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Abstract 

Estimating epidemiological parameters is essential for informing an effective public health response 

during waves of infectious disease transmission. However, many parameters are challenging to 

estimate from real-world data, and rely on human challenge studies or mass community testing. 

During Winter 2023/2024, a community cohort study of SARS-CoV-2 was conducted across 

households in England and Scotland. From this survey, questionnaire data and follow-up testing 

protocols provided valuable data into multiple epidemiological parameters: namely, the duration of 

positivity, test sensitivity, and the incubation period. Here, Bayesian statistical modelling methods 

are developed and applied to estimate the underlying parameters. The duration of LFD positivity is 

found to increase with increasing age, with a mean of 8.55 days (95% CrI: 7.65 days, 9.44 days) in the 

youngest age group compared to 10.27 days (95% CrI: 9.85 days, 10.71 days) in the oldest age group. 

Similarly, test sensitivity, as a function of time since symptom onset, decays fastest in the youngest 

age group, reaching a minimum sensitivity of 0.26 (95% CrI: 0.16, 0.37) compared to 

0.54 (95% CrI: 0.46, 0.6). Such patterns are expected since younger individuals experience less 

severe symptoms of COVID-19 and are likely to clear the virus faster. Combining the duration of 

positivity and test sensitivity, we estimate the probability of returning a positive test. Close to 

symptom onset date, this probability is approximately 95%. However, this rapidly drops off, 

dropping below 5% after 11.3 days (95% CrI: 9.7 days, 13 days) for the youngest age group and 16.2 

days (95% CrI: 15.4 days, 17.1 days) for the oldest age group. For the incubation period, there is no 

clear pattern by age. Across all age groups, the mean incubation period is 2.52 days (95% CrI: 2.42 

days, 2.62 days). This is shorter than the most recent estimates for Omicron BA.5, which is in line 

with earlier research that found replacing variants had shorter incubation periods.  

Key words 

COVID-19; sensitivity; incubation period; positivity; duration  

1. Introduction 1 

SARS-CoV-2, the virus that causes COVID-19, continues to cause resurgent global epidemics. The 2 

emergence of novel variants of SARS-CoV-2 has been driven by mutation from selective pressures 3 

and within-host factors. These mutations can lead to viral phenotypic changes that impact 4 

epidemiological parameters, such as the lower risk of mortality with Omicron relative to Delta [1–5], 5 

or shorter incubation periods of replacing variants [6–8]. To inform an effective public health 6 

response, understanding how these parameters change is vital for surveillance and policy.  7 
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During the height of the pandemic, mass testing data [9] and contact tracing data [10], alongside 8 

controlled studies, such as human challenge studies [11], were a valuable source of data on many 9 

epidemiological parameters, such as the incubation period and duration of positivity. Since April 10 

2022, these surveillance efforts have been scaled down in the UK, with the Office for National 11 

Statistics (ONS) COVID-19 Infection Survey (CIS) concluding in March 2023. Similar reductions in 12 

surveillance data occurred globally, leading to uncertainty in these parameters. During Winter 23/24, 13 

the UK Health Security Agency (UKHSA) and ONS conducted a new community prevalence study to 14 

determine SARS-CoV-2 dynamics in England and Scotland. In this study, a randomly sampled cohort 15 

were tested using Lateral Flow Device (LFD) tests independently of symptom status to evaluate the 16 

trends of SARS-CoV-2 in the community [12]. However, as part of the study design, additional data 17 

were collected that provides valuable insights into multiple epidemiological parameters. 18 

In this paper, data from this survey are used to estimate the duration of LFD positivity, LFD test 19 

sensitivity, and the current incubation period (the time from becoming infected to developing 20 

symptoms) of SARS-CoV-2. The most recent estimates of these parameters are limited to the pre-21 

Alpha [13], Omicron BA.1 and BA.2 [14], and Omicron BA.5 [8,15] periods, respectively, reducing 22 

their utility in current public health policy. These parameters are essential in modelling/designing 23 

different interventions or public health messaging, as well as important parts of infectious disease 24 

surveillance tools. By providing estimates for these parameters during Winter 23/24, we gain insight 25 

into the current state of the virus.  26 

2. Data 27 

The UKHSA Winter Coronavirus Infection Survey (WCIS) builds on the success of the ONS CIS survey, 28 

and uses a subset of the same sample population. Around 150,000 individuals were invited to take 29 

part in the study, which ran from 13/11/2023 to 27/03/2024. The study design is described in the 30 

Supplementary Material. 31 

Upon recruitment to the study, participants were provided with 14 SARS-CoV-2 LFD tests and were 32 

asked to complete a test every four weeks. Participants then had a 10-day window within which to 33 

complete those tests. Upon a participant testing positive, they were asked to complete a short 34 

questionnaire and to complete a follow-up testing protocol by continuing to test every other day 35 

until two consecutive negative results are observed. This repeat testing protocol, a modification 36 

from the design of the original ONS CIS, provides key data for estimating sensitivity and the duration 37 

of positivity. 38 

A study participant is defined as an individual who returned at least one test result. There were 39 

123,243 participants, of which 6,395 returned at least one positive test result. A total of 426,667 40 

tests were performed as part of the main survey, of which 6,466 were positive. This averages 3.46 41 

tests returned per participant that returned at least one test. This analysis is restricted to 42 

participants who returned at least one positive test result. 43 

Unlike the original ONS CIS, participants were not compensated for their participation in the study. 44 

In addition, because of the re-use of the previous ONS CIS cohort, older individuals were over-45 

represented in the sample. A demographic breakdown of the overall study participants is provided in 46 

the Supplementary Table 1. An age breakdown of study participants used in each model is provided 47 

in Table 1. Data inclusion criteria for each model are described in the corresponding methods 48 

sections. 49 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310801doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310801
http://creativecommons.org/licenses/by/4.0/


3 
 

Table 1: Age breakdown of the participants included in each model. 50 

Age group 

Duration of 
Positivity 

Sensitivity 
Incubation 

period 

(N=4,567) (N=3,584) (N=1405) 

3 to 17 years 102 (2.2%) 122 (3.4%) 3 (0.2%) 

18 to 34 years 158 (3.5%) 78 (2.2%) 59 (4.2%) 

35 to 44 years 451 (9.9%) 360 (10.0%) 95 (6.8%) 

45 to 54 years 801 (17.5%) 630 (17.6%) 155 (11.0%) 

55 to 64 years 1,313 (28.7%) 1,027 (28.7%) 414 (29.5%) 

65 to 74 years 1,193 (26.1%) 933 (26.0%) 481 (34.2%) 

75 years and over 549 (12.0%) 434 (12.1%) 198 (14.1%) 

3. Methods 51 

All methods used in this paper are Bayesian methods, implemented in the Stan [16] programming 52 

language, using CmdStanR [17] interfaced through R [18]. For each model, 4 chains were run 53 

generating 1000 samples each, with a warmup period of 1000 samples. Convergence of the models 54 

was assessed using the 𝑅̂ statistic [19], with a convergence threshold of 𝑅̂ < 1.01. 55 

3.1. Duration of LFD positivity 56 

Understanding the duration an individual tests positive for is essential to understand the progression 57 

of a disease. For example, if isolation policies are based on individuals testing positive, it is important 58 

to know the duration of positivity, to determine whether this overlaps with the duration of 59 

infectiousness [20]. The duration of positivity is also vital to understand when calculating the 60 

incidence rate of new infections from a prevalence estimate.  61 

The follow-up testing protocol provides interval-censored data on when individuals are no longer 62 

testing positive. Determining when an individual would start testing positive is challenging, since it 63 

will be left-censored at the date when they return their first positive test. To handle this, we instead 64 

calculate the duration of LFD positivity as a function of time since symptom onset date, which is 65 

reported in our data for 79% of individuals with at least one positive test. The symptom onset date is 66 

interval censored on the date that participants reported developing symptoms. We note, however, 67 

that only 8 positive tests occurred prior to the self-reported symptom onset of a case. This is 68 

expected since antigen levels only start to rise very close to symptom onset date [21]. 69 

