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Abstract 

 
Large Language Models (LLMs) are becoming integral to healthcare analytics. 

However, the influence of the temperature hyperparameter, which controls output 

randomness, remains poorly understood in clinical tasks. This study evaluates the 

effects of different temperature settings across various clinical tasks. We conducted a 

retrospective cohort study using electronic health records from the Mount Sinai 

Health System, collecting a random sample of 1283 patients from January to 

December 2023. Three LLMs (GPT-4, GPT-3.5, and Llama-3-70b) were tested at five 

temperature settings (0.2, 0.4, 0.6, 0.8, 1.0) for their ability to predict in-hospital 

mortality (binary classification), length of stay (regression), and the accuracy of 

medical coding (clinical reasoning). For mortality prediction, all models' accuracies 

were generally stable across different temperatures. Llama-3 showed the highest 

accuracy, around 90%, followed by GPT-4 (80-83%) and GPT-3.5 (74-76%). 

Regression analysis for predicting the length of stay showed that all models 

performed consistently across different temperatures. In the medical coding task, 

performance was also stable across temperatures, with GPT-4 achieving the highest 

accuracy at 17% for complete code accuracy. Our study demonstrates that LLMs 

maintain consistent accuracy across different temperature settings for varied clinical 

tasks, challenging the assumption that lower temperatures are necessary for clinical 

reasoning. 

 
 
 

Keywords: Large Language Models, temperature hyperparameter, clinical reasoning, 

healthcare analytics, GPT models, Llama model, medical coding, mortality prediction, 

length of stay. 
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1. Introduction 

 
Recent advancements in Large Language Models (LLMs) present new opportunities in 

data analysis, especially in the healthcare sector, where their capability to understand 

and analyze detailed clinical scenarios offers significant potential [1][2][3][4]. 

Despite their promise, LLMs are complicated models that pose issues for integration 

in healthcare workflows, often requiring a deep understanding of the nuances of any 

decision support tools. Additionally, like other machine learning models, LLMs have 

certain hyperparameters which can greatly affect their performance. While these 

hyperparameters have been explored for more general use, there remain open 

questions about how they affect performance in specialized domains, including 

healthcare [5][6]. 

One unique hyperparameter of LLMs is temperature, which is a factor that affects the 

randomness and originality of the LLM's output [7][8]. Lower temperature settings are 

associated with more prototypical and standard outputs, while higher temperature 

settings are associated with more creative and less predictable responses. Preferences 

for different temperature settings may be intuitive for certain use cases. For instance, 

for creative writing, one might prioritize higher temperature settings. For healthcare, 

however, it is not necessarily straightforward which setting will be most effective, and 

it may be that different clinical tasks for LLMs may require different settings. 

One study [9] has started exploring how temperature influences LLMs in academic 

scenarios, but research in clinical settings is limited. Our investigation addresses this 

gap in healthcare by evaluating LLM performance in a range of clinical tasks using 

real- world patient data, extending from binary classification to regression, to the 

complex, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310824doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310824
http://creativecommons.org/licenses/by/4.0/


unstructured task of medical coding. Furthermore, we evaluate the influence of 

temperature settings on the clinical reasoning capabilities of various LLMs when 

tasked with interpreting clinical data. This investigation serves to deepen our 

understanding of LLM functionality in healthcare environments [10][11][12]. 

2. Methods 

 

2.1 Study Design 

 

This study employs a retrospective cohort design to investigate the effects of the 

hyperparameter temperature on the clinical reasoning capabilities of Large Language 

Models (LLMs). Specifically, the study explores how these settings influence LLM 

performance across different clinical tasks, including binary classification, regression, 

and medical coding within a healthcare environment. 

We conducted the study using electronic data retrieved from the Mount Sinai Health 

System electronic health records (EHR). Data was retrieved from Emergency 

Departments (EDs) of five MSHS hospitals Mount Sinai Beth Israel, Mount Sinai 

Brooklyn, Mount Sinai Queens Hospital, Mount Sinai West, and The Mount Sinai 

Hospital, and included ED visits from Jan 2023 to Dec 2023. 

