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Abstract 

Background 

The immune response in breast tumors has an important role in prognosis, but the role of spatial 

localization of immune cells and of interaction between subtypes is not well-characterized.  We evaluated 

the association between spatially-resolved tissue infiltrating immune cells (TIICs) and breast cancer-specific 

survival (BCSS) in a large multi-center study. 

Patients and methods 

Tissue micro-arrays with tumor cores from 17,265 breast cancer patients of European descent were stained 

for CD8, FOXP3, CD20, and CD163. We developed a machine learning-based tissue-segmentation and 

immune cell detection algorithm using Halo™ to score each image for the percentage of marker-positive 

cells by compartment (overall, stroma, or tumor).  We assessed the association between log transformed 

TIIC scores and BCSS using Cox regression.  

Results 

Total CD8+ and CD20+ TIICs (stromal and intra-tumoral) were associated with better BCSS in women with 

ER-negative (HR per standard deviation = 0.91 [95% CI 0.85 – 0.98] and 0.89 [0.84 – 0.94] respectively) and 

ER-positive disease (HR = 0.92 [95% CI 0.87 – 0.98] and 0.93 [0.86 – 0.99] respectively) in multi-marker 

models.  In contrast, CD163+ macrophages were associated with better BCSS in ER-negative disease (0.94 

[0.87 – 1.00]) and a poorer BCSS in ER-positive disease 1.04 [0.99 – 1.10].  There was no association 

between FOXP3 and BCSS.  The observed associations tended to be stronger for intra-tumoral than stromal 

compartments for all markers.  However, the TIIC markers account for only 7.6 percent of the variation in 

BCSS explained by the multi-marker fully-adjusted model for ER-negative cases and 3.0 percent for ER-

positive cases. 

Conclusions 

The presence of intra-tumoral and stromal TIICs is associated with better BCSS in both ER-negative and ER-

positive breast cancer.  This may have implications for the use of immunotherapy.  However, the addition 

of TIICs to existing prognostic models would only result in a small improvement in model performance. 
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Highlights 

Stromal and intra-tumoral CD8+ and CD20+ TIICs are associated with better survival in ER+ and ER- breast 

cancers. 

Stromal and intra-tumoral CD163+ TIICs are associated with better survival in ER- and poorer survival in ER+ 

breast cancers. 
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The presence of FOXP3+ tissue infiltrating lymphocytes in breast tumors was not associated with survival in 

breast cancer. 
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Introduction 

Survival after a diagnosis of breast cancer is affected by many patient and tumor characteristics, including 

age at diagnosis, tumor size, tumor grade, local and regional lymph node status, and expression of tumor 

biomarkers including estrogen receptor (ER), progesterone receptor (PR), KI67 and HER2.  Several 

multiparameter molecular tests have been developed to aid prognostication and treatment decision-

making in breast cancer [1].  Beyond the molecular characteristics of the neoplastic parenchyma, there is 

accumulating evidence that non-tumor cells might also influence disease prognosis.  

A wide variety of tissue infiltrating immune cells (TIICs), such as cytotoxic T-lymphocytes (CD8+), T-helper 

lymphocytes (CD4+), B-lymphocytes (CD20+), natural killer cells (NK cells), and macrophages [2, 3], 

characterize the immune landscape of tumors.  TIICs can occur in direct, cell-to-cell contact with tumor cells 

(intra-tumoral TIICs) or within the connective tissue stroma surrounding tumor cells (i.e., stromal TIICs)  [4, 

