Age-Dependent Effects of UP Experimental Agency Constitution Pickip A on Damage, Repair
Mechanisms, Genomic Instability, Cancer Risk, and Neurological Disorders
WR Danter MD, 123Genetix Inc.
ABSTRACT

Mechanisms, Genomic Instability, Geneeming, and Neurological Districts
MR Danter MD, 123Genetix Inc.
Background: Xeroderma pigmentosum, complementation group A (XP) ABSTRACT

ABSTRACT
 Background: Xeroderma pigmer

characterized by marked sensitiv /
|
| C
| C **Backgroun**
characteriz
accelerated
mechanism
DNA dama_i Background: Xeroderma pigmentosum, complementation group A (XPA), is a rare genetic disorder
characterized by marked sensitivity to ultraviolet (UV) radiation, leading to increased risks of skin cancer,
accelerated aging, accelerated aging, and significant neurologic disorders. XPA prominently impacts DNA repair
mechanisms, specifically nucleotide excision repair (NER), which is crucial for correcting UV-induced
DNA damage.
Methods: This st

mechanisms, specifically nucleotide excision repair (NER), which is crucial for correcting UV-induced
DNA damage.
Methods: This study utilized an advanced aiHumanoids platform to simulate the disease progression in
individ mechanisms, specifically nucleon repair (NER), minimited excitent to correcting 2 continued.

DNA damage.

Methods: This study utilized an advanced aiHumanoids platform to simulate the disease progression in

individuals w Methods: This

individuals with

individuals with

moderate and

wild-type cont

cancer risk, an Methods: This study difficed an advanced airlamentoids platform to simulate the disease progression in
individuals with XPA from birth to age 20 years. The virtual longitudinal study assessed the impacts of
moderate and se individuals and severe XPA under various UV exposure scenarios. The research included 25 age-matched
wild-type controls to elucidate the comparative effects of XPA on DNA damage, genomic instability,
cancer risk, and neuro

moderate and severe investment and severe Comparative Comparative MP is the research wild-type controls to elucidate the comparative effects of XPA on DNA damage, genomic instability, cancer risk, and neurological outcomes We

Trancer risk, and neurological outcomes.
 Results: Using Wilcoxon sign rank p values and Cliff's delta estimates of true effect size, the aiHumanoid

simulations revealed significant differences in DNA repair efficie Results: Using Wilcoxon sign rank p valus
simulations revealed significant differer
groups, with pronounced deficits in XPA
risks were consistently elevated across
assessments indicated greater suscep
moderating somewhat w Results: Using Wilcoxon sign rank p values and Cliff's delta estimates of the effect size, the aintimation
simulations revealed significant differences in DNA repair efficiency between XPA affected and control
groups, with strate in XPA cohorts under UV exposure. Genomic instability and skin cancer
Fisks were consistently elevated across all XPA simulations, particularly under UV stress. Neurological
assessments indicated greater susceptibil groups, the pronounced across all XPA simulations, particularly under UV stress. Neurological
assessments indicated greater susceptibility to disorders in younger XPA subjects, with effects
moderating somewhat with age.
C

risks indicated greater susceptibility to disorders in younger XPA subjects, with effects moderating somewhat with age.
 Conclusion: The aiHumanoid platform provided novel insights into the progression of XPA, highlighti and a method in the severe interpretation of the subsessment of the progression of XPA, highlighting
 Conclusion: The aiHumanoid platform provided novel insights into the progression of XPA, highlighting

the severe impa moderating somewhat with age.
 Conclusion: The aiHumanoid platform provided novel insights into the progression of XPA, highlighting

the severe impact of UV exposure on individuals with this condition. These findings ad Conclusion: The ainfinitional platform provided novel insights into the progression of XPA, inginighting
the severe impact of UV exposure on individuals with this condition. These findings advocate for early
intervention s intervention strategies and underscore the necessity for rigorous protective measures against UV
radiation, especially in younger populations. This research contributes to our further understanding of
XPA, potentially guid radiation, especially in younger populations. This research contributes to our further understanding of
XPA, potentially guiding future therapeutic developments including early stage virtual drug trials and
preventive appr

radiation, especially guiding future therapeutic developments including early stage virtual drug trials and
preventive approaches personalized to individual risk profiles.
Keywords: Xeroderma Pigmentosum Group A (XPA), UV XPA, previously guiding future therapeutic developments including early engagements including
preventive approaches personalized to individual risk profiles.
Keywords: Xeroderma Pigmentosum Group A (XPA), UV Exposure, DNA preventive approaches personalizate to individual risk process.
Keywords: Xeroderma Pigmentosum Group A (XPA), UV Ex
Excision Repair (NER), Genomic Instability, Neurological Disc
Study, Skin Cancer Risk Key Market Hereen Manguistics and Treeptor (MA), The Leptency Came Camego Hipm, Antibodie
Excision Repair (NER), Genomic Instability, Neurological Disorders, aiHumanoids, Virtual Longitudinal
Study, Skin Cancer Risk
Nerode

Excision Repair (NER), Genomic Instance, Mean Progress Disorders, Amanumedal, Minute Disordernal
Excity, Skin Cancer Risk
Keroderma pigmentosum, complementation group A (XPA), is a rare, debilitating genetic disorder
Chara Stady, Same States (1821)
INTRODUCTION
Xeroderma pigmentosi
characterized by extrer
and accelerated skin a |
|)
|
| c MANTERRAM