For inclusion in the duration of positivity model data, data on an individual’s first positive test were 70 

linked to data from their follow-up testing. From this, the dates of the first positive test and last 71 

positive test were calculated. Data were cleaned by removing individuals with inconsistent testing 72 

dates. Of the 6395 individuals who submitted a positive test in the main survey, 4599 had a 73 

corresponding record in the repeat testing data. 32 records were removed due to inconsistent 74 

testing dates, leaving a final sample size of 4567 individuals. For the 8 individuals with positive tests 75 

prior to symptom onset date, we treat these as asymptomatic infections.  76 

We consider two random variables, the time of symptom onset, 𝑆, and the time of last positive, 𝐿, 77 

where 𝐿 >  𝑆. We are interested in the distribution of times between these two events, which we 78 

denote by the random variable 𝜏 ∈ ℝ+. Both types of data are considered interval censored: 79 

•  𝑆 ∈ [𝑠1, 𝑠2], where 𝑠1 = "Symptom onset date" and 𝑠2 =80 

"Symptom onset date plus 24 hours" 81 

•  𝐿 ∈ [𝑙1, 𝑙2], where 𝑙1 = "Last positive test date" and 𝑙2 =82 

"First negative test date plus 24 hours".  83 
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The 24 hours are added to each event since we only know the date and not the time of each event, 84 

so it could happen any time within that 24-hour window. Note that for 𝑙2, we only consider negative 85 

tests that occur after the last positive date, assuming that any earlier negatives are false negatives.  86 

If the individual did not return any negative tests during their follow up testing, then 𝑙2 = ∞, i.e., the 87 

data are right-censored. If the individual does not have a symptom onset date, we treat the data as 88 

left-censored by the date of the first positive test, i.e., 𝑠1 = −∞ and 𝑠2 =89 

"First positive test date plus 24 hours". Based on these different censoring scenarios, there are 90 

four possible combinations that a data point can experience: (i) double-interval censoring, where the 91 

end points of each censoring interval are known; (ii) right-censoring, where the first event is interval 92 

censored and the second event is right-censored; (iii) left-censoring, where the first event is left-93 

censored and the second event is interval censored; and (iv) left and right censoring, where the first 94 

event is left-censored and the second event is right censored. In each of these scenarios, we have a 95 

slightly different likelihood function. By considering distinct likelihood functions we make the model 96 

computationally feasible. 97 

(i) Doubly-interval censored data 98 

To model the duration of positivity, we wish to evaluate the following likelihood function 99 

ℙ(𝑙1 < 𝐿 < 𝑙2 ∩ 𝑠1 < 𝑆 < 𝑠2) = ∫ ∫ 𝑓𝐿,𝑆(𝐿 = 𝑙, 𝑆 = 𝑠)d𝑙d𝑠
𝑙2

𝑙1

𝑠2

𝑠1

 100 

= ∫ ∫ 𝑓𝐿,𝑆(𝐿 = 𝑙∗| 𝑆 = 𝑠∗)𝑓𝑆(𝑆 = 𝑠)d𝑙d𝑠
𝑙2

𝑙1

𝑠2

𝑠1

 101 

=  ∫ ∫ 𝑓𝑃(𝑙 − 𝑠)𝑓𝑆(𝑆 = 𝑠)d𝑙d𝑠,
𝑙2

𝑙1

𝑠2

𝑠1

(1) 102 

where 𝑓𝑃 is the probability density function of the duration of positivity distribution. Implementing 103 

the likelihood in this form requires numerically evaluating a double integral, which is 104 

computationally expensive. Instead, we opt to use a latent variable approach [22–24], where we 105 

assume uniform prior distributions across the interval censored windows, i.e., 𝑓𝐿(𝐿 = 𝑙) =
1

𝑙2−𝑙1
 and 106 

𝑓𝑆(𝑆 = 𝑠) =
1

𝑠2−𝑠1
, and sample the values of 𝑆 and 𝐿 from within their intervals by implementing: 107 

𝑙∗~Uniform(𝑙1, 𝑙2), 108 

𝑠∗~Uniform(𝑠1, 𝑠2), 109 

Likelihood = 𝑓𝑃(𝑙∗ − 𝑠∗). 110 

Here, since 𝑙∗ follows a uniform distribution, adding the probability density function of 𝑙∗ to the 111 

integrand in Equation (1) (which is implicitly done by the latent variable method) will not affect the 112 

results since it only adds a constant to the integrand.  113 

(ii) Right-censored data 114 

If our data are right-censored, the likelihood function is  115 

ℙ(𝑙1 < 𝐿 < ∞ ∩ 𝑠1 < 𝑆 < 𝑠2) = ∫ ∫ 𝑓𝑃(𝑙 − 𝑠)𝑓𝑆(𝑆 = 𝑠)d𝑙d𝑠
∞

𝑙1

𝑠2

𝑠1

116 

= ∫ 𝑓𝑆(𝑆 = 𝑠)(1 − 𝐹𝑃(𝑙1 − 𝑠))
𝑠2

𝑠1

d𝑠. 117 
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We again use a latent variable approach, but only a single latent variable is needed: 118 

𝑠∗~Uniform(𝑠1, 𝑠2), 119 

Likelihood = 1 − 𝐹𝑃(𝑙1 − 𝑠∗). 120 

(iii) Left-censored data 121 

Following similar logic to the right-censored model, if our data are left-censored, the likelihood 122 

function is  123 

ℙ(𝑙1 < 𝐿 < 𝑙2 ∩ −∞ < 𝑆 < 𝑠2) = ∫ ∫ 𝑓𝑃(𝑙 − 𝑠)𝑓𝑆(𝑆 = 𝑠)d𝑙d𝑠
𝑙2

𝑙1

𝑠2

−∞

∝ ∫ 1 − 𝐹𝑃(𝑙 − 𝑠2)
𝑙2

𝑙1

d𝑙, 124 

where an improper flat prior is implicitly used to model 𝑓𝑆(𝑆 = 𝑠) = 𝑐 ∀𝑠 ∈ [−∞, 𝑠2]. Using latent 125 

variables, we model this as  126 

𝑙∗~Uniform(𝑙1, 𝑙2), 127 

Likelihood = 1 − 𝐹𝑃(𝑙∗ − 𝑠2). 128 

(iv) Left and right censored data 129 

If the data are both left and right censored, we have 130 

ℙ(𝑙1 < 𝐿 < ∞ ∩ −∞ < 𝑆 < 𝑠2) = ∫ ∫ 𝑓𝑃(𝑙 − 𝑠)𝑓𝑆(𝑆 = 𝑠)d𝑙d𝑠
∞

𝑙1

𝑠2

−∞

∝ ∫ 1 − 𝐹𝑃(𝑙 − 𝑠2)
∞

𝑙1

d𝑙, 131 

where an improper flat prior is implicitly used to model 𝑓𝑆(𝑆 = 𝑠) = 𝑐 ∀𝑠 ∈ [−∞, 𝑠2]. To solve this 132 

exactly would require numerically evaluating the integral or a latent variable approach with a 133 

uniform latent variable bounded between 𝑙1 to ∞. To avoid any issues with using such an improper 134 

prior, we can instead rewrite the model in terms of a single random variable 135 

∫ ∫ 𝑓𝑃(𝑙 − 𝑠)d𝑙d𝑠
∞

𝑙1

𝑠2

−∞

= ∫ 𝑔(𝑡)𝑓𝑃(𝑡)d𝑡
∞

𝑙1−𝑠2

, 136 

where 𝑔(𝑙 − 𝑠) is the probability density function of the random variable 𝐿 − 𝑆. We can 137 

approximate this by assuming 𝑔(⋅) follows a uniform distribution, which gives 138 

