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Abstract 

Large language models (LLMs) show promise in supporting differential diagnosis, but their 

performance is challenging to evaluate due to the unstructured nature of their responses. To assess 

the current capabilities of LLMs to diagnose genetic diseases, we benchmarked these models on 

5,213 case reports using the Phenopacket Schema, the Human Phenotype Ontology and Mondo 

disease ontology. Prompts generated from each phenopacket were sent to three generative pre-

trained transformer (GPT) models. The same phenopackets were used as input to a widely used 

diagnostic tool, Exomiser, in phenotype-only mode. The best LLM ranked the correct diagnosis first in 

23.6% of cases, whereas Exomiser did so in 35.5% of cases. While the performance of LLMs for 

supporting differential diagnosis has been improving, it has not reached the level of commonly used 

traditional bioinformatics tools. Future research is needed to determine the best approach to 

incorporate LLMs into diagnostic pipelines. 
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LLMs are general-purpose artificial intelligence models that can be applied to numerous tasks across 

diverse domains. It has been proposed that LLMs may be useful for many clinical tasks, such as 

charting, medication review, or clinical trial matching.1,2 For differential diagnostic support, LLMs can 

be prompted to return a ranked list of potential diagnoses based on narrative text describing a 

patient’s features.3  

We identified 36 previous publications that evaluated the performance of LLMs on differential 

diagnostic challenges using text prompts (Supplemental Table 1). Thirty-four of 36 publications we 

identified involved human curation, usually by physicians, to compare the response of LLMs (most 

frequently, OpenAI’s GPT models) to the correct diagnosis recorded in the original source (Details 

and citations in Supplemental Figure S1 and Supplemental Table S1). These studies analyzed 

cohorts of between 6 and 9681 cases (median 78), often from published vignettes intended for 

medical education, such as the Case Studies of New England Journal of Medicine,3–6  the Diagnosis 

Please quizzes from the journal Radiology,7 and JAMA Ophthalmology Clinical Challenges.8 The 

reported performance varied widely, even for studies using the same input data such as the NEJM 

Case Studies (Supplemental Figure 1). We reasoned that the variability could be partially due to 

subjective judgements as to whether an LLM response exactly matched the correct diagnosis. 

 

Although conceptually simple, this step requires that the curator have specialized medical knowledge 

of the disease in question. For instance, in case Case 2-2021 of the New England Journal of 

Medicine Case Record series that has been used by multiple groups to assess LLM performance,3 

the final diagnosis was given as “pregnancy-associated myocardial infarction, probably due to 

spontaneous coronary-artery dissection”.9 In our analysis of this case,10 GPT-4 returned answers 

including “peripartum cardiomyopathy” and “heart failure secondary to severe pre-eclampsia,” both of 

which are cardiovascular complications following delivery, but neither of which is correct. As a second 

example, in case 16-2021, the final diagnosis was “Staphylococcus aureus bacteremia and infection 

of a vascular graft“.11 In our analysis of this case, the diagnosis at rank 4, “infective endocarditis 

affecting the aortic valve and causing referred abdominal pain,” was similar to the correct diagnosis. 

In a study on the NEJM cases, two scorers agreed on only 66% of scores in 80 NEJM cases.3 

Therefore, the practical utility of LLM analysis may be limited by the varying ability of human users to 

interpret the responses, and manual curation that may influence the measured performance of LLMs. 

For this reason, we concluded that a computational approach to evaluate the responses of GPT-4 by 

assigning them to specific disease entities (Mondo ontology terms) would provide a more realistic 

assessment of the performance of GPT-4 for diagnostic use.  
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Two recent LLM studies12,13 focus on diagnosing rare genetic disease (RD), an area of great need. 

Rare diseases, collectively, are not rare: over 10,000 rare diseases have been identified to date, 

together affecting between 3.5% and 8% of the population. Furthermore, affected individuals often 

experience a diagnostic odyssey lasting 5-7 years.14,15 One of the studies of LLMs for RD diagnostics 

requested the LLMs to return gene symbols rather than disease names or codes,12 which obviates 

the need to manually check for equivalence of potentially synonymous disease names; however, 

LLMs are known to frequently return erroneous gene and ontology identifiers (a form of 

hallucination).16 This study of the performance of several LLMs on 276 published case reports 

showed that GPT-4 had the best performance, placing the correct diagnosis of 13.9% of cases within 

the top ten ranked diagnoses. However, there are several potential shortcomings with this approach. 

