
 

1 

Evaluation of the Diagnostic Accuracy of GPT-4 in Five Thousand Rare Disease Cases 

 
 
 
Justin T Reese, PhD,1 Leonardo Chimirri, PhD,2 Daniel Danis, PhD,2,3 J Harry Caufield, PhD,1 Kyran 
Wissink,2,4 Elena Casiraghi, PhD,1,5,6 Giorgio Valentini, PhD,5,6 Melissa A. Haendel, PhD,7 Christopher 
J Mungall, PhD,1 Peter N Robinson MD, Dr. habil.2,3,6,* 
1. Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 
Berkeley, CA, 94720, USA. 
2. Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany. 
3. The Jackson Laboratory for Genomic Medicine, Farmington CT, 06032, USA. 
4. Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, Netherlands 
5. AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy. 
6. ELLIS-European Laboratory for Learning and Intelligent Systems. 
7. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 
 
*correspondence to: Peter Robinson,  Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 
Charitéplatz 1, 10117 Berlin, Germany; peter.robinson@bih-charite.de. 
 
 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310816doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.07.22.24310816
http://creativecommons.org/licenses/by/4.0/


 

2 

Abstract 

Large language models (LLM) have shown great promise in supporting differential diagnosis, but 23 

available published studies on the diagnostic accuracy evaluated small cohorts (number of cases, 30-422, 

mean 104) and have evaluated LLM responses subjectively by manual curation (23/23 studies). The 

performance of LLMs for rare disease diagnosis has not been evaluated systematically. Here, we perform 

a rigorous and large-scale analysis of the performance of a GPT-4 in prioritizing candidate diagnoses, 

using the largest-ever cohort of rare disease patients. Our computational study used 5267 computational 

case reports from previously published data. Each case was formatted as a Global Alliance for Genomics 

and Health (GA4GH) phenopacket, in which clinical anomalies were represented as Human Phenotype 

Ontology (HPO) terms. We developed software to generate prompts from each phenopacket. Prompts 

were sent to Generative Pre-trained Transformer 4 (GPT-4), and the rank of the correct diagnosis, if 

present in the response, was recorded. 

 The mean reciprocal rank of the correct diagnosis was 0.24 (with the reciprocal of the MRR 

corresponding to a rank of 4.2), and the correct diagnosis was placed in rank 1 in 19.2% of the cases, in 

the first 3 ranks in 28.6%, and in the first 10 ranks in 32.5%. Our study is the largest to be reported to date 

and provides a realistic estimate of the performance of GPT-4 in rare disease medicine. 
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Introduction 

Large language models (LLMs) are general-purpose artificial intelligence models that can be applied to 

numerous tasks across diverse domains. LLMs display excellent performance in many clinical tasks.1,2 For 

differential diagnostic support, for example, a narrative text describing a patient’s features is presented to an 

LLM and the LLM is requested to return a ranked list of potential diagnoses.3  

Numerous publications have addressed the accuracy of LLMs in differential diagnostics. All 23 publications we 

identified used human curators, usually physicians, to compare the response of LLMs (and most frequently, 

OpenAI’s GPT models) to the correct diagnosis recorded in the original source. This step, although 

conceptually simple, requires that the curator have specialized medical knowledge of the disease in question. 

For instance, in case Case 2-2021 of the New England Journal of Medicine Case Record series that has been 

used by multiple groups to assess LLM performance,3–6 the final diagnosis is given as “pregnancy-associated 

myocardial infarction, probably due to spontaneous coronary-artery dissection”.7 In our analysis of this case,8 

GPT-4 returned answers including peripartum cardiomyopathy and heart failure secondary to severe pre-

eclampsia, which are not correct. These answers could be assessed as “the suggestions included something 

closely related that might have been helpful” using the evaluation system of one of the published assessments of 

GPT-4 and the NEJM case reports. As a second example, in case 16-2021, the final diagnosis was 

“Staphylococcus aureus bacteremia and infection of a vascular graft“.9 In our study, the diagnosis at rank 4, 

“infective endocarditis affecting the aortic valve and causing referred abdominal pain” was reminiscent of the 

correct diagnosis. In this study, the two scorers agreed on only 66% of scores in 80 NEJM cases.3 Therefore, the 

practical utility of LLM analysis may be limited by the ability of users to interpret the responses. For this 

reason, we concluded that a computational approach to evaluate the responses of GPT-4 by assigning them to 

specific disease entities (Mondo ontology terms) would provide a more realistic assessment of the utility of 

GPT-4 for most physicians.  
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The 23 published studies analyzed cohorts of between 30 and 422 cases (mean 104), often from published 

vignettes intended for medical education, such as the Case Studies of New England Journal of Medicine,3–6  the 

Diagnosis Please quizzes from the journal Radiology,10 and JAMA Ophthalmology Clinical 