Data privacy was ensured through anonymization and compliance with MSHS 

institutional guidelines according to IRB Protocol (Ethic Committee Name: Mount 

Sinai Institutional Review Board Approval Code: STUDY-18-00573, Approval Date: 

June 6th,2021), safeguarding patient information throughout the study. 
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2.2 Cohort Creation 

 

The cohort for this study was constructed using the following inclusion criteria: 

 

Patients over 18 years of age were initially presented in the ED and subsequently 

admitted to the hospital. Selection of the first physician-authored progress note and 

the first nurse-authored ED triage note for each patient visit provided the notes were 

not null and contained more than 20 words. We excluded cases of non-adult patients 

and patients with missing physician or nurse notes. 

 

 

 

2.3 Data Collection 

 

The data collected for analysis encompassed both structured and unstructured formats. 

The structured data included variables such as Sex, Race, Ethnicity, Age, and 

Discharge Disposition. The unstructured data consisted of clinical notes authored by 

physicians and nurses. Patient encounters were organized by Arrival-Instant 

timestamp, serving as the benchmark for initial patient assessments. 

Initial Data collection followed systematic steps and was implemented to ensure the 

inclusion of relevant patient records. Initially, data was retrieved from the database 

within a specified date range for the year 2023. An age filter was then applied to 

include only patients who were above 18 years old. The next step involved selecting 

patients who were admitted through an Emergency Department (ED) visit. Following 

this, a filter was applied to include only those patients who were hospitalized after 

their ED visit. 
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Initial ED diagnoses made by healthcare professionals such as physicians, residents, 

fellows, and registered nurses were included. Data extraction focused on specific 

types of ED notes, namely ED Progress Notes and ED Triage/Intake notes and 

considered it as a filtered dataset. 

We sampled a random selection of ED visits from the included hospitals, targeting 250 

records of patients per hospital. Given the systematic application of multiple filters, 

such as age and hospitalization status post-ED visit, the final dataset varied slightly, 

totaling 1,283 records, well balanced across hospitals. 

 

 

 

2.4 Outcomes Measures 

 

The study focused on three primary outcomes that were different in their analysis 

type: 

• The first outcome was to predict in-hospital mortality, a binary classification 

task (1 – Mortality, 0 – No mortality). 

• The next outcome was to predict length of stay (LOS), as a continuous numeric 

prediction in days from arrival to discharge. 

• The last task was to determine medical coding accuracy, via the assignment 

and verification of ICD-10-CM ED primary diagnosis codes based on the 

clinical narratives and primary diagnosis data. 
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2.5 Model Parameters and Implementation 

 

LLM performance was evaluated under various temperature settings (0.2, 0.4, 0.6, 0.8, 

1.0) to assess the impact on the randomness and originality of the outputs. For further 

configurations such as Top K settings, we employed the API defaults and kept them 

constant across the different experiments. 

 

 
Table 1: Parameters for Text Generation Process 

 

 

 

Parameter Name Parameters Value 

Temperature 0.2, 0.4, 0.6, 0.8, 1.0 

Top P (Nucleus Sampling) 1.0 

Max Token Size 800 Tokens 

Stop None 

 

 

Table 1 provides a detailed overview of the temperature settings and other 

parameters, ensuring a comprehensive understanding of the configurations used 

during the experiments. 

The study utilized three LLMs: OpenAI’s GPT-4 GPT-3.5 and Meta's Llama-3-70b 

for the different experiments as mentioned in Table 2. 
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Table 2: Comparison of Text Generation Models: Context, Input, and Output Costs 
 

 

 

Models Version Context Input (Per 1,000 

 

tokens) 

Output (Per 

 

1,000 tokens) 

GPT-3.5 0125 16K $0.0005 $0.0015 

GPT-4 0613 32K $0.06 $0.12 

LLAMA3 70B 8k $0.01134 $0.00378 

 

 

All code and analyses were conducted using Python ver. 3.9. All models were run on 

the MSHS HIPAA-compliant private Azure cloud instance and accessed via API 

calls. 

Within this infrastructure, we created an Azure AI Studio service under a virtual private 

network (VPC) to conduct the experiment. 
 