Predicting disease genes is arguably more challenging than predicting diseases, because one gene 

may be associated with many diseases, and the same (clinically defined) disease may be associated 

with many genes. For example, the authors included genes like LMNA, which is linked to 11 distinct 

diseases in Online Mendelian Inheritance in Man (OMIM), and IFT172, which is associated with three 

diseases, of which one (Bardet-Biedl syndrome) is a genetically complex condition that can result 

from pathogenic variants in any of at least 22 different genes. In this study, the correct gene was 

placed in the top ten ranked candidates in 11.7% of cases; the rank-1 performance was not reported.  

Another recent study analyzed prompts for 63 genetic conditions and compared the performance 

using medical and lay language.13 The 63 cases were created with 2-5 characteristic phenotype 

terms each and were described by the authors as “textbook-like descriptions.” This work involved a 

similar manual assessment step to determine if the response of the LLM was correct; for instance, in 

one case, the authors assigned “Riley-Day syndrome’’ to its synonym ‘‘hereditary sensory and 

autonomic neuropathy, type III’’, and reported that some LLM responses required additional 

discussion among the graders. Among the LLMs to date, GPT models have been shown to have the 

best general performance in differential diagnosis (see references in Supplemental Table 1).  

To provide an estimate of the performance of LLMs, we assembled data from 5213 individuals with a 

previously solved diagnosis; each case was structured as a phenopacket17, a Global Alliance for 

Genomics and Health (GA4GH) and ISO standard. Each phenopacket provides a structured 

representation of Human Phenotype Ontology (HPO) terms representing the signs, symptoms, 

abnormal imaging findings and laboratory test results that were observed or excluded in a single 

patient. Collectively, the diagnoses spanned 378 unique Mendelian or chromosomal diseases; the 

phenopacket encodes these as (OMIM)18 identifiers. The identified causal variants, while part of the 
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phenopacket, were not used in the current analysis. We programmatically generated prompts from 

the phenopackets using a standard template (all phenopackets and prompts are available via Zenodo 

- see data availability section).  

We analyzed the same 5213 cases to compare performance between GPT models and a traditional 

bioinformatics tool, Exomiser, which was developed by the Monarch Initiative. Exomiser was shown 

to be the best performing diagnostic tool on 100,000 Genomes Project data19 and is widely used in 

diagnostic labs, large-scale disease sequencing projects and national healthcare services such as the 

UK’s Genomic Medicine Service. For the comparison herein, we used Exomiser in ‘phenotype only’ 

mode. To mitigate the potential of bias implied by manual comparison of LLM responses to the 

expected correct result, we developed an approach to programmatically map (i.e. ‘ground’) responses 

of the LLM to terms from the Monarch Initiative’s Mondo disease ontology 

(https://github.com/monarch-initiative/mondo), which provides a comprehensive and standardized 

framework used for the classification of human diseases that integrates various disease classification 

systems, and thereby provides a unified approach to disease nomenclature.20 For genetically 

heterogeneous diseases such as geleophysic dysplasia, we used Mondo to “roll up” groups of 

diseases (e.g., MONDO:0000127 geleophysic dysplasia subtypes 1 through 3 of geleophysic 

dysplasia). 
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Figure 1. Workflow for comparing the accuracy of differential diagnoses from Exomiser and LLMs. Each phenopac

the cohort of 5213 cases is used to generate a differential diagnosis using LLMs or Exomiser. (1A) The phenopack

used to generate a prompt containing case data (age, gender, observed and excluded phenotypic features, and th

of phenotypic features, if present), and each item in response from the LLMs is converted to Mondo disease identif

using concept recognition software (OAK). Exomiser uses the same phenopacket to generate a differential diagno

comprising OMIM or Orphanet disease identifiers from the Exomiser dataset. The rank of the correct diagnosis, if p
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is determined by comparing them to the gold standard diagnosis from the phenopacket using an ontology-based strategy. 

(1B) Ontology-based strategy for identifying correct diagnoses (orange) using Mondo. Items in the differential diagnoses 

from LLM (typically clinical diagnoses, e.g. geleophysic dysplasia) are grounded to Mondo, and items from Exomiser 

(typically genetic diagnoses, e.g. geleophysic dysplasia 2) and the correct diagnosis from the phenopacket are aligned to 

Mondo using equivalence mappings in Mondo. An item in a differential diagnosis is considered correct if it matches the 

diagnosis from the phenopacket (OMIM:614185 geleophysic dysplasia 2), matches an equivalent Mondo disease 

(MONDO:0013612 geleophysic dysplasia 2), or matches a more general Mondo disease with a descendant that is a 

correct diagnosis (MONDO:0000127 geleophysic dysplasia). 

 

We presented the LLM with these prompts generated from phenopackets (Figure 1; Supplemental 

Tables S2-S6). We prompted the model to return a differential diagnosis as a list of disease names 

and determined the rank of the correct diagnosis in these lists, if present. Our strategy employs the 

Mondo ontology to count clinical diagnoses (e.g., geleophysic dysplasia) as correct, in addition to the  

the original precise genetic diagnosis (e.g., geleophysic dysplasia 2) since no genetic information was 

provided to any diagnostic tool in this experiment. We used the PhEval evaluation framework21 to 

rigorously benchmark results. 