Xeroderma pign

characterized by

and accelerated

more severe for

mechanism [2,3

individuals, mak Xerotation pigmentation, complementation group (XP) radiation, leading to a high risk of skin cancers
and accelerated skin aging [1]. Among the xeroderma pigmentosum (XP) subtypes, XPA is one of the
more severe forms due t and accelerated skin aging [1]. Among the xeroderma pigmentosum (XP) subtypes, XPA is one of the
more severe forms due to a marked deficiency in nucleotide excision repair (NER), a critical DNA repair
mechanism [2,3]. The more severe forms due to a marked deficiency in nucleotide excision repair (NER), a critical DNA repair
mechanism [2,3]. The global incidence of XPA, which varies widely, is approximately 1 in 1,000,000
individuals, making mechanism [2,3]. The global incidence of XPA, which varies widely, is approximately 1 in 1,000,000
individuals, making it a rare but profoundly impactful condition [4]. Patients with XPA not only face
NOTE: This preprint individuals, making it a rare but profoundly impactful condition [4]. Patients with XPA not only face
NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clin

increased and that is less common in some other XP subtypes [5]. For example, XP subtypes A, D, and G are
more commonly associated with neurological disorders, while the B, C, E, F, and V forms primarily affect
the skin [6

problem that is less commonly associated with neurological disorders, while the B, C, E, F, and V forms primarily affect
the skin [6,7].
Traditionally, longitudinal studies that track the progression of genetic disorders l Traditionally, longitudinal studies that track the progression of genetic disorders like XPA face significant
hurdles, including (i) the rarity of the condition, (ii) the extensive duration needed to acquire reliable
data, Traditionally, let
Traditionally, let
hurdles, include
data, and (iii)
These challen
evaluate poter Traditionally, longitudinal study of the condition, (ii) the extensive duration needed to acquire reliable data, and (iii) logistical challenges in managing conditions with consistent levels of UV exposure [8].
These chall data, and (iii) logistical challenges in managing conditions with consistent levels of UV exposure [8].
These challenges necessitate innovative approaches, including Al, to study disease progression and
evaluate potential

These challenges necessitate innovative approaches, including Al, to study disease progression and
evaluate potential treatments over a subject's lifetime [9].
The current virtual longitudinal study uses a novel aiHumanoid The current virtual longitudinal study uses a novel aiHumanoids platform to simulate the early life course
of individuals with XPA from birth to age 20 years. Our study uniquely compares moderate and severe
forms of XPA un The current virtual longitudinal study uses a novel aiHuman
of individuals with XPA from birth to age 20 years. Our st
forms of XPA under controlled, moderate UV exposure
exposure, using a cohort of 25 age-matched wild-typ of individuals with XPA from birth to age 20 years. Our study uniquely compares moderate and severe
forms of XPA under controlled, moderate UV exposure scenarios as well as in the absence of UV
exposure, using a cohort of Forms of XPA under controlled, moderate UV exposure scenarios as well as in the absence of UV exposure, using a cohort of 25 age-matched wild-type (WT) controls for baseline comparisons. By employing advanced computational exposure, using a cohort of 25 age-matched wild-type (WT) controls for baseline comparisons. By
employing advanced computational modeling and aiHumanoid simulations, this approach allows for a
detailed, dynamic exploration employing advanced computational modeling and aiHumanoid simulations, this approach allows for a
detailed, dynamic exploration of the disease's progression, both dermatological and neurological, and
the impact of environme

employing antention computational modeling and antentional modeling propertional modeling detailed, dynamic exploration of the disease's progression, both dermatological and neurological, and the impact of environmental fa the impact of environmental factors like UV exposure on disease outcomes [10,11].
Our aiHumanoid platform overcomes the logistical limitations of traditional longitudinal studies while
providing a controlled environment to The inpact of environmental factors in enpression and the instantonal longing providing a controlled environment to systematically assess the long-term effective strategies and the critical interactions between genetic pre The interaction providing a controlled environment to systematically assess the long-term effectiveness of therapeutic
strategies and the critical interactions between genetic predisposition and environmental factors like providing a controlled interactions between genetic predisposition and environmental factors like UV exposure [12]. Our findings aim to offer unique new insights into the early onset and progression of XPA, facilitating th exposure [12]. Our findings aim to offer unique new insights into the early onset and progression of XPA, facilitating the development of targeted therapies via virtual early stage drug trials [13,14] and preventive measur facilitating the development of targeted therapies via virtual early stage drug trials [13,14] and
preventive measures tailored to individual risk profiles, with particular attention to mitigating the
significant neurologi preventive measures tailored to individual risk profiles, with particular attention to mitigating the
significant neurological disorders seen in many of these patients [5].
METHODS
Overview preventive measures tailored to individual disorders seen in many of these patients [5].
METHODS
Overview

significant neurological disorders seen in many of these patients [5].
METHODS
Overview
The current study utilizes aiHumanoid simulations as virtual subjects in a longitudinal investigation into
the development and progres |
|
! METHOD
Overview
The curren
the develo
systemic in
UV exposu The current
The current
systemic in
UV exposures
was simul: The development and progression of XPA from birth to age 20 years. We aim to better understand the systemic impact of an XPA mutation with and without exposure to moderate UV radiation. By moderate UV exposure we mean a si the development and progression with and without exposure to moderate UV radiation. By moderate
UV exposure we mean a simulated level of 5.5 out of 11+ on the UV index. The absence of UV exposure
was simulated by setting t

System contribute in the UV index. The absence of UV exposure was simulated by setting the UV index value at 1.
In this first phase of our XP project, we will focus on the impact of moderate and severe XPA mutations
on cut UV index value at 1.