ℙ(𝑙1 < 𝐿 < ∞ ∩ −∞ < 𝑆 < 𝑠2) ≈ ∫ 𝑓𝑃(𝑡)d𝑡.
∞

𝑙1−𝑠2

 139 

Therefore, the likelihood is given by  140 

Likelihood = 1 − 𝐹𝑃(𝑙1 − 𝑠2). 141 

Under the assumptions of uniform prior distributions for 𝑓𝐿(𝐿 = 𝑙) and 𝑓𝑆(𝑆 = 𝑠), the random 142 

variable 𝐿 − 𝑆 follows a trapezoidal distribution [22,23]. Here, we approximate a trapezoidal 143 

distribution spanning from (𝑙1 − 𝑠2, ∞) which with an improper uniform prior spanning (𝑙1 − 𝑠2, ∞). 144 

This introduces some bias into the estimated variance [22], but has reduced computational cost and 145 

improved numerical stability relative to the latent variable approach. 146 

Our model now consists of a loglikelihood that is significantly easier to evaluate, however there are 147 

many latent variables present in the model. As a result, while it is now possible to fit the model in a 148 

reasonable timeframe it cannot be considered fast. Many of these observations in the loglikelihood 149 

will have identical values of 𝑠1, 𝑠2, 𝑙1, 𝑙2. We now take advantage of this fact to develop an 150 
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approximate model that vastly reduces the number of latent variables, and consequently provides a 151 

significant improvement to the model fitting speed. 152 

In our loglikelihood we have terms of the form 153 

𝐿 = ⋯ +  ∑ log(𝑓𝑃(𝑙𝑖
∗ − 𝑠𝑖

∗))

𝑖∈𝐺

+  ∑ log(𝑓𝐿(𝑙𝑖
∗))

𝑖∈𝐺

+  ∑ log(𝑓𝑆(𝑠𝑖
∗))

𝑖∈𝐺

+ ⋯ 154 

where 𝐺 is a group of observations with identical values of 𝑠1, 𝑠2, 𝑙1, 𝑙2. 155 

As an approximation, we will introduce random variables 𝑆𝐺
̅̅ ̅ and 𝐿𝐺

̅̅ ̅, representing the means of the 156 

latent variables 𝑠𝑖
∗ and 𝑙𝑖

∗ in group 𝐺. We will then approximate the loglikelihood as 157 

𝐿 ≈ ⋯ + ∑ log (𝑓𝑃(𝑙𝐺̅ − 𝑠𝐺̅̅ ̅))

𝑖∈𝐺

+ ∑ log (𝑓𝐿𝐺̅̅̅̅ (𝑙𝐺̅))

𝑖∈𝐺

+ ∑ log (𝑓𝑆𝐺̅̅ ̅̅ (𝑠𝐺̅̅ ̅))

𝑖∈𝐺

+ ⋯ 158 

= ⋯ +  𝑛 log (𝑓𝑃(𝑙𝐺̅ − 𝑠𝐺̅̅ ̅)) +  𝑛 log (𝑓𝐿𝐺̅̅̅̅ (𝑙𝐺̅)) +  𝑛 log (𝑓𝑆𝐺̅̅ ̅̅ (𝑠𝐺̅̅ ̅)) + ⋯ (2)   159 

where 𝑛 is the number of observations in group 𝐺. Since the latent variables 𝑠𝑖
∗ and 𝑙𝑖

∗ have standard 160 

uniform prior distributions, the sample mean of our latent variables, 𝐿𝐺
̅̅ ̅ and 𝑆𝐺

̅̅ ̅, are given by 161 

Bates(𝑛) distributions. Since the computational complexity of the Bates likelihood function 162 

increases with 𝑛, to improve numerical efficiency we will approximate the Bates(𝑛) distributions 163 

using Beta distributions. For the Bates(𝑛), we have 164 

𝔼[𝑆𝐺
̅̅ ̅] =

1

2
 165 

𝕍ar[SG
̅̅ ̅] =

1

12𝑛
. 166 

To approximate this, we construct a Beta distribution with the same mean and variance. For the 167 

Beta distribution, we have 168 

𝔼[𝑆𝐺
̅̅ ̅] =

𝛼

𝛼 + 𝛽
, 169 

𝕍ar[SG
̅̅ ̅] =

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. 170 

Equating the means gives 171 

𝛼

𝛼 + 𝛽
=

1

2
 ⇒ 𝛼 = 𝛽. 172 

Equating the variances gives 173 

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
=

1

12𝑛
⟹

(2𝛼)2(2𝛼 + 1)

𝛼2
= 12𝑛 ⟹ 8𝛼 + 4 = 12𝑛. 174 

Therefore, we need 𝛼 = 𝛽 =
3𝑛−1

2
. An alternative approximation would be to use a normal 175 

distribution, which is accurate for large 𝑛 due to the central limit theorem. For 𝑛 between 1 and 12, 176 

we compare the Beta and Normal approximation in Supplementary Figure 1. In general, both 177 

approximations perform well, but the Beta distribution works better for small values of 𝑛, in 178 

particular 𝑛 = 1 where it exactly yields the Uniform(0,1) distribution, as desired. Therefore, we opt 179 

to use the Beta approximation throughout. In our preliminary analysis, using the grouped 180 

approximation (Equation (2)) was found to lead to indistinguishable results with a substantial 181 

reduction in computational time.  182 
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Regardless of the censoring scenarios, the likelihood of the model depends on the distribution of the 183 

positivity duration, either through the probability density function 𝑓𝑃(⋅) or cumulative distribution 184 

function 𝐹𝑃(⋅). The duration of positivity is assumed to follow a right-skewed distribution with a non-185 

zero mode, since positivity cannot end instantaneously. Since viral load distributions vary with age 186 

[25–27], we assume this distribution can vary with age group. To model this distribution, we assume 187 

a lognormal distribution, parameterised by the log-mean, 𝜃1,𝑖, and log-standard-deviation, 𝜃2,𝑖, 188 

parameters, which represent the mean and standard deviation of the logarithm of the distribution, 189 

for age group 𝑖. The log-mean parameter is assumed to vary with age, following a hierarchical 190 

structure, and we assume the log-standard-deviation parameter is fixed for all age groups, i.e. 𝜃2,𝑖 =191 

𝜃2 for all 𝑖. We model the parameters and latent variables using the following priors,  192 

𝜃1,𝑖 = 𝜃1 + β𝑖σ1, 193 

𝜃1~𝑁(0.5,2.52), 194 

𝜃2~InverseGamma(10,2), 195 

𝛽𝑖~𝑁(0,1), 196 

σ1~Exp(5), 197 

𝑙𝐺̅~Beta (
3𝑛𝐺 − 1

2
,
3𝑛𝐺 − 1

2
), 198 

𝑠𝐺̅̅ ̅~Beta (
3𝑛𝐺 − 1

2
,
3𝑛𝐺 − 1

2
). 199 

 200 

This hierarchical structure assumes that the log-mean parameter for each age group is centred 201 

around an average value, with perturbations specific to each age group. These perturbations are 202 

assumed to follow a normal distribution with mean of zero and variance of one. The sigma 203 

parameter controls the magnitude of the perturbations, i.e. larger values of σ1 allow individual age 204 

groups to have larger deviations from the population average. Therefore, where an individual age 205 

group has sparse data, the model will revert to the average value, and sufficient data is needed to 206 

justify large deviations from the average value. These age effects are additive on the log-mean 207 

parameter, which is roughly equivalent to a multiplicative effect on the linear scale (the effect is 208 

multiplicative on the median of the modelled distribution). For example, the influence of age on the 209 

median, relative to the population average, is a proportional change to the median duration of 210 

positivity. For the latent variable priors (𝑙𝐺̅ and 𝑠𝐺̅̅ ̅), 𝑛𝐺  is the number of observations in group 𝐺. 211 