 

Figure 1: Experiment design with help of Azure AI studio 
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You are to act as a clinical practitioner. You will be receiving a nurse triage note, 

aphysician/residentfirst progress note, and tabular data. Using this information, Iwant you to 

performthreepredictions.Witheach prediction,provide aconfidencescorerangingfrom1to10 

reflecting how confident you are with your assessment. 

Forthefirsttask, predictwhetherthepatientwilldieinthehospital. Forreference, 

theoverallmortality rate is{{X}}%. 

For the second task, predict how long the patient will be admitted in the hospital in terms 

ofdays(i.e.,lengthofstay).Forreference,the averagelengthofstayinthehospitalis{{X}}days. 

Inthethirdtask, provideanICD-10codereflectingtheprimary diseasediagnosisforthepatient. 

 

 

PleasereturnallpredictionsandconfidencescoresinthefollowingstructuredJSONformat: 

{ 

"mortalityPrediction": {"willDie": <0/1>, "confidenceScore": 1-

10}"lengthOfStayPrediction": {"days": <number>, "confidenceScore": 1-

10}"primaryDiagnosisPrediction":{"ICD10Code":<code>,"confidenceScore":1-10} 

} 

2.6 Prompt Designs 

 
The models were prompted to act as clinical practitioners, integrating both structured 

and narrative data inputs to perform and score predictions on mortality, LOS, and 

primary diagnosis using a structured JSON format. 

The prompt used was: 

 

 

 

 

 

 

 

 

 

2.8 Statistical Analysis 
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2.8.1 Classification Metrics: 

 
Metrics included AUC for probabilities and accuracies for absolute predictions. We 

have also calculated cut-off-based assessments of sensitivity, precision, specificity, 

NPV, and F1 score. 

2.8.2 Regression Metrics: 

 
Mean square error (MSE) and root mean square error (RMSE), which are commonly 

used metrics for regression analysis, were used to gauge the accuracy of LOS 

predictions. 

2.8.3 ICD Coding Metrics: 

 
Accuracy evaluations for ICD coding were segmented into absolute accuracy, and 

accuracy within the first 2, 3, and 4 digits of the ICD-10-CM codes. This was done to 

evaluate accuracy with increasing levels of diagnostic specificity (from 2 digits to full 

code comparison). Confidence scores were quantified by mean, median, and standard 

deviation measures to evaluate the predictions' reliability. 

 
 
 

3. Results 

 
The study focused on predictions of mortality, length of stay, and primary ED ICD-

10- CM coding across temperatures ranging from 0.2 to 1.0 for 3 LLMs. These 

predictions were compared against the clinical ground truths to assess accuracy and 

confidence across different model settings. The characteristics of the cohort are 

presented in Table 3. 
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Table 3: Cohort characteristics 

 

Category Description Value 

Word Count Statistics Total Notes 1,283 

 Average Notes per Patient 2 Notes 

 Mean Words per Note 101.49 words 

 Standard Deviation of Words per Note 84.38 words 

 Minimum Words in a Note 41 words 

 25th Percentile Words 52 words 

 Median Words 83 words 

 75th Percentile Words 118 words 

 Maximum Words in a Note 1,395 words 

   

Distribution of Note Sizes Small (less than 52 words) 317 entries 

 Medium (between 52 and 118 words) 647 entries 

 Large (more than 118 words) 319 entries 

   

Mortality Statistics Total Notes or Patients? 1,283 

 Deceased 62 

 In-hospital Mortality Rate 4.90% 

   

Length of Stay Mean Length of Stay 6.93 days 

 Median Length of Stay 4.0 days 

 Standard Deviation of Length of Stay 10.65 days 

 Interquartile Range of Length of Stay 6.0 days 
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Estimated Tokens Total Estimated Number of Tokens 270,385.25 

   

Gender Distribution Male 50.43% 

 Female 49.57% 

   

Race Distribution White 39.64% 

 Black or African American 29.83% 

 Others 30.53% 

   

Age Statistics Average Age 64.75 years 

  

 

Age Distribution Peaks 

77 years (44), 64 years 

 