In this first phase of our XP project, we will focus on the impact of moderate and severe XPA mutations

on cutaneous and nervous system markers and outcomes. We anticipate that future research will u In this first phase of our XP project, we will focus
on cutaneous and nervous system markers and o
a similar approach to develop early stage virtual
therapies for XPA and other XP complementation
1. Updating the aiHumanoid In this first phase of our contractors and the intervals. We anticipate that future research will utilize
In this first phase of our XP projected and the impact of the impact of moderation and the impact the impact of
The

on contribute and the development of the same of a time of the terrapies for XPA and other XP complementation groups.
The previous version 8.3 of the ail-lumanoid [15,16] underwent revisions to v8.4.2. The main differences a similar approach to develop early stage virtual and gradie at identifying phenotype modifying
therapies for XPA and other XP complementation groups.
1. Updating the aiHumanoid Simulation to v8.4:
The previous version 8.3 1. Updating the aiHumanoid Simulation to v8.4:
The previous version 8.3 of the aiHumanoid [15,16] unde
are that the revised version integrates updated simulatio
updated subsystem for the diagnosis of XPA in children The previous version 8.3 of the aiHumanoid [15]
are that the revised version integrates updated
updated subsystem for the diagnosis of XPA i are that the revised version integrates updated simulations for specific XP associated mutations and an updated subsystem for the diagnosis of XPA in children and adolescents. As before, the number of updated subsystem for are that the revised version integrates updated simulations for opposite intended simulations for specific xpecific mutations and and adolescents. As before, the number of updated subsystem for the diagnosis of XPA in chil \mathcal{L}_{P} undated subsystem for the diagnosis of \mathcal{L}_{P} in children and adolescents. As before, the number of \mathcal{L}_{P} integrated organoid simulations remains at 21. The literature validation of the WT and XPA aiHumanoid

simulations employed the same approach used in previous versions to create the updated simulations

comprising v8.4.2.

genotypic and phenotypic features was assembled from the literature for evaluation and are presented 2 XPA Validation P
To confirm a diagr
genotypic and phe
in Appendix A. A
matched cohorts a To confirm a diagnosis of XPA in the affected aiHumano
genotypic and phenotypic features was assembled from
in Appendix A. All features were statistically significa
matched cohorts and regarding the diagnosis of XPA. T
the genotypic and phenotypic features was assembled from the literature for evaluation and are presented
in Appendix A. All features were statistically significantly different from controls for multiple age
matched cohorts and genotypic and phenotypic centration in appendix A. All features were statistically significantly different from controls for multiple age matched cohorts and regarding the diagnosis of XPA. The present analysis employed a

in Appendix A. All features were contributed contracted contracted contracted contracted the nonparametric Wilcoxon signed rank test and the Cliff's delta effect size estimates.

3. Study Design and Objectives:

This proje matriced comparametric Wilcoxon signed rank test and the Cliff's delta effect size estimates.

3. Study Design and Objectives:

This project is our most recent virtual longitudinal study using the aiHumanoid simulations. T This project is our most recent virtual longitudinal study using the aiHumanoid
This project is our most recent virtual longitudinal study using the aiHumanoid
objectives of this study were: (i) to evaluate the impact of m This project is our most rece
objectives of this study were: (i
Moderate XPA or Severe XI
development and progression f
for the purpose of conducting v This projectives of this study were: (i) to evaluate the impact of moderate UV exposure on young subjects with
Moderate XPA or Severe XPA compared to WT/Healthy subjects, (ii) to better understand XPA
development and progr Moderate XPA or Severe XPA compared to WT/Healthy subjects, (ii) to better understand XPA
development and progression from birth to age 20 years, and (iii) to evaluate a panel of disease features
for the purpose of conduct

Moderation and progression from birth to age 20 years, and (iii) to evaluate a panel of disease features
for the purpose of conducting virtual drug trials to identify potential phenotype modifying therapies.
The Virtual su for the purpose of conducting virtual drug trials to identify potential phenotype modifying therapies.
The Virtual subjects used in this study
The profiles for twenty-five unique and healthy virtual young subjects were syn The Virtual subjects used in this study
The profiles for twenty-five unique and healthy virtual young subjects were synthesized by GPT-4,
advanced large language model (December 2023 version,) at https://chat.openai.com/). The profiles for twenty-five unique an
advanced large language model (Dece
extensive database encompassing meer
synthesize diverse and representative
was reviewed by an experienced phys
us to create a virtual study with 7 advanced large language model (December 2023 version,) at https://chat.openai.com/). GPT4 used its
extensive database encompassing medical literature, patient profiles, and related clinical information, to
synthesize diver advanced large language model (December 1999), a mapping model (and clinical information, to synthesize diverse and representative draft profiles for twenty-five healthy children. Each subject profile was reviewed by an ex extends a vertext of the respectative draft profiles for twenty-five healthy children. Each subject profile
was reviewed by an experienced physician prior to enrolment. This longitudinal study design permitted
us to create synthesize and representative profiles in the profiles for twenty, the bongitudinal study design permitted us to create a virtual study with 7 genotypic cohorts (see Table 1) X 6 (age groups) X 25 (virtual subjects), the e Was to create a virtual study with 7 genotypic cohorts (see Table 1) X 6 (age groups) X 25 (virtual subjects),
the equivalent of data from 1050 young subjects. The virtual subjects used in this study serve as
hypothetical, the equivalent of data from 1050 young subjects. The virtual subjects used in this study serve as
hypothetical, but commonly encountered population based examples of risks associated with the
development of XPA in children hypothetical, but commonly encountered population based examples of risks associated with the
development of XPA in children in specific affected cohorts but do not represent actual individuals or
precise medical histories development of XPA in children in specific affected cohorts but do not represent actual individuals or
precise medical histories.
Table 1: Summary of Cohorts, Comparisons, and UV Index values for this virtual longitudinal

vww.epa.go
Next
Para $\frac{1}{\sqrt{1+\frac{1}{2}}\sqrt{1+\frac{1}{2}}\left(\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)}$

-
- 1. Franch, Health, at birth
2. Ages Birth (0 years) to 20 y
3. Approximately equal repre
4. All required individual data
- Inclusion Criteria (WT/Healthy 2018-12).