Challenges.11 The level of detail available in such reports may exceed that typically available in many 

clinical settings. None of the published studies specifically focused on rare disease, an area of great need 

because affected individuals often go years before receiving a diagnosis. Over 10,000 rare diseases have been 

identified to date, collectively affecting between 3.5% and 8% of the population, yet many patients experience a 

long diagnostic odyssey of 5–7 years.12,13 

Here, we assess the diagnostic ability of LLMs in a large set of cases of Mendelian or chromosomal diseases, 

leveraging a collection of computational case reports recorded using the Global Alliance for Genomics and 

Health (GA4GH) Phenopacket Schema.14 Human Phenotype Ontology (HPO) terms represented the signs, 

symptoms, abnormal imaging findings and laboratory test results observed or excluded in a patient. An LLM 

prompt is generated from this information that by design does not contain personal identifiers, genetic data, 

biometric data, or insurance information. We used this approach to process more than 5000 clinical narratives 

describing 378 rare diseases, the largest reported number of cases and diseases to be analyzed with LLMs to 

date.  

Methods 

Study design and data 

We evaluated the performance of GPT-4 in differential diagnosis using 5267 computational case reports 

formatted as GA4GH phenopackets taken from the phenopacket-store repository (version 0.14).15 The case 

reports describe 378 Mendelian and chromosomal diseases associated with 336 genes. Each phenopacket 

contains information derived from published case or cohort reports from a total of 726 different publications. 

The diagnosis indicated in the original publication was recorded but not used in generating the prompt. A total 

of 2975 distinct HPO terms were used, with an average of 16 HPO terms per case. 
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Retrieval of relevant literature 

A search was conducted in PubMed to retrieve articles that describe the use of large language models for 

differential diagnostics. The search string was: 

("GPT"[Title/Abstract] OR 

"LLM"[Title/Abstract] OR 

"Large language model"[Title/Abstract]) 

AND 

("differential diagnostics"[Title/Abstract] OR 

"differential diagnosis"[Title/Abstract]) 

This search was performed on July 17, 2024, and returned 80 articles. This list was further refined by selecting 

only articles that described the application of one or more LLMs to perform differential diagnostic analysis on a 

cohort of clinical cases. Further, for better comparability, we only retained publications in which the rate of 

placing the correct diagnosis in rank 1 was reported. For instance, we omitted one publication because only the 

rate of the correct diagnosis in the top three candidates was reported.16 The reference lists of chosen 

publications were scanned to identify additional articles. A full list of included articles is provided in 

Supplemental Table 1. 

Computational generation of prompts for GPT-4 

We constructed software, phenopacket2prompt, to convert case data in GA4GH Phenopacket format to prompts 

suitable for use with LLMs such as GPT-4 to generate differential diagnoses. It does this by parsing 

phenopackets to extract relevant data such as age, gender, phenotypic features that were observed and excluded 

in the patient, and onset information. This information is then used together with a programmatic template to 

generate a clinical narrative suitable for LLMs. The template first specifies the sex of the individual, the age of 

onset, and the age at last examination, and then lists the HPO terms that represent observed or excluded clinical 

features. If available, separate lists are included for different ages of examination (Figure 1). The software is 

implemented as a Java package. phenopacket2prompt is freely available on GitHub under an open source MIT 

license at https://github.com/monarch-initiative/phenopacket2prompt. 
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Computational analysis of GPT-4 responses 

The prompts generated as described above were then sent to GPT-4 using the OpenAI API to generate 

differential diagnoses. We constructed software, MALCO, to evaluate the performance of GPT-4 for the cases 

described above. For each case, the prompt was sent to GPT-4 (version gpt-4-turbo-2024-04-09) via the 

OpenAI API and the differential diagnosis as a ranked list in plain text was saved. Each item in the ranked list 

was converted to Mondo Disease Ontology terms using the Ontology Access Kit (OAK) and OntoGPT.17 For 

each item, the equivalent OMIM disease terms for the Mondo term were determined using mappings present in 

the Mondo ontology, and the item was marked as correct if Mondo term mapped to the correct OMIM identifier 

from the original phenopacket. For each case, the rank of the correct diagnosis, if present, was recorded. 

MALCO is freely available on GitHub under an open-source BSD 3-Clause License at 

https://github.com/monarch-initiative/malco. OAK is freely available on GitHub under an open-source Apache 

2 license at https://github.com/INCATools/ontology-access-kit. 

Reporting 

Reporting in this study followed Consolidated Reporting Guidelines for Prognostic and Diagnostic Machine 

Learning Modeling Studies.18 
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Figure 1. Generating prompts from structured data. A) Structured representation of a clinical case report with basic demographic 
information together with signs, symptoms and findings encoded as Human Phenotype Ontology (HPO) terms. Each case report is 
represented in JSON according to the GA4GH Phenopacket Schema (a simplified version is shown here). B) A prompt suitable for 
GPT-4 is generated from the phenopacket in A using phenopacket2prompt. 
 