 

The diagnostic accuracy of Exomiser was greater than any of the LLMs tested. Exomiser placed the 

correct diagnosis in the first rank in 35.5% of cases, compared with 23.6% for the best performing 

LLM (o1 preview) (Figure 2). Similarly, Exomiser placed the correct diagnosis in the top 3 ranks of the 

differential diagnosis in 46.3% of cases and in the top 10 ranks in 58.5% of cases, compared with 

31.2% in the top 3 ranks and 36.8% in the top 10 ranks for the best performing LLM (o1 preview).  
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Figure 2. Accuracy of Exomiser, o1 mini, GPT-4o, and o1 preview in differential diagnostic challenges. 

chart shows the percentage of cases of the current cohort of 5213 cases in which Exomiser (teal), o1 mini (red), 

(coral), and o1 preview (pink) returned a correct diagnosis (see Methods) at rank 1 (Top 1), within the top 3 (To

within the top 10 ranks (Top 10). 

 

Previous studies that evaluated the performance of LLMs in the area of decision support for 

differential diagnosis have had relatively small sample sizes and have employed manual and 

subjective evaluation of whether LLM responses match the correct diagnosis. Our analysis uses

ontology-based strategy that eliminates subjective choices as to whether an unstructured respo

returned by an LLM contains the correct diagnosis and provides a realistic estimate of the expec

performance of LLMs over a broad range of rare diseases. In our analysis, the best performing 

(o1 preview) was able to place the correct diagnosis in the first ten ranks in 36.8% of the 5213 c

much higher than in the study using gene symbols (12.11%); the performance was worse than f

63 textbook-like disease descriptions (81%–89% top-10 accuracy). In our study, the performanc

Exomiser was substantially better than that of the best LLM using only phenotype data. Addition

Exomiser is designed to work with both phenotypic and whole-exome or whole-genome data; on

molecularly diagnosed cases from the 100,000 Genome Project, Exomiser prioritized the correc

gene in the top, top 3, and top 10 ranked candidates 82.6%, 91.3%, and 93.6% of the time.22 W

not test the utility of providing the LLM with genomic information in the current analysis; includin

genetic information would require additional measures to ensure privacy if used for actual patien

Limitations of our study include the fact that the representation of the clinical phenotypes with H
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the clinical features in the publications from which the phenopackets were derived may have been 

incomplete. We did not undertake fine-tuning or prompt-tuning in this analysis; these procedures may 

increase performance on specific clinical decision-making tasks.23 A recent study that employs a 

likelihood ratio method combined with retrieval augmented prompt generation, followed by querying of 

GPT-3.5-turbo, showed a top-ten performance of 69.33% (165 out of 238 cases) for the true 

diagnoses in the top 10; however, the same cases were used to train the model, so that the expected 

performance on new cases and diseases remains to be characterized.16 

In conclusion, we present the largest reported study on the differential diagnostic capabilities of the 

GPT family of LLMs, the LLM that is the current best in class for a variety of medical applications. Our 

analysis approach was designed to minimize variability and subjective choices in evaluation, and 

thereby provides a realistic estimate of the performance of GPT in rare-disease differential 

diagnostics, and shows that the performance of GPT for RD differential diagnostic support is currently 

clearly inferior to that of a commonly used traditional bioinformatics tool, Exomiser. Future work will 

be required to determine how to design and integrate LLMs into diagnostic pipelines for RD genomic 

diagnostics. 

 

Data availability 

Computational representations of published individual-level clinical data in the form of GA4GH 

phenopackets and prompts intended for use with LLMs. The dataset, prompts, and differential 

diagnoses generated by LLMs and Exomiser are available on Zenodo: 

https://zenodo.org/records/14008477. All data collected for the study is available to all under an open 

source CC-BY License. 

 

Code availability 

 

phenopacket2prompt is freely available on GitHub under an open source MIT license at 

https://github.com/monarch-initiative/phenopacket2prompt. 

 

The grounding and scoring software is freely available on GitHub under an open-source BSD 3-Clause 

License at https://github.com/monarch-initiative/pheval.llm.  
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Online Methods 

Study design and data 

We evaluated the performance of LLMs in differential diagnosis using 5213 computational case 

reports formatted as GA4GH phenopackets taken from the phenopacket-store repository (version 

0.14).24 The case reports describe 378 Mendelian and chromosomal diseases associated with 336 

genes. Each phenopacket contains information derived from published case or cohort reports from a 

total of 726 different publications. The diagnosis indicated in the original publication was recorded but 

not used in generating the prompt. A total of 2975 distinct HPO terms were used, with an average of 

16 HPO terms per case. 

This study was deemed exempt from local IRB approval as it did not meet the criteria for human 

subjects research, because the cases were curated from publicly available articles. 