5]. Although the prognostic associations of TIICs have been evaluated across several studies, these were 

limited by a wide range of study designs with varying endpoints, sample sizes, metrics for immune cell 

infiltration, and statistical methodologies.  As a result, the findings of these studies are inconsistent, but 

some broad patterns have emerged.  Total tissue infiltrating lymphocytes are associated with higher 

pathological complete response to neo-adjuvant chemotherapy and improved disease-free survival in 

women with triple-negative breast cancer (TNBC) or HER2-positive breast cancer [5-7].  Of the specific 

immune cell types, CD8+ T-lymphocytes have been studied the most.  A 2023 meta-analysis based on 14 

studies found that CD8+ TIICs were associated with improved overall survival and disease-free survival, with 

similar associations for both intra-tumoral and peri-tumoral CD8+ TIICs [8].  They have also been found to 

be associated with better outcomes for women with ER-negative tumors (both triple-negative and HER2-

positive) [9], ER-positive/HER2-negative tumors [9], and ER-positive tumors overall [10]. FOXP3+ T-

lymphocytes have been associated with improved pathological complete response to neoadjuvant 

chemotherapy and overall survival in triple-negative and HER2-positive breast cancer, with some evidence 

that this effect is restricted to FOXP3+ TIICs in the stromal compartment [11].  Tissue infiltrating B-

lymphocytes (CD20+) have been associated with better outcomes with little data on either ER-status 

specific effects or on tissue compartment effects [12].  One study reported that tissue infiltrating B-

lymphocytes are associated with better outcomes for both HER2-positive and triple-negative breast cancer 

[13].  In contrast, tissue infiltrating macrophages (CD68+ or CD163+) have been found to be associated with 

worse overall survival and progression-free survival [14]. 

A few studies have evaluated more than one immune cell type in breast cancer.  A high ratio of CD8+: to 

FOXP3+ TIICs has been associated with better disease-free survival in triple-negative [15, 16] and HER2-

positive [15] breast cancers, and worse disease-free survival in luminal (ER-positive) breast cancers [17].  

One study used deconvoluted bulk gene expression data to evaluate the role of all the above markers (CD8, 

FOXP3, CD20, CD163, and CD68) [18].  Increased CD20+ was associated with improved outcomes in ER-

positive breast cancer with a similar association for CD20+ and CD8+ lymphocytes in ER-negative breast 

cancers.  Poorer outcomes were observed for FOXP3+ lymphocytes and CD68 macrophages in ER-positive 

disease, and FOXP3+ lymphocytes and CD163+ macrophages in ER-negative disease. 

The aim of this study was to clarify the prognostic associations of subsets of TIICs, specifically CD8+, 

FOXP3+, CD20+ and CD163+, in ER-positive and ER-negative breast cancer by using machine learning 

algorithms for the high-throughput, quantitative, assessment of TIICs, including their spatial localization 

within tissues.  We addressed these aims in a large, multi-center study comprising over 17,000 patients 

with clinically annotated breast cancer tissues on TMAs that were stained using IHC for four markers 

representing the major immune cell subtypes. 
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Methods 

Patient samples 

Twenty-two studies from the Breast Cancer Association Consortium (bcac.ccge.medschl.cam.ac.uk) 

provided 323 tissue micro-arrays for staining for CD8, FOXP3, CD20, and CD163 as part of a larger project 

(B-CAST) to generate molecular pathology data on 15 markers in approximately 20,000 breast tumors.  

Arrayed tumors were from female breast cancer cases from Canada, Germany, the Netherlands, Poland, 

Singapore, the UK, and the USA diagnosed between 1961 and 2015 (Table 1).  Clinico-pathological data 

were available for ER status, age at diagnosis, tumor size, number of positive lymph nodes, vital status, 

cause of death, and follow-up time; methods of ascertaining vital status and cause of death are 

summarized in Supplementary Table 1.  Cases diagnosed before 1980, missing vital status or age at 

diagnosis, or without any follow-up time after entry into the study were excluded, resulting in a total of 

17,265 cases in the analyses.  Of these a further 1,551 were missing ER status. 

