separation faithfulness and exchangeability53. The conclusion follows
because ACO recovers the true causal order over 𝑹 also by Lemma 5, so Algorithm 5 infers the true sub-DAG uniquely over 𝑹
in Line 19.

Lemma 7. Under d-separation faithfulness, relevance and exchangeability, 𝑅𝑖 causes 𝑌 – and likewise the vertices 𝑺𝑖 ∪𝐸𝑖

cause 𝑌 – if and only if 𝑌 ̸⊥⊥ 𝑅𝑖 |𝑽𝑖 ∪ 𝑷𝑖 .

Proof. Recall that (𝑺𝑖 ∩𝑻) ⊆ 𝑷𝑖 by Lemma 5 under d-separation faithfulness, relevance and exchangeability.
Now if 𝑅𝑖 causes 𝑌 , then there exists a directed path from 𝑅𝑖 to 𝑌 so 𝑌 ̸⊥⊥𝑑 𝑅𝑖 |𝑽𝑖 ∪ 𝑷𝑖 . We then have 𝑌 ̸⊥⊥ 𝑅𝑖 |𝑽𝑖 ∪ 𝑷𝑖 by

d-separation faithfulness.
For the backward direction, assume that 𝑅𝑖 does not cause 𝑌 . All paths between 𝑅𝑖 and 𝑌 are blocked by 𝑽𝑖 ∪ 𝑷𝑖 under

exchangeability. Thus 𝑅𝑖 and 𝑌 are d-separated given 𝑽𝑖 ∪ 𝑷𝑖 . We invoke the global Markov property to conclude that
𝑌 ⊥⊥ 𝑅𝑖 |𝑽𝑖 ∪ 𝑷𝑖 .

Theorem 1. (Fisher consistency) Under d-separation faithfulness, relevance and exchangeability, TWRCI identifies all of the
direct causal variants of 𝑌 ∪ (Anc(𝑌 ) ∩ 𝑿), the unique causal graph over 𝑌 ∪ (Anc(𝑌 ) ∩ 𝑿) and the CRCEs of Anc(𝑌 ) ∩ 𝑿
almost surely as 𝑁→∞ with Lipschitz continuous conditional expectations and a conditional independence oracle.

Proof. Lemma 2 ensures that 𝑻 ∪ 𝑹 from Line 1 of Algorithm 1 contains all of the ancestors of 𝑌 in 𝑺 ∪ 𝑿. Thus
(Anc(𝑌 ) ∩ 𝑿) ⊆ 𝑹 and (Anc(𝑌 ) ∩ 𝑺) ⊆ 𝑻. TWRCI identifies 𝑺𝑌 ⊆ 𝑷𝑌 in Line 2 by Lemma 3 under d-separation faithfulness,
relevance and exchangeability. The algorithm also identifies 𝑺𝑖 ⊆ 𝑷𝑖 for each 𝑅𝑖 ∈ Anc(𝑌 ) under d-separation faithfulness,
relevance and exchangeability in Line 3 by invoking Lemma 5. Furthermore, TWRCI recovers the causal order over 𝑹 via
Lemma 5. TWRCI thus uniquely recovers the sub-DAG over 𝑹 in Line 4 by Lemma 6 and then correctly includes 𝑌 in the
graph by Lemma 7. TWRCI finally identifies the CRCEs of Anc(𝑌 ) ∩ 𝑿 almost surely in Line 5 given the recovered DAG over
𝑹∪𝑌 and P by Lemma 1.
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