1. Generally healthy at birth

2. Ages Birth (0 years) to 20 years

3. Approximately equal representa

4. All required individual data are a
-

- 2. Approximately equal represents
2. All required individual data are
Exclusion criteria:
5. Age greater than 20 years of age Exclusion criteria:

5. Age greate

6. Any docur

7. Any docur
- 3. All required individual data are available
3. All required individual data are available
5. Age greater than 20 years of age
6. Any documented preexisting genetic abnormalities Exclusion criteria:

4. Age greater than 20 years of age

4. Any documented preexisting genetic abn

5. Any documented disease processes prior 5. Any documented preexisting gen
5. Any documented disease process
7. Any documented disease process
-

Frame in the president graduation of the state above the set of the Affected Subjects:
The Affected Subjects:
The XPA states examined included: (i) the WT state wi 7. Any documented disease processes prior to or at any
7. The Affected Subjects:
7. The XPA states examined included: (i) the WT state with
7. Moderate XPA with and without UV exposure and (iii) severe X
8. Any serves prio $\frac{1}{\epsilon}$ if $\frac{1}{\epsilon}$ The XPA states examin
moderate XPA with and
age cohorts of twenty-
(LOF) mutations for ea
highly matched cohor
mutation. In these wel moderate XPA with and without UV exposure and (iii) severe XPA with and without UV exposure. The six
age cohorts of twenty-five healthy subjects each underwent AI gene editing to introduce loss of function
(LOF) mutations age cohorts of twenty-five healthy subjects each underwent AI gene editing to introduce loss of function (LOF) mutations for each of the six XPA associated cohorts studied [17]. This process created forty two highly matche age constraints of the six XPA associated cohorts studied [17]. This process created forty two
highly matched cohorts where the only difference was the presence or absence of a specific gene
mutation. In these well-matched (LOF) mutations for each of the six XPA associated with age. The six XPA associate of a specific gene mutation. In these well-matched cohorts, properties like obesity, hypertension and Type 2 Diabetes are emergent properti mutation. In these well-matched cohorts, properties like obesity, hypertension and Type 2 Diabetes are
emergent properties primarily associated with age. The virtual approach has the major advantage that
all subjects' data mutation. In these primarily associated with age. The virtual approach has the major advantage that
all subjects' data were available for analysis since there was no attrition which would be common in
traditional longitudi all subjects' data were available for analysis since there was no attrition which would be common in
traditional longitudinal studies of this kind. The data from all cohorts were evaluated beginning at birth
(0 years) and

traditional longitudinal studies of this kind. The data from all cohorts were evaluated beginning at birth
(0 years) and continuing at 5-year intervals up to and including age 20 years of age (6 age cohorts).
The distincti (0 years) and continuing at 5-year intervals up to and including age 20 years of age (6 age cohorts).
The distinction between Moderate and Severe XPA was based on estimates of residual normal
functioning XPA protein. For t The distinction between Moderate and Severe XPA was based on estimates of residual n
functioning XPA protein. For the Moderate XPA case an estimate of 25-30% residual protein fu
was used and for the Severe XPA condition th

functioning XPA protein. For the Moderate XPA case an estimate of 25-30% residual protein function
was used and for the Severe XPA condition the estimated residual normal protein was <5% [18].
Statistical Analysis:
The Nul Functioning The Present of the Moderate Area and Estimated Testicular protein was <5% [18].
Statistical Analysis:
The Null hypothesis states that there are no statistically significant differences or at least medium effect Was used and for the Severe XPA condition to the Severence XPA condition protein the Severe XPA.
The Null hypothesis states that there are no statistically significant differences or at least medic
sizes for the six affect The Null hypothesis
sizes for the six affer
The data was not not
that multiple tests
corrected p value to The data was not normally distributed, so the non-parametric Wilcoxon signed rank test was used. Given
The data was not normally distributed, so the non-parametric Wilcoxon signed rank test was used. Given
that multiple te The data was not normally distributed, so the non-parametric Wilcoxon signed rank test was used. Given
that multiple tests (N=19) were conducted, the conservative Bonferroni correction was applied. The
corrected p value t that multiple tests (N=19) were conducted, the conservative Bonferroni correction was applied. The corrected p value to achieve significance therefore became $0.05/19$, or < 0.0026 for this study.
The alternative hypoth

The alternative hypothesis states that there are significant differences in the three affected groups

that multiple to achieve significance therefore became 0.05/19, or < 0.0026 for this study.
The alternative hypothesis states that there are significant differences in the three affected groups
compared to the healthy cont The true effect size was estimated using Cliff's delta. Cliff's delta was used because the data were not
normally distributed with a sample size of twenty-five subjects per cohort. To calculate Cliff's delta the
continuous The true effect size was estimated using Cliff's delta. Cliff's delta was used because the data were not The true effect size was transformed into interval data based on whether the data from the affected group
continuous data was transformed into interval data based on whether the data from the affected group
continuous data continuous data was transformed into interval data based on whether the data from the affected group continuous data was transformed into interval data based on whether the data from the data from the affected g
affected group of the affected group of the affected group of the affected group of the affected group of the
c