(43) 

   

Average Age by Race White 67.18 years 

 Black 62.57 years 

 Others 75.55 years 

   

Average Age by Sex Female 66.55 years 

 Male 62.98 years 

   

Age Statistics by Race 

 

(Extended) 

 

 

Others 

 

 

75.55 years 

 Standard Deviation 15.32 

 Interquartile Range 22 

 Black 62.57 years 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310824doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310824
http://creativecommons.org/licenses/by/4.0/


 Standard Deviation 18.25 

 Interquartile Range 26 

 White 67.18 years 

 Standard Deviation 19.14 

 Interquartile Range 28 

   

Age Statistics by Sex 

 

(Extended) 

 

 

Female 

 

 

66.55 years 

 Standard Deviation 18.45 

 Interquartile Range 27 

 Male 62.98 years 

 Standard Deviation 20.11 

 Interquartile Range 29 

 

 

 

3.1 Classification Task for Mortality Prediction 

 
The evaluation of GPT-4, GPT-3.5, and Llama-3 binary predictions (mortality in 

hospital yes/no) across varying temperatures revealed consistent accuracy metrics. 

Llama-3 persistently scored higher than its counterparts, with accuracies around 90%. 

In comparison, GPT-4 showed accuracies around 80-83%, and GPT-3.5 showed the 

lowest accuracies around 74-76% (Table 4, Figure 2). 

 

 

 

Table 4: Metrics of LLM models for predicting mortality in hospitals using a 

binary prediction (0/1). 
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Model Temperature Accuracy Precision Recall F1 Score 

 

 

 

 

GPT-4 

0.2 0.83 0.27 0.48 0.35 

0.4 0.82 0.25 0.48 0.33 

0.6 0.82 0.27 0.52 0.35 

0.8 0.80 0.26 0.55 0.35 

1 0.82 0.27 0.55 0.37 

 

 

 

 

GPT-3.5 

0.2 0.75 0.20 0.52 0.29 

0.4 0.76 0.19 0.53 0.28 

0.6 0.75 0.20 0.52 0.29 

0.8 0.74 0.17 0.44 0.25 

1 0.74 0.18 0.49 0.27 

 

 

 

 

Llama-3 

0.2 0.90 0.45 0.20 0.28 

0.4 0.90 0.43 0.19 0.26 

0.6 0.90 0.43 0.18 0.25 

0.8 0.90 0.43 0.19 0.27 

1 0.90 0.44 0.19 0.27 

 

 

 

When shifting to probabilities, the AUC values for GPT-4 and Llama-3 ranged from 

0.713-0.744 for GPT-4 and 0.744-0.755 for Llama-3 (Table 5, Figure 3). The AUC 

values remained quite stable across temperatures, indicating consistent discriminatory 

capabilities. Conversely, GPT-3.5 displayed a slight decrease in AUC with increasing 

temperatures, from 0.687 for temperature 0.2 to 0.616 for temperature 1.0. 
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Table 5: Metrics Computed Using Youden's Index. This table displays accuracy, 

precision, recall, F1 score, and the area under the receiver operating characteristic 

curve (AUC), derived from the model's predicted probabilities. Metrics were 

calculated using the optimal cutoff determined by Youden's index for each model. 
 

 

Model 

 

Temperature 

 

AUC 

 

Accuracy 

 

Precision 

 

Recall 

F1 

 

Score 

   For Youden's index probability threshold 

 

 

 

 

GPT-4 

0.2 0.742 0.67 0.18 0.69 0.29 

0.4 0.744 0.66 0.18 0.75 0.29 

0.6 0.713 0.83 0.28 0.50 0.36 

0.8 0.733 0.81 0.27 0.57 0.36 

1 0.735 0.82 0.28 0.53 0.36 

 

 

 

 

GPT-3.5 

0.2 0.681 0.62 0.16 0.68 0.26 

0.4 0.677 0.62 0.15 0.68 0.24 

0.6 0.686 0.55 0.15 0.77 0.25 

0.8 0.633 0.78 0.20 0.42 0.27 

1 0.616 0.78 0.20 0.40 0.26 

 

 

 

 

Llama-3 

0.2 0.755 0.63 0.18 0.80 0.29 

0.4 0.744 0.63 0.18 0.79 0.29 

0.6 0.759 0.66 0.19 0.81 0.31 

0.8 0.745 0.65 0.18 0.75 0.29 

1 0.752 0.64 0.19 0.79 0.30 
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Figure 2: Models' predicted accuracies stratified by temperatures 

Abbreviations: CI – confidence interval 

 

 

Figure 3: Models' area under the receiver operating characteristic curve (AUC) 

stratified by temperatures. 