 

Retrieval of relevant literature 

A search was conducted in PubMed to retrieve articles that describe the use of LLMs for differential 

diagnostics. The search string was: 

("GPT"[Title/Abstract] OR "LLM"[Title/Abstract] OR "Large language model"[Title/Abstract])  

AND  

("differential diagnostics"[Title/Abstract] OR "differential diagnosis"[Title/Abstract])  

AND  

("2023"[Date - Create] : "3000"[Date - Create]) 

This search was performed on Oct 18, 2024, and returned 63 articles.  

This list was further refined by selecting only articles that described the application of one or more 

LLMs to perform differential diagnostic analysis on a cohort of clinical cases. Further, for better 

comparability, we only retained publications in which the rate of placing the correct diagnosis in rank 

1 was reported. For instance, we omitted one publication because only the rate of the correct 

diagnosis in the top three candidates was reported.25 The reference lists of chosen publications were 

scanned to identify additional articles. A full list of included articles is provided in Supplemental Table 

1. 

 

Computational generation of prompts for LLMs 
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We constructed software, phenopacket2prompt, to convert case data in GA4GH phenopacket format 

to prompts suitable for use with LLMs to generate differential diagnoses. By parsing phenopackets, 

the software extracts relevant data such as age, gender, phenotypic features that were observed and 

excluded in the patient, and onset information. This information is then used together with a 

programmatic template to generate a clinical narrative suitable for LLMs. The template first specifies 

the sex of the individual, the age of onset, and the age at last examination, and then lists the HPO 

terms that represent observed or excluded clinical features. If available, separate lists are included for 

different ages of examination (Supplemental Figure S7). The software is implemented as a 

command-line Java application and is freely available on GitHub under an open source MIT license at 

https://github.com/monarch-initiative/phenopacket2prompt. 

Generating differential diagnoses 

Exomiser 

Exomiser was used to generate differential diagnoses as follows. Exomiser version 14.0.1 was 

downloaded from https://github.com/exomiser/Exomiser/releases/download/14.0.1/exomiser-cli-

14.0.1-distribution.zip, and the 2406 version of the Exomiser data release was downloaded from: 

https://data.monarchinitiative.org/exomiser/data/2406_phenotype.zip 

https://data.monarchinitiative.org/exomiser/data/2406_hg19.zip  

Exomiser was applied in phenotype only mode to generate a differential diagnosis (comprising ranked 

lists of OMIM or Orphanet IDs) for each phenopacket.  

LLMs (o1 mini, o1 preview, and GPT-4o) 

The prompts generated as described above were provided to o1-preview (version o1-preview-2024-

09-12), o1 mini (version o1-mini-2024-09-12), and GPT-4o (version gpt-4o-2024-08-06) to generate 

differential diagnoses. For each case, each item in the differential diagnosis generated by the LLM 

was converted to Mondo Disease Ontology terms as follows: first, items that matched exactly to a 

Mondo disease label or synonym were assigned Mondo terms using the Ontology Access Kit (OAK), 

and the remaining items were assigned the best matching Mondo term above an empirically 

determined threshold using curategpt (https://github.com/monarch-initiative/curategpt). 94.0% and 

95.6% of items in the differential diagnoses were assigned Mondo terms (see supplemental data). 

Scoring differential diagnoses 

For each case, each item in the differential diagnosis was scored as correct or incorrect using the 

Ontology Access Kit (OAK, https://github.com/INCATools/ontology-access-kit) as follows. An item 

from the differential diagnosis was considered correct if the disease identifier for the diagnosis 

matched the identifier for gold standard diagnosis from the case report exactly, or was mapped as 
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equivalent to the identifier of the gold standard diagnosis in Mondo, or if the gold standard diagnosis 

was a close descendant of the LLM’s diagnosis identifier in Mondo (Figure 1). Thus, more general items such 

as geleophysic dysplasia 2 (MONDO:0013612) are considered as correct diagnoses for more specific items 

that are subsumed by the general one, such as geleophysic dysplasia (MONDO:0000127). For each case, 

the rank of the correct diagnosis, if present, was recorded. The grounding and scoring software is 

freely available on GitHub under an open-source BSD 3-Clause License at 

https://github.com/monarch-initiative/pheval.llm. OAK is freely available on GitHub under an open-

source Apache 2 license. 

Reporting 

Reporting in this study followed Consolidated Reporting Guidelines for Prognostic and Diagnostic 

Machine Learning Modeling Studies.26 
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