3.2. LFD test sensitivity 212 

LFD tests are a powerful diagnostic tool due to a very short delay from testing to results. However, 213 

this comes at a compromise of reduced sensitivity to small viral loads relative to the gold-standard 214 

PCR tests. Therefore, when using LFD test results to monitor the epidemic, it is essential to quantify 215 

the corresponding test sensitivity.  216 

Test sensitivity is typically given/interpreted as the probability of obtaining a positive test result, 217 

given that the tested individual is “currently infected”. There is, however, some ambiguity in how 218 

“currently infected” is defined. In an ideal world, we might define “currently infected” to be 219 

individuals who have not yet achieved viral clearance or who have a non-zero probability of 220 

transmission, though in practice it is impossible to determine whether individuals are in either of 221 

those states. Instead, surrogate definitions of “currently infected” are used. Most commonly, PCR 222 
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positivity is used as a surrogate for “currently infected”, where an individual is defined as “currently 223 

infected” if there is a non-zero probability of returning a positive PCR result that is not a false 224 

positive [14,28]. We note that this definition may not correspond to viral clearance, since PCR tests 225 

can detect inactive viral fragments a significant length of time after the infection was cleared, nor 226 

does it necessarily correspond to actively infectious cases for the same reason. 227 

Since no PCR tests were used in this study, it is impossible to estimate the probability of obtaining a 228 

positive LFD result given that an individual is PCR positive. Instead, our definition of “currently 229 

infected” must be individuals who have a non-zero probability of returning a positive LFD test result 230 

that is not a false positive. In other words, our definition of test positivity is the probability of 231 

obtaining an LFD positive result, given that an individual’s infection could be detected by an LFD test. 232 

As a result, if LFD sample positivity is adjusted to obtain the prevalence, the prevalence is defined as 233 

“the prevalence of LFD positive individuals”. We consider sensitivity as a function of time since 234 

symptom onset, as a proxy for time since infection. Therefore, this sensitivity tells us the probability 235 

of correctly returning a positive test for someone who is still testing positive a specific number of 236 

days after symptom onset. The period of the highest infectiousness is in the few days after symptom 237 

onset [21], which also corresponds to the period of high LFD test sensitivity, suggesting our 238 

definition of “currently infected” will capture the highly infectious individuals. We only consider 239 

sensitivity after symptom onset, since we are treating this as the time of earliest positivity.  240 

For inclusion in the test sensitivity model, we filter the repeat testing follow-up to individuals who 241 

submitted an initial positive test in the main survey. For each individual, we observe a sequence of 242 

test results starting with a positive, e.g. “positive, positive, negative, positive, negative, negative” 243 

(Figure 1). The first test in this sequence will always be a positive result, as the individual would not 244 

be included in the repeat testing data had they not tested positive in the main survey. Therefore, we 245 

remove the first positive repeat testing result as it is not a random variable. It is assumed that once 246 

an individual begins to return consecutive negative tests they are no longer in the positive state, i.e. 247 

if the 6th and 7th tests are both negative, then the individual is no longer considered to be positive as 248 

of the 6th test. Each testing sequence necessarily ends with a “positive, negative, negative” 249 

subsequence, which implies the test prior to the first observation of two consecutive negatives must 250 

be a positive test. Therefore, we also remove the last positive test as it is, by definition, a positive 251 

test result and cannot be treated as a random variable. Since we are interested in sensitivity 252 

conditional on still testing positive, all tests after the last positive test are also removed.  253 

 254 

 255 
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Figure 1: Schematic representation of the structure of the repeat testing data and model 256 

This reduces the number of follow-up tests to 6758 tests. Individuals with unknown symptom onset 257 

date are removed, and individuals with negative time from symptom onset to test or symptom onset 258 

date 25 days or longer before testing date are also removed. This further reduces the number of 259 

positive tests to 6586, which forms our sample for the test sensitivity model. These tests were 260 

submitted by 3584 unique participants.  261 

For each test included, we consider this data point as a pair of observations: the number of days 262 

from symptom onset, 𝑑 ∈ ℤ+, drawn from a random variable 𝐷, and whether the test result, drawn 263 

from a random variable 𝑟, is positive (𝑟 = 1) or negative (𝑟 = 0). Since these data points are all 264 

conditional on the individual remaining in a positive state (𝑝 = 1), by aggregating the data by values 265 

of 𝐷, we can calculate the test sensitivity as a function of the time from symptom onset. Plotting the 266 

observed data (Supplementary Figure 2), we observe a sigmoidal shape to the data, with peak 267 

sensitivity at 𝐷 = 0 and a plateau towards the end of the time period. This plateau occurs because 268 

we are conditional on individuals still testing positive, and restricting to a maximum of 24 days post 269 

symptom onset. If we increased the length of time since symptom onset, it is possible that a further 270 

decay in sensitivity would be observed. However, the probability of individuals still testing positive 271 

25 days or longer after symptom onset is very low, which would lead to very few data points to 272 

inform the model. To capture the observed sigmoidal behaviour, we use a generalised logistic 273 

function 274 

ℙ(𝑟 = 1|𝑝 = 1, 𝐷 = 𝑑) =  𝐿 +
𝑈 − 𝐿

1 + 𝑒−(𝑠−𝑔𝑑)
, 275 

where 𝐿 ∈ [0,1], 𝑈 ∈ [0,1], 𝑠 ∈ ℝ, and 𝑔 ∈ ℝ+ are all parameters to be estimated. 𝐿 and 𝑈 276 

represent the lower and upper bounds on the sensitivity, respectively. 𝑠 is a parameter which shifts 277 

the curve, representing how soon sensitivity starts to decay. 𝑔 is a rate parameter, which controls 278 

how quickly the sensitivity decays from the upper bound to the lower bound.  279 

To fit the model, we aggregate the data such that for each value of 𝐷, we have the number of tests 280 

performed, 𝑁tests(𝑑) ∈ ℤ+, and the number of positive tests that occurred, 𝑁pos(𝑑) ∈ ℤ[0,𝑁tests(𝑑)], 𝑑 281 

days after symptom onset, in a population of cases that were still positive 𝑑 days after symptom 282 

onset. We then assume that the observed number of positive tests is sampled from a binomial 283 

distribution with number of trials equal to total numbers of tests, and probability of success equal to 284 

ℙ(𝑟 = 1|𝑝 = 1, 𝐷 = 𝑑), i.e.  285 

𝑁𝑝𝑜𝑠(𝑑)~ Binomial(𝑁𝑡𝑒𝑠𝑡𝑠(𝑑), ℙ(𝑟 = 1|𝑝 = 1, 𝐷 = 𝑑)). 286 

Test sensitivity will depend on the viral load of an individual at the time of their test. Since viral load 287 

trajectories will vary by age [25–27], test sensitivity is likely to vary with age [1]. To model this, we 288 

allow 𝐿 and 𝑔 to vary by age, and assume 𝑈 and 𝑠 are the same across all age groups, i.e.  289 

𝐿𝑖~Beta(𝜇𝐿𝜌𝐿, (1 − 𝜇𝐿)𝜌𝐿), 290 

𝜇𝐿~Beta(4,6), 291 

𝜌𝐿~Exp(1). 292 

𝑈~Beta(15,1), 293 

𝑔𝑖 =
1

 𝜇𝑔 + β𝑔,𝑖σ𝑔
, 294 
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𝛽𝑔,𝑖~𝑁(0,1), 295 