Results 

We identified 23 previous publications that evaluated the performance of LLMs on differential diagnostic 

challenges using text prompts (Supplemental Table 1). The reported performance varied widely, even for 

studies using the same input data such as the NEJM Case Studies (Figure 2A). We reasoned that the variability 

could be partially due to subjective decisions made as to whether an LLM response exactly matched the correct 

diagnosis. To mitigate this potential source of bias, we developed an approach to programmatically map 

responses of GPT-4 to terms from the Mondo ontology, which provides a comprehensive and standardized 

framework used for the classification of human diseases that integrates various disease classification systems, 

and thereby provides a unified approach to disease nomenclature.19 In particular, we used Mondo to merge 

groups of diseases for the purposes of evaluation (e.g., MONDO:0015229 Bardet-Biedl syndrome represents 

subtypes 1 through 22 of Bardet-Biedl syndrome). 
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We leveraged a collection of GA4GH phenopackets with data from 5267 individuals with 336 Mendelian

chromosomal diseases, which arrange data using ontology terms and structured fields. We programmatica

generated prompts from the phenopackets using a standard template (all phenopackets and prompts are 

available as Supplemental File 1).  

We presented GPT-4 with these prompts generated from GA4GH phenopackets. We asked GPT-4 to retu

differential diagnosis as a list of disease names and recorded the rank of the correct diagnosis in these list

present. We then investigated whether GPT-4 returned the correct clinical diagnosis (e.g., Bardet-Biedl 

syndrome) rather than the original precise genetic diagnosis (e.g., BBS type 13) because no genetic inform

was used for this experiment. The mean reciprocal rank of the correct diagnosis was 0.24 (with the recipr

the MRR corresponding to a rank of 4.2), and the correct diagnosis was placed in rank 1 in 19.2% (1009/

of the cases, in the first 3 ranks in 28.6% (1503/5264), and in the first 10 ranks in 32.5% (1709/5264) (Fig

2). The API call to GPT-4 failed in three of the 5267 cases. These cases were omitted from analysis. 

 

Figure 2. Accuracy of GPT-4 in differential diagnostic challenges. (A) Summary of performance in 23 previously p
studies that reported the percentage of cases in which the correct diagnosis was placed at rank 1 by the LLM. Cohorts were
from multiple sources including published clinical vignettes (vign), New England Journal of Medicine case reports or
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(NEJM), JAMA Ophthalmology Clinical Challenges (ophth), and case reports including clinical data and radiology reports in text 
form (radiol), and one cohort of real-world data (RWD; 6 patients). Details are available in Supplemental Table 1. (B) The percentage 
of cases of the current cohort of 5267 cases in which GPT-4 returned the correct diagnosis at rank 1 (Top 1), within the top 3 ranks 
(Top 3), or within the top 10 ranks (Top 10). 
  

Discussion  

LLMs have demonstrated impressive performance on several medical tasks including knowledge retrieval, 

addressing patient questions, and summarizing key findings.1 Clinical decision support is an area of great 

potential promise, especially for rare disease medicine in which diagnostics tends to be challenging and many 

patients experience a diagnostic odyssey lasting several years before receiving a precise diagnosis. Previous 

studies that evaluate the performance of LLMs in this area have had relatively small sample sizes and have 

employed manual and subjective evaluation as to whether LLM responses exactly match the correct diagnosis. 

No published study has focused specifically on rare disease.  

We have analyzed a dataset of over 5000 structured representations of clinical cases that were transformed into 

phenopackets using the same programmatic template. The analysis was conducted using GPT-4 and results 

were evaluated programmatically by matching GPT responses to standard ontology codes for diseases. Our 

analysis thereby minimizes subjective choices and provides a realistic estimate of the expected performance of 

GPT over a broad range of rare diseases. We cannot directly compare our results to those of previous studies, 

which did not analyze cohorts of individuals with rare disease. Our result is similar to the lower range of 

previously reported studies, which may be related to the difficulties in diagnosing rare disease.20 

Limitations 

Limitations of our study include the fact that the representation of the clinical phenotypes with HPO terms in 

the phenopackets may have been incomplete or inaccurate. Additionally, the description of the clinical features 

in the publications from which the phenopackets were derived may have been incomplete. We did not undertake 

fine-tuning or prompt-tuning in this analysis; these procedures may increase performance on specific clinical 

decision-making tasks.21 Therefore, it may be possible to increase overall performance, and it is possible that 
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performance may improve with future versions of GPT or with specialized LLMs. However, the approach we 

present here is similar to that of the 23 previous studies summarized in Figure 2A and supplemental Table 1.  

Conclusions 

We have presented the largest reported study on the differential diagnostic capabilities of GPT-4, the LLM that 

is the current best in class for a variety of medical applications. Our analysis approach was designed to 

minimize variability and subjective choices in evaluation, and thereby provides a realistic estimate of the 

performance of GPT in rare-disease differential diagnostics. 
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