Table 1: Summary of contributing studies 

Study Country 
Cases 

(N)* 
Year of 

diagnosis* 

Age at diagnosis Tissue micro-arrays  

Mean [Min, Max] Core size (mm) Arrays (N) 

ABCS Netherlands 461 2003- 2011 42 [18, 49] 0.6 14 

UKBGS UK 629 2004-2014 56 [24, 84] 1 28 

CPS2 USA 420 1993-2009 71 [51, 87] 1 7 

EPIC Germany 263 1992-2000 58 [40, 75] 1 9 

ESTHER Germany 258 2001-2004 62 [50, 75] 1 6 

GESBC Germany 265 1992-1995 43 [20, 50] 1 5 

MARIE Germany 1,484 2001-2005 62 [49, 75] 1 30 

MCBCS USA 196 2001-2008 56 [26, 83] 0.6 4 

MMH USA 151 2003-2013 66 [45, 89] 0.6 4 

NEAT UK 1,944 1996-2001 49 [26, 76] 0.6 16 

OFBCR Canada 199 1986-2002 48 [26, 78] 0.6 3 

ORIGO Netherlands 483 1996-2006  53 [22, 86] 0.6 11 

PBCS Poland 1,275 1998-2003 56 [27, 75] 1 22 

PLCO USA 697 1995-2010 68 [55, 85] 1 24 

POSH UK 835 2000-2007 36 [19, 41] 1 39 

RBCS Netherlands 616 1980-2009 44 [25, 84] 0.6 15 

SBCS UK 108 2012-2015 59 [24, 87] 0.6 4 

SEARCH UK 4,593 1990-2009 53 [23, 73] 0.6 32 

SGBCC Singapore 178 2007-2013 54 [25, 81] 1 2 

SKKDKFZS Germany 816 1993-2005 60 [27, 93] 0.6 19 

SZBCS Poland 1787 2002-2010 55 [31, 85] 0.6 4 

UBC USA 1,236 1980-2009 60 [25, 93] 2 25 

All   17,265  1980-2015 54 [18, 93]   323 

* After exclusion of cases diagnosed before 1980, missing vital status or age at diagnosis, or without any follow-up time 

after entry into the study 
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Immunohistochemistry 

Tissue microarrays are paraffin blocks in cassettes containing multiple cylindrical cores of tumor with a 

diameter between 0.6mm and 2mm, extracted from formalin-fixed and paraffin-embedded surgical tumor 

tissue blocks.  The specific locations from which the cores were taken were determined by pathologists for 

each study to be the most representative of the overall tumor structure/composition.  Eleven studies used 

0.6 mm cores, ten studies used 1 mm cores and one study used 2 mm cores.  Tissue microarrays were sent 

to the B-CAST co-ordinating centre at the University of Cambridge for sectioning and staining by the 

Histology Core at the Cancer Research UK Cambridge Institute.  CD8, FOXP3, CD20, and CD163+ were 

selected as markers of key components of the immune response: CD8+ for cytotoxic response/immune 

upregulation, FOXP3+ for cytotoxic response/immune downregulation, CD20+ for humoral immunity, and 

CD163+ for innate immunity/immune downregulation.  Details of the antibodies used for each marker are 

presented in Supplementary Table 2.  The stained sections were then scanned at 20X using a Leica Aperio 

AT2 scanner, and the images stored using the PathXL software.  The scanned images for each stained tissue 

microarray section were de-arrayed using study-specific tissue microarray maps, and an image of each 

stained core was exported as jpeg file for downstream analysis.  Tissue microarrays included more than one 

tissue core per case for about 50% of cases (Supplementary Table 3).  The dataset comprised 128,308 

stained cores (32,268 CD8; 32,060 FOXP3; 32,106 CD20; and 31,874 CD163) from 17,265 cases 

(Supplementary Table 4). 