σ𝑔~Exp(1), 296 

μ𝑔~𝑁(1.5,1), 297 

𝑠~𝑁(4,3). 298 

A version of the model allowing all 4 parameters to vary by age was developed, but the 𝑈 and 𝑠 299 

parameters did not converge. The hierarchical structure for the rate parameter, 𝑔𝑖, acts on the 300 

inverse as this aided convergence. This assumes that the inverse of the rate is affected by additive 301 

perturbations due to the different age groups, where 𝜇𝑔 is the population average inverse rate 302 

parameter and β𝑔,𝑖 are age group specific perturbations with magnitude controlled by σ𝑔, which 303 

leads to non-linear perturbations on the scale of the rate. The hierarchical structure for the lower 304 

bound, 𝐿𝑖, assumes that the lower bound for each age group is sampled from a Beta distribution 305 

with mean 𝜇𝐿, and the 𝜌𝐿 parameter controls the variance of this Beta distribution. This ensures all 306 

lower bounds are bounded within the interval (0,1), and allows different age groups to have 307 

different lower bounds, but they are pulled towards the mean in the absence of data suggesting 308 

otherwise.  309 

3.3. Probability of testing positive over time 310 

Instead of considering test sensitivity, which is conditional on the individual being in the infected 311 

state, we may wish to calculate the probability that an individual returns a positive test result a 312 

certain number of days after their infection began. This differs from the test sensitivity definition, 313 

since this includes the probability that a negative test is returned because the individual has cleared 314 

the infection. This also differs from the duration of positivity, since that tells us the probability of 315 

whether an individual is still actively infected a certain number of days after infection began, rather 316 

than the probability that a single test will return a positive result. The probability of returning a 317 

positive a certain number of days after an infection is important, since it provides the relationship 318 

between epidemic incidence and sample positivity which then informs modelling of the epidemic 319 

trajectory. 320 

As with the sensitivity and duration of positivity models, we will consider this as a function of time 321 

since symptom onset, rather than time since infection. Therefore, this tells us the probability that a 322 

test taken a certain number of days after the symptom onset date will return a true positive test 323 

result, using LFD test positivity as a proxy for infection. Previous studies [13,29–33] have shown that 324 

peak LFD sensitivity, which occurs around symptom onset, is comparable to peak PCR sensitivity, 325 

which is considered the gold standard at detecting infection. Therefore, this will accurately describe 326 

the probability of detecting an infection using LFD tests.  327 

To calculate the probability of testing positive over time, we will use our results on test sensitivity 328 

and duration of positivity. Letting 𝑆(𝑑) denote the probability of testing positive 𝑑 days after 329 

symptom onset, we have 330 

𝑆(𝑑) = ℙ(𝑟 = 1|𝐷 = 𝑑) = ℙ(𝑟 = 1 ∩ 𝑝 = 1|𝐷 = 𝑑), 331 

since an individual can only return a true positive test (𝑟 = 1) if it is still possible for them to test 332 

positive (𝑝 = 1). From this, we have 333 

𝑆(𝑑) = ℙ(𝑟 = 1 ∩ 𝑝 = 1|𝐷 = 𝑑) =
ℙ(𝑟 = 1 ∩ 𝑝 = 1 ∩ 𝐷 = 𝑑)

ℙ(𝐷 = 𝑑)
 334 
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=
ℙ(𝑟 = 1 ∩ 𝑝 = 1 ∩ 𝐷 = 𝑑)

ℙ(𝑝 = 1 ∩ 𝐷 = 𝑑)

ℙ(𝑝 = 1 ∩ 𝐷 = 𝑑)

ℙ(𝐷 = 𝑑)
  335 

= ℙ(𝑟 = 1|𝑝 = 1 ∩ 𝐷 = 𝑑)ℙ(𝑝 = 1|𝐷 = 𝑑) 336 

= ℙ(𝑟 = 1|𝑝 = 1, 𝐷 = 𝑑)(1 − 𝐹𝑃(𝑑)), 337 

where ℙ(𝑟 = 1|𝑝 = 1, 𝐷 = 𝑑) is the test sensitivity 𝑑 days after symptom onset and 1 − 𝐹𝑃(𝑑) is 338 

the complimentary cumulative distribution function of the duration of positivity.  339 

3.4. Incubation period 340 

The incubation period describes the time between an individual becoming infected and developing 341 

symptoms. Information on time of infection is challenging to obtain. Commonly, contact tracing data 342 

has been used, where the date of contact between a primary and secondary case can be used as a 343 

date of exposure [34], however contact tracing for SARS-CoV-2 is no longer performed in the UK. In 344 

the absence of contact tracing data other approaches must be taken. For example, at the beginning 345 

of the COVID-19 pandemic, time spent in Wuhan could be used to provide an approximate exposure 346 

window [35–37]. In this study, we investigate the potential of asking individuals to identify their 347 

exposure date. For some individuals this may be relatively easy, for example if they have contact 348 

with a highly symptomatic individual or have infrequent contacts. For individuals with frequent 349 

potential infectious contacts, the data quality is likely to be lower. To improve the reliability of the 350 

reported exposure dates, we limit this analysis to individuals in either 1 or 2 person households. This 351 

restriction is made since in larger households it can be challenging to identify the index case, leading 352 

to incorrectly identified exposure dates. The secondary event, symptom onset date, is easy to 353 

measure, and we ask individuals to report when they first developed symptoms.  354 

For inclusion in the data for the incubation period model, we first select individuals with an 355 

estimated exposure date, which reduced the sample size to 3949. We then filtered the data to 356 

individuals in households of size 1 or 2, reducing the sample size to 2767. Individuals with symptom 357 

onset date on the 15th of any month were removed, since this was the default value if the question 358 

was not answered, reducing the sample size to 2089. Finally, individuals with inconsistent dates 359 

were removed, resulting in a final sample of 1405 individuals.  360 

The incubation period describes the time between two epidemiological events, so we are interested 361 

in estimating the distribution of the possible time delays, since not all individuals will have the same 362 

value. In our data, the two events are time of exposure and time of symptom onset. Since not all 363 

infected individuals in the study will go on to develop symptoms, we only include an individual in our 364 

sample if they have developed symptoms. This introduces right truncation, whereby individuals with 365 

an exposure date within the study period but symptom onset date in the future were removed from 366 

our sample. This causes the observed time delay distribution to be biased towards shorter time 367 

delays. In this study, we are at the end of an epidemic wave, so the impact of the right-truncation 368 

will be minimal. In addition to the right truncation, our data are interval censored, since we only 369 

have an interval during which each event occurred, rather than the precise time. For both events, 370 

this interval censoring corresponded to a 24-hour window representing the day on which the event 371 

occurred. To correct for the interval censoring and right truncation, we use the Interval-censoring 372 

and right-truncation corrected approach (ICRTC) from [38]. Other potential approaches are 373 

described in [23], where this approach has been found to be the most accurate. 374 

We consider two random variables, the time of exposure, 𝐸, and time of symptom onset, 𝑆, such 375 

that 𝐸 < 𝑆. Our data takes the form of two intervals: the exposure window, 𝐸 ∈ [𝑒1, 𝑒2]; and the 376 

symptom onset window, 𝑆 ∈ [𝑠1, 𝑠2], which each have a length of one day. The incubation period 377 

can be a described by a random variable 𝑋 which we assume follows a positive-valued right-skewed 378 
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distribution. We consider gamma, Weibull, and lognormal distributions, and assess goodness of fit 379 

through Pareto Smoothed Importance Sampling Leave-One-Out (PSIS-LOO) cross validation [39]. For 380 

each of these distributions, 𝑋 is parameterised by two parameters, which we denote 𝜃1 and 𝜃2. To 381 

estimate these parameters, we consider the following interval-censoring and right-truncation 382 

corrected likelihood function 383 

𝑒∗~Uniform(𝑒1, 𝑒2), 384 

𝑠∗~Uniform(𝑠1, 𝑠2), 385 

𝐿 =
𝑓𝑋(𝑠∗ − 𝑒∗)