Abbreviations: CI – confidence interval 
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3.2 Regression Task – Prediction of Length of Stay in days 

 
The MSE and RMSE metrics computed for the models across various temperature 

settings show consistency in the model's performance in predicting the length of stay 

(Table 6). Some slight variations are seen across different temperatures, but no clear 

trend is demonstrated. Notably, GPT-3.5 generally exhibited slightly higher MSE and 

RMSE values at most temperature settings, while Llama-3 displayed the lowest 

RMSE at a temperature of 1.0, suggesting a slight edge in predictive performance at 

this setting. GPT-4's results were broadly comparable to those of GPT-3.5. 

 
 
 

 
 
 
 
 
Table 6: Regression Analysis of Model Predictions for Length of Stay 
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Model Temperature MSE RMSE 

GPT-3.5 0.2 130.7 11.4 

0.4 124.9 11.2 

0.6 130.4 11.4 

0.8 131.3 11.5 

1.0 131.3 11.5 

GPT-4 0.2 132.6 11.5 

0.4 127.9 11.3 

0.6 131.4 11.5 

0.8 133.1 11.5 

1.0 131.2 11.5 

Llama-3 0.2 130.3 11.4 

0.4 130.4 11.4 

0.6 131.0 11.4 

0.8 129.7 11.4 

1.0 124.7 11.2 

 

 

 

The analysis of average confidence scores for LOS predictions made by GPT-3.5, 

GPT- 4, and Llama-3 across varying temperatures indicates a consistent level of 

confidence across all models and settings. 
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As depicted in Figure 4, confidence scores for each model do not show significant 

variations with changes in temperature. Specifically, GPT-3.5 and Llama-3 maintain a 

very close range of confidence across the temperature spectrum, while GPT-4 exhibits 

similarly steady, albeit slightly lower, confidence levels. This uniformity in 

confidence suggests that the models' self-assessment of their predictive capabilities 

remains stable regardless of temperature adjustments. 

Figure 4: Models' confidence scores for LOS prediction 
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3.3 Clinical Reasoning - ICD Coding Accuracy 

 

The analysis reveals that all the models exhibit relatively stable performance across 

different temperature settings (Table 7). All the models showed mediocre 

performance for complete coding accuracy, specifically: 

For complete code accuracy assessment, GPT-4 generally demonstrates the highest 

complete accuracy, peaking at 17%. GPT-3.5 and Llama-3 show lower accuracies, 

with GPT-3.5 peaking at 16% and Llama-3 reaching only up to 12%. For the two-

digit accuracy assessment, GPT-4 leads with accuracies of around 39%. GPT-3.5 

peaks at 37%, and Llama-3 remains steady at 34%. In terms of the three-digit 

accuracy assessment, GPT-4 peaks at 32%. GPT-3.5's best is 29%, while Llama-3 

averages 24%. 

For the four-Digits assessment, GPT-4 tops again, exceeding 22%. GPT-3.5 and 

Llama- 3 reach maximums of 19% and 16%, respectively. 

Table 7: ICD-10-CM coding abilities of the study's different LLMs across 

different temperatures. 