Image Analysis 

Immune cell tissue infiltration scores were generated using Halo, a digital pathology platform produced by 

Indica Labs (Indica Labs, Albuquerque, NM).  The image-analysis model was composed of two parts: an 

immune cell detection component and a tissue segmentation component (see Supplementary methods for 

details).  Immune cell detection was performed by a proprietary immune cell detection script with minor 

hyperparameter optimisation.  Development of the tissue segmentation component was an iterative 

process using a total of 553 core images (150 CD8+, 104 FOXP3+, 179 CD20+, 120 CD163+) annotated by 

pathologists (MAD, MA) to identify tumor, stroma, artefact, and glass (see Supplementary methods for 

details).   

The automated algorithm was then applied to the complete set of images to generate the total area of 

tumor, stroma and artefact with the area of each occupied by TIICs.  Individual core images were excluded 

from subsequent analyses if no tumor or stromal tissue was detected.  The core-level immune cell score 

was then given as percentage of the compartmental tissue area occupied by TIICs.  The number of cores 

per case varied between studies; case-level scores were taken as the mean value for cases with multiple 

valid tissue core scores.  The automated scoring was validated against pathologist scores for CD8+ in the 

SEARCH study, as well as expert pathologist consensus on 80 validation images (20 per marker). 

The maximum potential tissue area depends on the tumor core diameter and so the mean total tissue area 

detected by the tissue segmentation algorithm varied by tumor core diameter and by study 

(Supplementary figure 1).  The proportion of cores with tissue area greater than 0.05 mm2, 0.1 mm2, 0.2 

mm2 and 0.3 mm2 was 97 percent, 94 percent, 86 percent and 70 percent respectively.   

Statistical methods 

Cox proportional hazards regression was used to assess the association between percent TIICs area and 

breast cancer specific survival (BCSS). Time at risk was from the date of diagnosis, with the time under 

observation beginning at the date at recruitment (left censoring).  Follow-up was censored at death, the 
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time of last observation, or 15 years after diagnosis, whichever came first.  The event of interest was death 

from breast cancer.  Where cause of death was not available (1,090 of 4,376 deaths), any death was 

treated as due to breast cancer.  Separate analyses were performed for ER-positive and ER-negative 

tumors.  Partially-adjusted models included age at diagnosis and study as covariates.  Fully-adjusted models 

were adjusted for age at diagnosis, tumor grade, number of positive nodes, tumor size and study.  Grade 

was found to violate the proportional hazards assumption (see Supplementary Methods) and so it was 

treated as a time-varying covariate with the log-hazard ratio varying as a function of log time.  Participants 

from studies with fewer than 15 deaths were pooled into either a group of studies with 0.6 mm cores on 

the arrays or a group of studies with 1 mm cores on the arrays.  

Age at diagnosis has been shown to have a non-monotonic hazard function for women with ER-positive 

breast cancers [19].  We, therefore, used the transformation of age at diagnosis described by Candido dos 

Reis and others for the ER-positive models which generates two variables for age [19].  The distribution of 

the TIIC scores (percentage of the tissue area occupied by TIICs) was highly skewed (Figure 2).  We 

therefore log transformed the TIIC score and ran all the models twice using both untransformed and 

transformed scores.  Partially-adjusted and fully-adjusted models were run for each marker individually and 

then multi-marker models including all four markers were run.  TIIC scores based on a small area of tissue 

are likely to be unreliable, so we also evaluated the effect of using different thresholds for exclusion of 

cores based on area of tissue detected: we used thresholds for minimum tissue area of 0.05 mm2, 0.1 mm2, 

0.15 mm2, 0.1 mm2, 0.25 mm2, and 0.3 mm2.   

Missing data for TIIC scores reduced the sample size of the complete case analysis (i.e. cases with missing 

data removed) for the partially-adjusted multi-marker model to 7,450 ER-positive cases and 2,539 ER-

negative cases with the core exclusion threshold of 0.25 mm2.  This was reduced further in the fully-

adjusted models to 5,585 ER-positive cases and 1,960 ER-negative cases because of missing data for grade, 

tumor size and number of positive nodes.  We therefore used multiple imputation by chained equations to 

impute missing data and maximise the sample size in all analyses.  The scores for the four markers with 

study, age at diagnosis, ER status, grade, tumor size, number of positive nodes, follow-up time and breast 

cancer mortality were used in the imputation models, and each dataset was imputed 10 times.  The results 

from the Cox regression analyses on each imputed data set were combined using Rubin’s rules [20]. 