was larger or smaller than the unaffected group. The Cliff's delta was then calculated as (N (larger than) – N (smaller than))/the standard deviation of the differences between the groups (19,20). This produced a range of a range of effect size estimates between -1 (a large negative effect) and +1 (a large positive effect). A value close to zero was interpreted as having no effect. To determine the size of the effect we used the following value close to zero was interpreted as having no effect. To determine the size of the effect we used the following heuristic scale: $d < 0.147$ (negligible), $d = 0.147$ to < 0.330 (small), $d = 0.330$ to < 0.474 (medium following heuristic scale: $d < 0.147$ (negligible), $d = 0.147$ to < 0.330 (small), $d = 0.330$ to < 0.474 (medium) and $d > = 0.474$ (large) as suggested in [21]. To compensate for the modest sample size per cohort, all and d >= 0.474 (large) as suggested in [21]. To compensate for the modest sample size per cohort, all Cliff's d values were modified using the Hedges correction [22] which was calculated to be 0.984. Final effect size est Cliff's d values were modified using the Hedges correction [22] which was calculated to be 0.984. Final effect size estimates were obtained by multiplying the initial effect sizes by 0.984. The 95% Cl around the effect si Effect size estimates were obtained by multiplying the initial effect sizes by 0.984. The 95% Cl around the effect size estimate was calculated using the Standard Error (SE) of the differences/square root of the sample siz effect size estimate was calculated using the Standard Error (SE) of the differences/square root of the sample size (2N data points).
RESULTS
(1) Wild Type (WT) subjects versus WT subjects plus moderate UV exposure effect variables was calculated using the Standard Error (SE) of the dimensions cample size (2N data points).
RESULTS
(1) Wild Type (WT) subjects versus WT subjects plus moderate UV exposure

$\begin{array}{c} \frac{1}{2} \end{array}$

sample size (2N data points).
RESULTS
(1) Wild Type (WT) subjects v
See Appendix B: Heat Map 1

(1) Wild
See Appe
DNA Dar
Moderat DNA Damage and Repair Pathways (all corrected p values are <0.0026)
Moderate UV exposure resulted in a consistently large effect size (0.984) for DNA damage (CPD/6-4 PPs),
DNA NER-GG, DNA NER-TC, DNA replication stress, an **DNA Damage and Repair Pat
Moderate UV exposure resul:
DNA NER-GG, DNA NER-TC, I
(0y) to young adult (20y). Not
years (0.276), suggesting a te** Moderate UV exposure resulted in a consistently large effect size (0.984
DNA NER-GG, DNA NER-TC, DNA replication stress, and ERCC2/XPD acr
(0y) to young adult (20y). Notably, the DNA NER Core exhibited a substa
years (0.27 DNA NER-GG, DNA NER-TC, DNA replication stress, and ERCC2/XPD across all age groups from newborn (0y) to young adult (20y). Notably, the DNA NER Core exhibited a substantial reduction in effect size at 10 years (0.276), su

(0y) to young adult (20y). Notably, the DNA NER Core exhibited a substantial reduction in effect size at 10
years (0.276), suggesting a temporary decrease in repair efficiency during pre-adolescence.
Genome Instability an years (0.276), suggesting a temporary decrease in repair efficiency during pre-adolescence.
Genome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) and skin cancer risk (both melano Genome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) and skin cancer risk (both melanoma and non-melanoma) showed
arge and effect sizes (0.984) across all age groups, highlightin Genome instability (CIN) and skin cancer risk (both melanoma and non-
large and effect sizes (0.984) across all age groups, highlighting the
moderate UV exposure.
Neurological Outcomes (corrected p values for Neurodegenera General and effect sizes (0.984) across all age groups, highlighting the persistent risk associated with
moderate UV exposure.
Neurological Outcomes (corrected p values for Neurodegeneration and Neuroinflammation were not

large and effect sizes (0.984) across all age groups, suppressional metals and the persistically significant (p value ~1.0) while all other p values were significant at p<0.0026)
While Neuroapoptosis experienced large effe Meurological Outcomes
statistically significant (p
While Neuroapoptosis e
and Neuroinflammation
impact on these 2 impact Neuron gaint antition (p value ~1.0) while all other p values were significant at p<0.0026)
While Neuroapoptosis experienced large effects sizes (0.984) across all age groups, Neurodegeneration,
and Neuroinflammation displ While Neuroapoptosis experienced large effects sizes (0.984) across all age groups, Neur
and Neuroinflammation displayed negligible effect sizes across all age groups, suggesting
impact on these 2 important factors from mo and Neuroinflammation displayed negligible effect sizes across all age groups, suggesting no significant
impact on these 2 important factors from moderate UV exposure. However, neurodevelopmental
disorder (NDD) showed a la impact on these 2 important factors from moderate UV exposure. However, neurodevelopmental
disorder (NDD) showed a large negative effect size in younger age groups (-0.984 in 0y to 5y), which
decreased in older ages (-0.66 disorder (NDD) showed a large negative effect size in younger age groups (-0.984 in 0y to 5y), which
decreased in older ages (-0.669 at 15y and 20y), indicating some developmental sensitivity to UV-
induced DNA damage. Neu decreased in older ages (-0.669 at 15y and 20y), indicating some developmental sensitivity to UV-
induced DNA damage. Neurological symptoms and neuronal oxidative stress consistently exhibited large
effect sizes (0.984), u

induced DNA damage. Neurological symptoms and neurological impact of UV exposure.