𝐹𝑋(𝑇 − 𝑒∗)
 , 386 

where 𝑓𝑋 and 𝐹𝑋 are the probability density function and cumulative distribution function, 387 

respectively, of the incubation period.  388 

In addition to the right-truncation and interval-censoring corrections, in the data there is a second 389 

mode at zero, suggesting many respondents may have accidentally entered their symptom onset 390 

date as their exposure date. Therefore, we remove such individuals from the study. To account for 391 

this in the model, we additionally condition on the incubation period being larger than 1 day, which 392 

changes the likelihood function to  393 

𝑒∗~Uniform(𝑒1, 𝑒2), 394 

𝑠∗~Uniform(𝑠1, 𝑠2), 395 

𝐿 =
𝑓𝑋(𝑠∗ − 𝑒∗)

𝐹𝑋(𝑇 − 𝑒∗) − 𝐹𝑋(1)
 . 396 

For each distribution, we parameterise the model such that 𝜃1 represents the log of the mean. 𝜃2 397 

then represents the log of the standard deviation for the gamma and lognormal distributions, and 398 

the log of the shape parameter for the Weibull distribution.  399 

Incubation periods potentially vary by age since the severity of symptoms is highly sensitive to age. 400 

To capture this, we consider a hierarchical version of the model, whereby 𝜃1 and 𝜃2 are age-specific 401 

parameters. We model this as 402 

log (𝜃1,𝑖) = log(𝜃1) + 𝛽𝑖𝜎1, 403 

log (𝜃2,𝑖) = log(𝜃2) + 𝛼𝑖𝜎2, 404 

log(𝜃1) ~𝒩(1,2), 405 

log(𝜃2) ~𝒩(1.6,1), 406 

𝛽𝑖~𝒩(0,1), 407 

𝛼𝑖~𝒩(0,1), 408 

σ1~Exp(1), 409 

σ2~Exp(1). 410 

This assumes a similar hierarchical structure to the other models. The hierarchical assumptions are 411 

made on the logarithmic scale for the 𝜃1 (mean) and 𝜃2 parameters, which means that the influence 412 

of age is multiplicative on the scale of the model parameters. For example, the influence of age on 413 
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the mean, relative to the population average, is a proportional change to the mean incubation 414 

period. 415 

4. Results 416 

4.1. Duration of positivity 417 

For all age groups, the duration of positivity has very low early density (Figure 2) because very few 418 

individuals are expected to stop testing positive in fewer than 2 days. This is consistent with the raw 419 

data, where only 0.7% of doubly-interval censored data points had lower bounds on the duration of 420 

positivity less than 2 days. Looking across age groups, there was significant variation in the duration 421 

of positivity, though with high uncertainty in the youngest age groups (Figure 2, Table 2). The 422 

youngest age group, 3 to 17 years, has the shortest mean duration of positivity, estimated at 8.55 423 

days (95% Credible Interval (CrI): 7.65 days, 9.44 days), and as age increases there is an increasing 424 

trend in the mean (with high uncertainty in some age groups), with the maximum mean duration of 425 

positivity in the oldest age group, 75 years and over, with an estimate of 10.27 days (95% CrI: 9.85 426 

days, 10.71 days). In addition to the mean increasing with age, the upper percentiles of the duration 427 

of positivity also increases (Figure 3). For the 3 to 17 years age group, after 15.25 days (95% CrI: 428 

13.63 days, 16.89 days), 95% of cases are no longer LFD positive. For the 75 years and over age 429 

group, this increases to 18.31 days (95% CrI: 17.51 days, 19.19 days). 430 

No data are shown for goodness of fit comparisons due to the censored nature of the data, with 431 

each data point representing an interval of potential observations rather than a single observation, 432 

so empirical PDFs/CDFs cannot be calculated.  433 

 434 

Figure 2: Probability density function of the duration of positivity. The black line shows the median of the posterior 435 
distribution, and the grey shaded region is the 95% credible interval.  436 
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 437 

Figure 3: Probability that a case is still testing LFD positive. The black line shows the median of the posterior distribution, 438 
and the grey shaded region is the 95% credible interval. 439 

Table 2: Mean, median, and 95th percentile of the duration of positivity distribution. The given estimates are medians of the 440 
posterior distribution, and the numbers in brackets are 95% credible intervals.  441 

Age Group Mean duration of positivity 
(days) 

Median duration of 
positivity 
(days) 

Duration of positivity 95th 
percentile (days) 

3 to 17 years 8.55 (95% CrI: 7.65, 9.44) 7.89 (95% CrI: 7.07, 8.71) 15.25 (95% CrI: 13.63, 16.89) 

18 to 34 years 8.82 (95% CrI: 8.16, 9.45) 8.14 (95% CrI: 7.54, 8.73) 15.74 (95% CrI: 14.53, 16.92) 

35 to 44 years 9.24 (95% CrI: 8.82, 9.68) 8.52 (95% CrI: 8.14, 8.93) 16.47 (95% CrI: 15.67, 17.32) 

45 to 54 years 8.93 (95% CrI: 8.60, 9.25) 8.24 (95% CrI: 7.94, 8.53) 15.92 (95% CrI: 15.29, 16.58) 

55 to 64 years 9.43 (95% CrI: 9.18, 9.69) 8.7 (95% CrI: 8.48, 8.94) 16.81 (95% CrI: 16.28, 17.40) 

65 to 74 years 9.66 (95% CrI: 9.40, 9.94) 8.92 (95% CrI: 8.68, 9.17) 17.24 (95% CrI: 16.68, 17.83) 

75 years and over 10.27 (95% CrI: 9.85, 10.71) 9.47 (95% CrI: 9.09, 9.88) 18.31 (95% CrI: 17.51, 19.19) 

 442 

4.2. Sensitivity  443 

Sensitivity is found to vary substantially with age (Figure 4, Table 3), with the minimum sensitivity 444 

increasing with increasing age. In the youngest age group, the minimum sensitivity is very low, 445 

plateauing at 0.26 (95% CrI: 0.16, 0.37). In the oldest age group, this increases to 0.54 (95% CrI: 0.46, 446 

0.60). Peak sensitivity was assumed to be equal across all age groups, with a peak of 0.95 (95% CrI: 447 

0.92, 0.98) at time of symptom onset. The rate at which sensitivity decays varied across age groups, 448 

with a pattern of decreasing decay rate with age. That is, not only does the youngest age group have 449 

the lowest lower bound, but it also reaches the minimum sensitivity the fastest.  450 
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 451 

Figure 4: Test sensitivity given a case is still testing positive. The black line shows the median of the posterior distribution, 452 
and the grey shaded region is the 95% credible interval. The blue points are the raw data, and the blue shaded region 453 
indicates beta distributed 95% confidence intervals around the raw data. 454 

Table 3: Estimated parameters of the sensitivity model. The given estimates are medians of the posterior distribution, and 455 
the numbers in brackets are 95% credible intervals. 456 

Age Group Decay Rate  Lower bound Upper bound Shift 

3 to 17 years 1.05 (95% CrI: 0.79, 1.44) 0.26 (95% CrI: 0.16, 0.37) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

18 to 34 years 0.82 (95% CrI: 0.60, 1.12) 0.42 (95% CrI: 0.30, 0.53) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

35 to 44 years 0.73 (95% CrI: 0.57, 0.94) 0.40 (95% CrI: 0.33, 0.47) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

45 to 54 years 0.74 (95% CrI: 0.58, 0.96) 0.34 (95% CrI: 0.27, 0.40) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