 

 

 

Model 

 

 

Temperature 

Complete 

Coding 

Accuracy 

Accuracy 

2 first 

digits 

Accuracy 

3 first 

digits 

Accuracy 

4 first 

digits 

 

 

 

 

GPT-3.5 

0.2 0.16 0.37 0.29 0.19 

0.4 0.14 0.33 0.25 0.17 

0.6 0.15 0.36 0.28 0.19 

0.8 0.14 0.35 0.28 0.17 

1 0.14 0.36 0.27 0.18 

 

 

 

0.2 0.17 0.38 0.31 0.21 

0.4 0.16 0.37 0.30 0.20 
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GPT-4 

0.6 0.17 0.39 0.32 0.22 

0.8 0.17 0.39 0.32 0.21 

1 0.16 0.39 0.32 0.21 

 

 

 

 

Llama-3 

0.2 0.12 0.34 0.24 0.16 

0.4 0.12 0.34 0.24 0.16 

0.6 0.12 0.34 0.24 0.16 

0.8 0.11 0.34 0.24 0.16 

1 0.11 0.34 0.23 0.15 

 

 

 

 

 

 

Figure 5 illustrates the average confidence scores assigned by each model—GPT-3.5, 

GPT-4, and Llama-3—for their ICD-10 coding predictions across different 

temperature settings. Throughout the range of temperatures, each model exhibits 

relatively stable confidence levels. GPT-4 and GPT-3.5 maintain higher confidence 

scores compared to Llama-3 across all temperature settings. Notably, confidence 

scores do not significantly fluctuate with changes in temperature for any model. 
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Figure 5: Models' confidence scores for ICD-10 coding. 

 

 

 

 

 

 

 

 

4. Discussion 

Our findings reveal a remarkable consistency in the performance of LLMs like GPT-4 

and Llama-3 across a variety of clinical tasks—classification, regression, and the 

intricate process of ICD coding—regardless of temperature settings. This stability not 

only underscores the robustness of LLMs in clinical reasoning but also challenges 

prevailing assumptions about their reliability, suggesting that performance remains 

solid even as models generate more "creative" outputs at higher temperatures. 
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This research extends the dialogue initiated by a previous study [9], which explored 

temperature effects in academic multiple-choice questions contexts, by demonstrating 

similar stability in the complex realm of real-world clinical data across different 

clinical tasks. 

Another surprising finding of our analysis showed that Llama-3-70b, an open-access 

model, displayed slightly higher accuracy than GPT-4 in predicting mortality 

outcomes, highlighting its potential utility in specific clinical tasks. The clinical 

prediction capacity of LLMs in the ED have been investigated before in few studies 

[12][13][14][15]. In our previous publication, we have shown GPT-4 had 78% zero-

shot accuracy for prediction of hospital admission [12], while Williams et al. have 

shown GPT-4 had accuracy 89% for classifying acuity level in the ED [13]. 

However, Llama-3-70b did not perform as well as GPT-4 and GPT-3.5 in the task of 

ICD coding. This divergence in performance underscores the variability in model 

effectiveness across different types of clinical data analysis, suggesting that while 

some models may excel in one area, they may not necessarily perform equally well 

across all tasks. The low accuracy of LLMs for complete ICD-10-CM coding tasks 

has been described before [17][18]. 

Our study underscores the need for developing specific benchmarks in healthcare to 

assess LLM performance. This entails a focused examination on how LLMs manage 

unstructured clinical data, which is critical for optimizing their use in healthcare 

environments. By addressing this gap, the research aims to enhance the precision of 

LLM applications in patient care settings. 
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This investigation has limitations. First, it was conducted as a multi-site retrospective 

study, concentrating on GPT and Llama-3 models and using emergency department 

(ED) notes as the singular data type. Second, despite covering a range of tasks, many 

clinical areas remain unexplored. Third, since we evaluated "out-of-the-box" 

performance, the study did not assess the impact of fine-tuning or Retrieval- 

Augmented Generation (RAG) on model performance. Also, we’ve limited are research 

to the usual temperature range of 0.2-1.0. Finally, the number of LLMs available for 

experimentation is very large. Our study was limited to 3 commonly used ones. These 

limitations delineate the scope for future studies, particularly in expanding the variety 

of tasks, and data types, and exploring customization techniques to refine LLM 

effectiveness. 

In conclusion,Our study demonstrates that LLMs maintain consistent accuracy across 

different temperature settings for varied clinical tasks, challenging the assumption that 

lower temperatures are necessary for clinical reasoning. 
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