Skin Aging and Pigmentation (corrected p values are consistently significant for Skin aging and

pigmentation at p,0.0026. UV photosensitiv Skin Aging and Pigmentation (corrected p values are consistently significant
pigmentation at p,0.0026. UV photosensitivity was only significantly different at ages
at age 20 years)
Skin aging and pigmentation effects were

decreased in older ages (-0.669 at 15y and 20y), indicating some developmental sensitivity to UVpigmentation at p,0.0026. UV photosensitivity was only significantly different at ages 2-3 years and again
at age 20 years)
Skin aging and pigmentation effects were consistently large (0.984) across all ages. UV photosensi photosensitivity at age 20 years)
at age 20 years)
Skin aging and pigmentation effects were consistently large (0.984) across all ages. UV photosensitivity
showed moderate to large negative effect sizes in early childhood Skin aging and β
showed modera
which became showed moderate to large negative effect sizes in early childhood (-0.905 at 2-3y and -0.433 at 5y). which became negligible at -0.039 by young adulthood (20y), indicating that younger individuals are which because negligible at -0.99 by young adulthood (20y), individually that younger individuals are $\frac{1}{2}$

more sensitive to UV exposure. By age 20 years the effect size hostings and more negative at -
0.512.
XPA Protein expression was high in early years (0y to 5y with a large effect size of 0.984), decreased to
moderate at 10 0.512.
XPA Protein Expression (all corrected p values are <0.0026)
XPA protein expression was high in early years (0y to 5y with a large effect size of
moderate at 10 years (0.433), before becoming large again at 15 and 20 XPA protein expression was high in early years (0y to 5y wis

moderate at 10 years (0.433), before becoming large again

degree of age-related variability in the normal response to r

Summarv)
r
1 moderate at 10 years (0.433), before becoming large again at 15 and 20 years (0.748), consistent with a degree of age-related variability in the normal response to moderate UV exposure.
Summary
The data for WT subjects vs

mode of age-related variability in the normal response to moderate UV exposure.

Summary

The data for WT subjects vs WT subjects exposed to moderate UV radiation indicate robust DNA repair

mechanisms across all ages for Summary
The data for WT subjects vs WT subjects exposed to moderate UV radiation indica
mechanisms across all ages for healthy unaffected subjects, with a notable ter
efficiency during pre-adolescence. The persistent large The data for
The data for
efficiency
developme
UV expost
dependent The data for MT subjects in the data for the persistent subjects, with a notable temporary reduction in efficiency during pre-adolescence. The persistent large impact on skin-related outcomes and the developmental sensitiv efficiency during pre-adolescence. The persistent large impact on skin-related outcomes and the
developmental sensitivity in younger individuals highlight the importance of protective measures against
UV exposure, particul efference of protective measures against
developmental sensitivity in younger individuals highlight the importance of protective measures against
UV exposure, particularly for younger children. These findings provide cruci developmental sensitivity in younger children. These findings provide crucial insights into the age-
dependent responses of healthy individuals to moderate UV exposure, emphasizing the need for
targeted UV protection strat dependent responses of health, manufallity individuals to emphasizy emphasizing the need for
targeted UV protection strategies.
(2) Wild Type (WT) subjects versus subjects with Moderate XPA in the absence of UV exposure
Se

targeted UV protection strategies.

(2) Wild Type (WT) subjects versus subjects with Moderate XPA in the absence of UV exposure

See Appendix B: Heat Map 2

DNA Damage and Repair Pathways (all corrected p values are <0.002

See Appendix B: Heat Map 2

 $\frac{1}{2}$ (2) See Appendix B: Heat Map 2

(2) DNA Damage and Repair Pathways (all corrected p values are <0.0026)

(CPD/6-4 PPs) across all age groups, indicating substantial DNA damage. Negative effect sizes (

(2) DNA NER Core. DN DNA Damage and Repair Pat
Without UV exposure, XPA
(CPD/6-4 PPs) across all age β
DNA NER Core, DNA NER-GG
in XPA subjects compared to Without UV exposure, XPA subjects displayed consistently large effect (CPD/6-4 PPs) across all age groups, indicating substantial DNA damage
DNA NER Core, DNA NER-GG, and DNA NER-TC across all age groups re
in XPA subjects (CPD/6-4 PPs) across all age groups, indicating substantial DNA damage. Negative effect sizes (-0.984) for
DNA NER Core, DNA NER-GG, and DNA NER-TC across all age groups reflect impaired repair mechanisms
in XPA subjects c ONA NER Core, DNA NER-GG, and DNA NER-TC across all age groups reflect impaired repair mechanisms
in XPA subjects compared to WT. DNA replication stress showed moderate to large positive effect sizes
(0.590) for most age g DONA TO SUPPERTIES INTO THE CORE INTERFET THE CORPLETED IN PERTHER-TEP IN THE INTERFET IN THE UPPERTIES IN THE

(0.590) for most age groups, increasing to 0.905 at 15y, suggesting increased levels of replication stress

in (0.590) for most age groups, increasing to 0.905 at 15y, suggesting increased levels of replication stress
in older subjects. ERCC2/XPD displayed large and negative effect size (-0.984) across all ages, consistent
with imp (1.690) for most age groups, increasing to these are μ reggesting increased to replication strep increased in older subjects. ERCC2/XPD displayed large and negative effect size (-0.984) across all ages, consistent with

with impaired DNA repair in XPA subjects.

Genome Instability and Cancer Risk (corrected p values were consistently <0.0026 for genome instability

and non-melanoma skin cancer risk but failed to achieve significance for m

Genome Instability and Cancer Risk (corre
and non-melanoma skin cancer risk but fai
Genome instability (CIN) and Non melan
(0.984) across all ages, consistent with ma
subjects. Effect sizes were small to negligit and non-melanoma skin cancer risk but failed to achieve significance for melanoma risk)
Genome instability (CIN) and Non melanoma skin cancer risks exhibited large and stable effect sizes
(0.984) across all ages, consisten and non-melanoma shines in an entertion and the achieve significance for melanoma ring Genome instability (CIN) and Non-melanoma skin cancer risks exhibited large and st.
(0.984) across all ages, consistent with marked and (0.984) across all ages, consistent with marked and persistent genome instability in XPA compared to WT
subjects. Effect sizes were small to negligible with slight variations for melanoma (-0.039 to 0.118), from
birth to 1 subjects. Effect sizes were small to negligible with slight variations for melanoma (-0.039 to 0.118), from
birth to 10 years of age after which the effect sizes become large and negative consistent with a
decrease in risk subjects. Effect sizes become large and negative consistent with a decrease in risk of developing melanoma vs non melanoma skin cancer in older children and adolescent
XPA subjects not exposed to moderate UV radiation.
Neu birth to 10 years of age after mann included to 10 years of any of any original tender of any decrease in risk of developing melanoma vs non melanoma skin cancer in older children and adolescent
XPA subjects not exposed to

RPA subjects not exposed to moderate UV radiation.