We approximated the relative variation [21] accounted for by TIIC scores as  

1 – adequacy index = 1 – LRstandard/LRstandard+B 

where LR is the likelihood ratio chi-squared statistic, the standard model includes age at diagnosis, ER 

status, grade, tumor size, number of positive nodes and B denotes the inclusion of TIIC scores as predictors. 

We evaluated between study heterogeneity by running the fully-adjusted, multi-marker models for the 

imputed data using the 0.25 mm2 tissue area exclusion threshold separately for each study.  We tested for 

evidence of between study heterogeneity using Cochran’s Q [22] and I2 as an estimate of the proportion of 

overall variance due to between study variance [23]. 

All analyses and data visualisations were carried out using R [24], implemented in R Studio [25], with the R 

packages tidyverse [26], broom [27], ggforestplot [28], lemon [29], meta [30], mice [31], patchwork [32], 

and survival [33]. 

Results 

There was a total of 128,308 core images from 17,265 patients after the application of initial case exclusion 
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criteria.  The patient and tumor characteristics of the cases are summarized in Table 2.  The CD8+ TIIC 

scores were validated by comparing them to manual scoring by a pathologist (HRA) of 2,247 cores from the 

SEARCH study as previously reported [9].  A good correlation was observed for total score (Spearman’s Rho 

= 0.76), intra-tumoral score (Rho = 0.55) and stromal score (Kappa = 0.62) (Supplementary Figure 3). 

 

Table 2: Characteristics of 17,265 cases by ER status 
  

ER status   
Negative % Positive % Missing % 

Number of cases 
 

3,879 
 

11,835 % 1,551  

Age group (years) 20-39 689 18 1,292 11 143 9  
40-59 2,151 56 6,103 52 904 58  
60-79 997 26 4,225 36 487 31  
80+ 42 1 215 2 17 1 

Grade 1 160 4 2,134 19 201 18  
2 915 25 6,091 55 473 41  
3 2,599 71 2,920 26 468 41 

 Missing 205  690  409  

Tumor size (mm) 1-19 1,300 39 5,412 53 539 52  
20-49 1,772 54 4,185 41 433 42  
50+ 234 7 532 5 59 6 

 Missing 573  1,706  520  

Positive nodes 0 1,970 57 6,115 58 667 60  
1 527 15 1,715 16 157 14  
2-4 531 15 1,606 15 166 15  
5-9 267 8 656 6 88 8  
10+ 173 5 503 5 32 3 

 Missing 411  1,240  441  

Breast death No 2,848 73 9,759 83 1,260 81  
Yes 1,031 27 2,076 18 291 19 

Follow-up (years) Mean (SD) 8.99 (4.75) 10.0 (4.25) 9.77 (4.42) 

 

The choice of untransformed or log-transformed TIIC scores was based on the results of an initial set of 

single marker, complete case analyses.  We ran 576 single marker Cox regression models given all possible 

combinations of four markers, partially and fully-adjusted models, three tissue compartments, ER-positive 

and ER-negative models, six thresholds for minimum tissue area, and untransformed and transformed TIIC 

scores.  There were 288 models for each of the analyses using the untransformed and log-transformed 

score variable.  The log-transformed was the better model in 229, based on the model log likelihood.  There 

were 96 models at each tissue area threshold with no single threshold being clearly the best fit with the 

0.25 mm2 threshold being best in 24 models and the 0.05 mm2 threshold being best in 31 models.  The 

results for all 576 complete case analysis models are provided in Supplementary Table 5. 