55 to 64 years 0.78 (95% CrI: 0.61, 1.00) 0.45 (95% CrI: 0.40, 0.49) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

65 to 74 years 0.82 (95% CrI: 0.64, 1.04) 0.51 (95% CrI: 0.46, 0.55) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

75 years and over 0.67 (95% CrI: 0.52, 0.87) 0.54 (95% CrI: 0.46, 0.60) 0.95 (95% CrI: 0.92, 0.98) 4.46 (95% CrI: 3.51, 5.66) 

 457 

4.3. Probability of testing positive 458 

In the probability of testing positive, we observe a large increasing effect of age (Figure 5), since this 459 

combines the age signals observed in both the test sensitivity and duration of positivity parameters. 460 

The probability of testing positive rapidly drops off, as time from symptom onset increases, in the 461 

youngest age groups, with a considerably slower decline for the oldest age group. 462 

At zero days from symptom onset, all age groups had 95% (95% CrI: 92%, 98%) probability of testing 463 

positive (Table 4). For the youngest age group, by 4.8 days (95% CrI: 4.0 days, 5.4 days) from 464 

symptom onset, this drops to 50% probability of testing positive, dropping below 5% probability 465 

after 11.3 days (95% CrI: 9.7 days, 13.0 days). For the oldest age group, these thresholds are 466 
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increased to 7.6 days (95% CrI: 7.3 days, 8.0 days) and 16.2 days (95% CrI: 15.4 days, 17.1 days), 467 

respectively. 468 

 469 

Figure 5: Probability that an individual returns a positive LFD test result. The black line shows the median of the posterior 470 
distribution, and the grey shaded region is the 95% credible interval. 471 

Table 4: Threshold values for time from symptom onset above which the probability of a test returning a negative result is 472 
above 50% and 95%. The given estimates are medians of the posterior distribution, and the numbers in brackets are 95% 473 
credible intervals. 474 

Age Group Threshold where 50% of tests are negative 
(days) 

Threshold where 95% of tests are negative 
(days) 

3 to 17 years 4.8 (95% CrI: 4.0, 5.4) 11.3 (95% CrI: 9.7, 13.0) 

18 to 34 years 6.1 (95% CrI: 5.5, 6.6) 13.2 (95% CrI: 11.9, 14.4) 

35 to 44 years 6.5 (95% CrI: 6.2, 6.8) 13.7 (95% CrI: 12.8, 14.5) 

45 to 54 years 6.2 (95% CrI: 6.0, 6.4) 12.7 (95% CrI: 12.0, 13.4) 

55 to 64 years 6.5 (95% CrI: 6.3, 6.7) 14.3 (95% CrI: 13.8, 14.9) 

65 to 74 years 6.7 (95% CrI: 6.4, 6.9) 15.1 (95% CrI: 14.6, 15.7) 

75 years and over 7.6 (95% CrI: 7.3, 8.0) 16.2 (95% CrI: 15.4, 17.1) 

 475 

4.4. Incubation period 476 

For the incubation period, there was no strong evidence of a difference between the model LOO 477 

scores estimated for each distribution (Supplementary Table 2). Weibull had the lowest estimated 478 

LOO, so all results are presented using a Weibull distribution, with gamma and lognormal 479 

distributions shown in Supplementary Table 3 and Supplementary Figures 3 and 4. There is no clear 480 

pattern in the incubation period with age (Figure 6, Table 5). Across all ages (Table 5), the mean 481 

incubation period was 2.52 days (95% CrI: 2.42 days, 2.62 days). The median incubation period was 482 
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slightly shorter, at 2.24 days (95% CrI: 2.14 days, 2.35 days). The 95th percentile of the incubation 483 

period, by which point we expect 95% of cases to have developed symptoms (Figure 7), was 5.53 484 

days (95% CrI: 5.31 days, 5.79 days).  485 

 486 

Figure 6: Probability density function of the incubation period. The blue line shows the median of the posterior distribution, 487 
and the blue shaded region is the 95% credible interval. The grey histogram shows the raw data (the 3 to 17 years age 488 
group data are masked due to low counts). 489 

Table 5: Mean, median and 95th percentile of the incubation period distribution. The given estimates are medians of the 490 
posterior distribution, and the numbers in brackets are 95% credible intervals. 491 

Age Group Mean Incubation Period Median Incubation Period 95th Percentile of the Incubation Period 

All ages 2.52 (95% CrI: 2.42, 2.62) 2.24 (95% CrI: 2.14, 2.35) 5.53 (95% CrI: 5.31, 5.79) 

3 to 17 years 2.55 (95% CrI: 2.25, 2.87) 2.34 (95% CrI: 2.04, 2.65) 5.25 (95% CrI: 4.44, 6.12) 

18 to 34 years 2.57 (95% CrI: 2.39, 2.86) 2.37 (95% CrI: 2.18, 2.65) 5.31 (95% CrI: 4.83, 5.92) 

35 to 44 years 2.54 (95% CrI: 2.35, 2.74) 2.35 (95% CrI: 2.16, 2.56) 5.12 (95% CrI: 4.65, 5.63) 

45 to 54 years 2.50 (95% CrI: 2.31, 2.66) 2.32 (95% CrI: 2.11, 2.49) 5.03 (95% CrI: 4.60, 5.46) 

55 to 64 years 2.50 (95% CrI: 2.36, 2.61) 2.27 (95% CrI: 2.13, 2.39) 5.26 (95% CrI: 4.96, 5.56) 

65 to 74 years 2.62 (95% CrI: 2.50, 2.77) 2.38 (95% CrI: 2.25, 2.53) 5.54 (95% CrI: 5.25, 5.88) 

75 years and over 2.53 (95% CrI: 2.36, 2.68) 2.31 (95% CrI: 2.14, 2.47) 5.25 (95% CrI: 4.89, 5.64) 

 492 
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493 
Figure 7: Cumulative distribution function of the incubation period. The blue line shows the median of the posterior 494 
distribution, and the blue shaded region is the 95% credible interval. The grey histogram shows the raw data (the 3 to 17 495 
years age group data are masked due to low counts). 496 

5. Discussion 497 

The Winter Coronavirus Infection Survey in the UK has been a valuable source of information on the 498 

SARS-CoV-2 virus. From this survey, data were collected that can support the estimation of 499 

parameters that are of value to understanding the ongoing epidemiology of SARS-CoV-2. Given the 500 

complexities of the data and real-world biases, statistical modelling methods are needed to 501 

maximise the information extracted from the data. We have developed bespoke methods for 502 

estimating the duration of positivity and test sensitivity, and deployed the gold standard method for 503 

estimating the incubation period [23].  504 

The duration of LFD positivity tells us how long after infection an individual remains able to test 505 

positive using LFD tests. This is important, as if an individual takes a test too long after infection, it 506 

may no longer be possible to test positive, and the infection will go undetected. Therefore, 507 

quantifying this distribution is vital when using testing data for infectious disease surveillance. Also, 508 

LFD positivity is closely linked to viral load in the individual [14]. The duration of positivity was 509 

shortest for the youngest age groups and increased with age. This finding is consistent with data on 510 

severity of infection, whereby older individuals are more likely to have severe disease [1,40,41]. 511 

Since severity is likely to correspond to higher viral load / slower viral clearance, this suggests that 512 

the duration of positivity should be shorter in younger individuals, which has been seen in earlier 513 

studies on the duration of viral shedding [25]. The duration of LFD positivity was found to have a 514 

mean of 8.55 days (95% CrI: 7.65 days, 9.44 days) days for the youngest age group, which increased 515 

with age to 10.27 days (95% CrI: 9.85 days, 10.71 days) in the oldest age group. Compared to 516 

previous estimates for pre-Alpha variants [13], this has reduced slightly from a median of 11 days 517 