Neurological Outcomes (all corrected p values are <0.0026)

Neuroapoptosis and neurodegeneration showed large effect sizes (≥0.787) across all age groups,

indicating inc Neurological Outcomes (all corrected p values are <
COMENTIFY READ SURFERIST NOT SURFERIST AND SURFERIST AND INDEED A SURFERIST AND SURFER Neuroapoptosis and neurodegeneration showed large ef-
indicating increased potential for neurological damage in indicating increased potential for neurological damage in XPA. Neurodevelopmental disorder (NDD) indicating increased potential for neurological damage in XPA. Neurodevelopmental disorder (NDD)

consistently displayed large effect sizes (0.984), reflecting substantial developmental impact in XPA.
Neurological symptoms, Neuroinflammation, and Neuronal oxidative stress exhibited large effect sizes
(0.787), consisten

Neurological symptoms, Increased inflammation in go there is

(0.787), consistent with significant neurological symptoms, increased inflammation and increased

oxidative stress in subjects with moderate XPA.

Skin Aging an (0.984)

Skin Aging and Pigmentation (all corrected p values are <0.0026)

Skin aging consistently displayed large effect sizes (0.984) across all ages, reflecting significant aging

effects. Skin pigmentation generally sh Skin Aging and Pigmentation (all corrected p va
Skin aging consistently displayed large effect
effects. Skin pigmentation generally showed lar
at 0y and 0.827 at 15y), indicating substa
consistently showed large effect siz Skin aging consistently displayed large effect sizes (0.984) acroeffects. Skin pigmentation generally showed large effect sizes (0.984) acroeffects. Skin pigmentation generally showed large effect sizes (0.984), consistent Skin pigmentation generally showed large effect sizes (0.984), with some slight variability (0.905 at 0y and 0.827 at 15y), indicating substantial pigmentation changes. UV photosensitivity also consistently showed large ef effects. Skinning substantial pigmentation changes. UV photosensitivity also
consistently showed large effect sizes (0.984), consistent with significant sensitivity.
XPA Protein Expression (all corrected p values are <0.00

at 19y and 1992 at 1599), individually showed large effect sizes (0.984), consistent with significant sensitivity.

SPA Protein Expression (all corrected p values are <0.0026)

SPA protein expression displayed large negati consistently showed and consistent the significant sensitivity.

XPA Protein Expression (all corrected p values are <0.0026)

XPA protein expression displayed large negative effect sizes (-0.984) across all a

significantl XPA protein expression displayed large negative effect siz
significantly reduced XPA expression in XPA compared to WT
Summary
These data reveal substantial differences between WT arexposure. XPA subjects exhibit consistent

XPA protein expression in XPA compared to WT young subjects.
Summary
These data reveal substantial differences between WT and XPA subjects even in the absence of UV
exposure. XPA subjects exhibit consistent DNA repair defi Summary
Summary
These data reveal substantial differences between WT and XPA subjects exposure. XPA subjects exhibit consistent DNA repair deficiencies, inc
significant neurological impacts, and heightened skin aging and c These dat
exposure
significant
confirm th
consequer exposure. XPA subjects exhibit consistent DNA repair deficiencies, increased genome instability, significant neurological impacts, and heightened skin aging and cancer risk. These findings continue to confirm the critical expression the critical repairs and heightened skin aging and cancer risk. These findings continue to
confirm the critical role of XPA in maintaining genomic stability and underscore the potentially severe
consequences of significant only confirm the critical role of XPA in maintaining genomic stability and underscore the potentially severe
consequences of its deficiency.
(3) Wild Type (WT) subjects plus UV exposure versus subjects with mod consequences of its deficiency.

(3) Wild Type (WT) subjects plus UV exposure versus subjects with moderate XPA plus UV exposure

See Appendix B: Heat Map 3

consequences of the admissivery.

(3) Wild Type (WT) subjects plu:

See Appendix B: Heat Map 3

DNA Damage and Repair Pathw

)
! (3) Wild Type (WT) subjects plus UV exposure plus UV exposure versions are $<$ 0.0026)

Moderate UV exposure resulted in consistently large effect sizes (0.984) for DNA damage (CPD/6-4

across all age groups for XPA subject See Appendix B: Heat Map 3

DNA Damage and Repair Pat

Moderate UV exposure resul

across all age groups for XPA

0.984) for DNA NER Core, DI

mechanisms in XPA compare Moderate UV exposure resulted in consistently large effect sizes (0.984
across all age groups for XPA subjects, indicating substantial DNA dam
0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all a
mechanisms in Moderate UP expressed and the UV exposure results and the damage. Negative large effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all age groups reflect deficient repair mechanisms in XPA compared 0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all age groups reflect deficient repair mechanisms in XPA compared to WT. DNA replication stress showed large effect sizes (0.984) for most age groups, with a slig mechanisms in XPA compared to WT. DNA replication stress showed large effect sizes (0.984) for most
age groups, with a slight variation at 10y (0.827) and 15y (0.866), indicating significant replication stress
across all a age groups, with a slight variation at 10y (0.827) and 15y (0.866), indicating significant replication stress
across all age groups. ERCC2/XPD displayed a large negative effect size (-0.984) across all ages, consistent
wit