Subsequent analyses were based on the data for all 17,265 cases after multiple imputation with the tissue 

area threshold on a minimum of 0.25 mm2 and the log transformed percent tissue area TIIC score. In single 

marker analyses, CD8+ TIICs in both tumoral and stromal compartments were associated with improved 

BCSS in ER-positive and ER-negative disease (Figure 1).  The effect sizes were similar in the partially- and 
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fully-adjusted models.  FOXP3+ TIICs were associated with a better prognosis in ER-negative and in ER-

positive cases, but the effect in ER-positive disease was only observed in the fully-adjusted models.  CD20+ 

TIICs in both compartments were associated with better breast cancer specific survival in both ER-positive 

and ER-negative with no attenuation of the association in the fully-adjusted models.  Finally, CD163+ TIICs 

in both compartments was associated with better prognosis in ER-negative cases.  In ER-positive cases 

CD163+ TIICs were associated with a poorer prognosis in the partially-adjusted models, but the effect was 

completely attenuated after adjusting for grade, size and number of positive nodes.  The results for the 

single marker fully-adjusted models did not vary substantially by tissue area exclusion threshold 

(Supplementary Figure 4 and Supplementary Table 5).  

The results of the multi-marker, partially- and fully-adjusted models including all four immune cell markers 
using the imputed data are shown Figure 1: Hazard ratio for association between TIIC score and breast 
cancer specific survival by marker, ER status and tissue compartment in single marker models using 
imputed data. Brown = partially-adjusted model (adjusted for age and study), teal = fully-adjusted model 
(adjusted for age, tumor size, tumor grade, number of positive nodes and study). 
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Figure 2.  CD8+ and CD20+ TIICs were associated with improved prognosis in both ER-positive and ER-

negative disease with a slightly stronger effect for CD8+ infiltration in the tumor compartment.  CD163+ 

TIICs were associated with a better prognosis in ER-negative cases and a poorer prognosis in ER-positive 

cases with similar effects in both stromal and tumoral compartments.  FOXP3+ infiltration was no 

associated with outcome, although the confidence intervals were wide.  Overall, there was some evidence 

of inter-study heterogeneity for CD20+ and CD163+ (Error! Reference source not found.), which might be 

expected given the underlying heterogeneity in the study designs including the year of diagnosis, the time 

of storage of pathology material and methods for TMA construction.  The fraction of the variance explained 

by the model that was accounted for by the TIIC scores was 7.6 percent for the ER-negative model and 3.0 

percent for the ER-positive model.  
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Figure 1: Hazard ratio for association between TIIC score and breast cancer specific survival by marker, ER 
status and tissue compartment in single marker models using imputed data. Brown = partially-adjusted 
model (adjusted for age and study), teal = fully-adjusted model (adjusted for age, tumor size, tumor grade, 
number of positive nodes and study). 
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Figure 2: Hazard ratios for association between TIIC score and breast cancer specific survival by ER status, 
marker and tissue compartment for partially (adjusted for age and study) and fully-adjusted (adjusted for 
age, tumor size, tumor grade, number of positive nodes and study) multi-marker models using imputed 
datasets 
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Discussion 

We evaluated the association with breast cancer-specific mortality of the presence of tissue infiltrating 

cytotoxic T-cells (CD8), regulatory T-cells (FOXP3), B-cells (CD20), and M2 macrophages (CD163), along with 

well-established prognostic factors in female breast cancer.  No published studies have reported on the 

effects of all four of these markers in multi-marker models.  CD8+ and CD20+ TIICs were associated with 

better survival in both ER-positive and ER-negative disease.  CD163+ TIICs were associated with a better 

survival in ER-negative cases and a poorer survival in ER-positive cases.  FOXP3+ lymphocyte infiltration was 

not associated with outcome, although the confidence intervals were wide.   