(95% confidence interval: 10 days, 12 days) to a median of between 7.89 days (95% CrI: 7.07 days, 518 

8.71 days) and 9.47 days (95% CrI: 9.09 days, 9.88 days), depending on the age of the individual. 519 

Such a reduction in the duration of positivity could be due to the reduced severity of Omicron sub-520 

lineages [2–5] or higher levels of both infection-derived and vaccine-derived immunity. Based on the 521 
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fitted lognormal distributions, 95% of cases are no longer LFD positive between 13.63 days and 522 

19.19 days after symptom onset, depending on age. In our duration of positivity data, we do not 523 

have data on time of infection. Therefore, duration of positivity is considered as a function of time 524 

from symptom onset. However, in practice some individuals can test positive prior to symptom 525 

onset. In this study, such cases were very rare, suggesting that the probability of testing positive 526 

prior to symptom onset was very low, so this assumption will have a minimal influence on the 527 

results. The low probability of testing positive prior symptom onset is driven by antigen levels only 528 

growing shortly before symptom onset [21].   529 

Test sensitivity for LFD tests has previously been shown to be lower than the gold-standard PCR tests 530 

[13,28,42]. However, despite the reduced sensitivity, due to the greatly improved time-to-result and 531 

reduced cost, LFD tests can be a powerful tool in the response to the COVID-19 pandemic [43]. The 532 

continued strength of LFDs relies on the test sensitivity remaining at similar levels, or increasing. 533 

Early findings for Omicron suggested increased sensitivity (73.0%) relative to Alpha and Delta 534 

variants (55.7% and 64.0%, respectively [14]). We estimated LFD test sensitivity as a function of time 535 

from symptom onset. Here, the sensitivity is relative to individuals who are still able to test LFD 536 

positive. It is possible that some individuals may never have high enough viral loads to test positive 537 

by LFD. However, previous estimates suggest that peak LFD sensitivity is comparable to peak PCR 538 

sensitivity [13]. LFD sensitivity at the peak was 95% (92%, 98%). This quickly decayed in all age 539 

groups, though the minimum sensitivity varied by age. In the youngest age group, the minimum 540 

sensitivity was lowest, at 0.26 (95% CrI: 0.16, 0.37). In the oldest age group, this increased to 0.54 541 

(95% CrI: 0.46, 0.60). Not only did the youngest age groups have the lowest minimum sensitivity, but 542 

they also had the fastest rate of decay from maximum to minimum sensitivity. Higher sensitivity in 543 

older age groups supports the use of lateral flow tests in clinical settings [44], such as care homes, 544 

where the majority of patients are elderly. In this analysis, we considered sensitivity as a function of 545 

time since symptom onset. Often, sensitivity is reported as a single value [28,45]. From our temporal 546 

sensitivity, comparable single values can be generated by weighting the sensitivity distribution by 547 

the observed distribution of times from symptom onset for a given cohort. However, such figures 548 

are not reported in this analysis since they are highly dependent on the cohort distribution, which 549 

are not necessarily consistent between studies. Importantly, LFD test sensitivity in the few days 550 

proceeding symptom onset is very high, which overlaps when individuals are most infectious [21] 551 

and therefore enables efficient isolation of infectious individuals. 552 

Based on the results for test sensitivity and duration of positivity, we calculated the probability of 553 

testing positive as a function of time since symptom onset. Whereas sensitivity gives the probability 554 

of testing positive given that someone is still infected, this instead gives the probability of testing 555 

positive given the number of days ago that the individual was infected. This provides the relationship 556 

between infection incidence and test positivity data, which is fundamental to accurate disease 557 

surveillance. We found that the effect of age was further amplified, with the youngest age group 558 

seeing rapid decline in the probability of testing positive, which slowed down as age increased. In 559 

the youngest age group, after 4.8 days (95% CrI: 4.0 days, 5.4 days), 50% of tests would no longer 560 

test positive, which increased to 7.6 days (95% CrI: 7.3 days, 8.0 days) in the oldest age group. After 561 

11.3 days (95% CrI: 9.7 days, 13.0 days), fewer than 5% of tests in the youngest age group return a 562 

positive test result. This 5% threshold increases to 16.2 days (95% CrI: 15.4 days, 17.1 days) in the 563 

oldest age group. This shows that although LFD tests are reliable for detecting recent infection close 564 

to time of infection (using symptom onset as a proxy), their sensitivity rapidly declines so that they 565 

do not detect historic infections. 566 
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The incubation period describes the time between an individual becoming infected and eventually 567 

developing symptoms. This is important in the design of isolation strategies, for example, where we 568 

need to know how quickly people will develop symptoms after infection. At the start of the SARS-569 

CoV-2 pandemic, incubation period estimates ranged from 4.84 days to 6.4 days [35–37,46]. The 570 

mean incubation period in this study was estimated at 2.52 days (95% CrI: 2.42 days, 2.62 days). This 571 

is shorter than estimates of 2.6 days to 3.8 days for Omicron BA.5 [8,15], which is the most recent 572 

variant with estimates in the literature. However, the incubation period was on a decreasing 573 

trajectory since wild type [6,8], and with countless variants emerging since Omicron BA.4/5, it may 574 

be possible for the incubation period to have decreased further. For example, influenza incubation 575 

periods are even shorter at 1.71 days [47]. With this incubation period, 95% of individuals have 576 

developed symptoms by 5.53 days (95% CrI: 5.31 days, 5.79 days). We found no patterns of changing 577 

incubation periods with age, which is consistent with some previous studies [6], though others have 578 

identified a weak relationship with age [48]. With the relatively small sample size, such a signal 579 

would be hard to detect. The incubation period data relies on individuals estimating their time of 580 

infection, which may introduce a bias. For some individuals, this may be accurate, such as those who 581 

infrequently leave the house. For individuals in large households, these data are likely to be 582 

inaccurate due to large number of potential infectors. To mitigate for this, we restricted the analysis 583 

to 1 and 2 person households. However, in 2 person households, it is possible that pre-symptomatic 584 

transmission can occur, which might bias the estimated exposure dates, leading to an underestimate 585 

of the incubation period.  586 

6. Conclusion 587 

The Winter Coronavirus Infection Study, although designed to improve our understanding of SARS-588 

CoV-2 prevalence in the community, has been a valuable source of data on key epidemiological 589 

parameters. The study design used will be powerful in future community surveillance studies for 590 

allowing continued estimation of these parameters. Through this study, we have identified large 591 

changes in the epidemiology. Firstly, the duration of LFD positivity for currently circulating variants 592 

has reduced relative to pre-Omicron variants. Secondly, LFD test sensitivity remains high, particularly 593 

shortly after symptom onset, when individuals are likely to be the most infectious. Finally, the 594 

incubation period has been observed to have declined relative to earlier variants. Understanding the 595 

current values of these parameters is essential for designing policy and interventions, as well as for 596 

accurately converting test positivity data to estimates of infection incidence and prevalence, which 597 

are vital for assessing real-time infection risk in the community.  598 
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 614 
UKHSA operates a robust governance process for applying to access protected data that considers:   615 

• the benefits and risks of how the data will be used  616 
• compliance with policy, regulatory and ethical obligations   617 
• data minimisation   618 
• how the confidentiality, integrity, and availability will be maintained   619 
• retention, archival, and disposal requirements   620 
• best practice for protecting data, including the application of ‘privacy by design and 621 
by default’, emerging privacy conserving technologies and contractual controls   622 

Access to protected data is always strictly controlled using legally binding data sharing contracts.   623 
UKHSA welcomes data applications from organisations looking to use protected data for public 624 
health purposes.   625 
To request an application pack or discuss a request for UKHSA data you would like to submit, contact 626 
DataAccess@ukhsa.gov.uk.   627 
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