Our findings for the single marker analyses are broadly consistent with those in the literature, with some 

notable differences. We found better prognosis for CD8+ and CD20+TIICs in both ER-positive and ER-

negative disease and for TIICs in both stromal and intra-tumoral compartments.  Published studies have 

found that increased CD8+ TIICs predict better outcomes in ER-negative but not ER-positive breast cancer 

apart from the small subgroup of ER-positive that is also HER2-positive [8, 9].  While an association of 

CD20+ B-lymphocytes with survival for women with invasive breast cancer has been described previously, 

associations in either ER-negative or ER-positive disease have not been shown.  An association of FOXP3+ 

TIICs with better survival is well established in ER-positive and ER-negative disease and is supported by our 

single marker analyses [11, 34].  We found CD163+ macrophage infiltration to be associated with a poorer 

survival in ER-positive patients although the association was completely attenuated on adjustment for 

other prognostic variables.  This is similar to the few published studies that have reported on CD163+ 

macrophages in ER-positive disease [14].  In contrast, we found infiltrating CD163+ macrophages to be 

associated with an improved survival in ER-negative breast cancer, whereas most published studies of ER-

negative or triple-negative breast cancers have reported a poorer prognosis for CD163+ TIICs [14].  The 

reasons for these differences are unclear.  The difference between our results and those of previous studies 

for CD8+ and FOXP3+ in ER-positive cases is likely to be due to the substantially increased statistical power 

of our study to detect modest effects.  The improved survival observed for CD163+ TIICs in ER-negative 

cases is harder to explain.  Given the concordance of our findings for CD163+ TIICs with other studies in ER-

positive cases it seems unlikely that bias can be an explanation.  Chance is a possible but unlikely 

explanation, given the opposite direction of effect in our study.  

The weaknesses of the study need to be considered when interpreting the findings.  We assumed that 

1,090 patients with an unknown cause of death – out of 4,376 deaths within 15 years of follow-up – died of 

breast cancer.  This will be associated with some misclassification, particularly in the period 10-15 years 

after diagnosis when almost half of deaths are due to causes other than breast cancer (Supplementary 

Table 7).  Consequently, this may result in under estimation of the effect sizes, though this is likely to be 

small, and the added power from the additional events will outweigh the effect of misclassification.  Breast 

tumors are spatially heterogeneous, and the cores sampled for tissue microarrays cannot capture all of the 

heterogeneity.  This is also likely to result in some under estimation of effect sizes.  We explored the 

potential effect of this by comparing the results for two of the strongest single marker associations, that for 

CD8+ TIICs in both tissue compartments in ER-negative disease (HRfull = 0.83, P = 1.6 x 10-6) and CD20+ in 

tumor tissue of ER-positive disease (HRfull = 0.79, P = 1.8 x 10-6), in subsets of the data based on cases 

represented by a single core and cases represented by two or more core.  The effect size for the CD8+ 

analysis was somewhat larger for the multi-core case sample (HRfull = 0.80, 95% CI 0.72 -0.89) than for the 

single core case sample (HRfull = 0.85, 95% CI 0.76 – 0.95).  The difference between the samples for the 

CD20+ tumor infiltration score was more substantial (HRfull = 0.68 95% CI 0.58 – 0.81 compared to HRfull = 

0.87 95% CI 0.87 – 0.98).  This is consistent with the observation that B-lymphocytes tend to aggregate 
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whereas T-cells do not [35]. 

Our study was based on samples of tumors of all sizes, grades and subtypes from several countries, with 

the majority of cases being of white European ancestries.  The study is representative for the European 

population.  Given the similar associations of the well-establish prognostic factors in diverse populations, it 

seems likely that the findings would also apply to other populations.  We provided solid evidence to 

confirm known associations between CD8+, CD163+, and CD20+ TIICs and breast cancer survival in ER-

negative disease and provided novel evidence for associations between those markers and ER-positive 

disease.  This supports further consideration of inclusion of ER-positive patients in clinical trials of immune 

modulators. 
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