across all age groups. ERCC2/XPD displayed a large negative effect size (-0.984) across all ages, consistent
with impaired DNA repair.
Genome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instabil across all ages, and a large methods are solonged a large negative effect size (-100), and cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) and Non melanoma skin cancer risks consistently exhibited Genome Instability and Ca
Genome instability (CIN) and
effect sizes (0.984) across
The risk of developing me
and positive with only min Genome instability (CIN) and Non melanoma skin cancer risks consist
effect sizes (0.984) across all ages, consistent with persistent genome in
The risk of developing melanoma is small before age 5 years after whi
and posi effect sizes (0.984) across all ages, consistent with persistent genome instability in XPA compared to WT.
The risk of developing melanoma is small before age 5 years after which the effect size becomes large
and positive The risk of developing melanoma is small before age 5 years after which the effect size becomes large and positive with only minimal variability (≥ 0.905) in older age groups. and positive with only minimal variability (\geq 0.905) in older age groups.
Neurological Outcomes (all corrected p values are <0.0026 except for NDD at birth and age 5 years)

Neurological Outcomes (all corrected p values are <0.0026 except for NDD at birth and age 5 years) Neurological Outcomes (all corrected p values are <0.0026 except for NDD at birth and age 5 years)

Neuroapoptosis, Neurodegeneration, and NDD showed large effect sizes (\geq 0.787) across all age groups, indicating increased neurological damage in XPA. Neuroinflammation also showed large effect sizes (0.787) across all for Neuronal oxidative stress was also large (0.787) across all ages, indicating increased oxidative stress.

sizes (0.984), consistent with the potential for significant neurological symptoms in XPA. The effect size
for Neuronal oxidative stress was also large (0.787) across all ages, indicating increased oxidative stress.
Skin size (1.000), consistent with the potential for significant metallic given cympteric metallic stress.
Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effect sizes (0 Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effect sizes (0.984) across all ages, reflecting significant agine
effects. Skin pigmentation also showed large effec Skin aging consistently displayed large effect sizes (0.984) acroeffects. Skin pigmentation also showed large effect sizes (0.984), indicating substantial pigmentation changes. UV photosensitivity (0.984), indicating marke effects. Skin pigmentation also showed large effect sizes (0.984), with very slight variations (0.827 at 0y),
indicating substantial pigmentation changes. UV photosensitivity consistently showed large effect sizes
(0.984), entitive multiple interacting substantial pigmentation changes. UV photosensitivity consistently showed large effect sizes (0.984), indicating marked sensitivity.

XPA Protein Expression (all corrected p values are <0.0026

indicating substantial pigmentation changes. UV photosensitivity, substanting and standard (0.984), indicating marked sensitivity.

XPA Protein Expression (all corrected p values are <0.0026)

XPA protein expression displa (0.984), indicating marked sensitivity.

XPA Protein Expression (all corrected p values are <0.0026)

XPA protein expression displayed large negative effect size

significantly reduced XPA expression in XPA compared to WT. XPA protein expression displayed large negative effect siz
significantly reduced XPA expression in XPA compared to W1
Summary
The data reveal substantial differences between WT and XI
subiects exhibit consistent DNA repair

The data reveal substantial differences between WT and XPA subjects with moderate UV exposure. XPA signmentally reduced to the expression in the total comparison Summary
The data reveal substantial differences between WT and XPA
subjects exhibit consistent DNA repair deficiencies, increased
impacts, and increased skin a The data
Subjects e
Subjects e
impacts, a
maintainir subjects exhibit consistent DNA repair deficiencies, increased genome instability, significant neurological impacts, and increased skin aging and cancer risk. These findings highlight the critical role of XPA in
maintaining genomic stability and underscore the severe consequences of its deficiency.
(4) Wild Type (WT) subjects ve maintaining genomic stability and underscore the severe consequences of its deficiency.
(4) Wild Type (WT) subjects versus subjects with severe XPA without UV exposure
See Appendix B: Heat Map 4

(4) Wild Type (WT) subjects versus subjects with severe XPA without UV exposure
See Appendix B: Heat Map 4
DNA Damage and Repair Pathways (all corrected p values are <0.0026)

)
؛
؛ (4) Wild Type (14) subjects versus subjects with subjects vind the ST supprement See Appendix B: Heat Map 4

DNA Damage and Repair Pathways (all corrected p values are <0.0026)

Subjects with severe XPA, compared to WT sub **See Appending and Repair Pat**
Subjects with severe XPA, completed sizes (0.984) for DNA
damage. DNA NER Core, DN
consistently, reflecting sign Subjects with severe XPA, compared to WT subjects without UV experfect sizes (0.984) for DNA damage (CPD/6-4 PPs) across all age gr
damage. DNA NER Core, DNA NER-GG, and DNA NER-TC exhibited la
consistently, reflecting sig Effect sizes (0.984) for DNA damage (CPD/6-4 PPs) across all age groups, indicating substantial DNA
damage. DNA NER Core, DNA NER-GG, and DNA NER-TC exhibited large negative effect sizes (-0.984)
consistently, reflecting s damage. DNA NER Core, DNA NER-GG, and DNA NER-TC exhibited large negative effect sizes (-0.984)
consistently, reflecting significant deficiencies in DNA repair mechanisms in XPA subjects. DNA
replication stress also demons consistently, reflecting significant deficiencies in DNA repair mechanisms in XPA subjects. DNA
replication stress also demonstrated large effect sizes (0.984) across most age groups, with minor
variations at 10y (0.827) a replication stress also demonstrated large effect sizes (0.984) across most age groups, with minor
variations at 10y (0.827) and 15y (0.866), indicating elevated replication stress. ERCC2/XPD presented
large negative effe

variations at 10y (0.827) and 15y (0.866), indicating elevated replication stress. ERCC2/XPD presented
large negative effect sizes (-0.984) across all ages, consistent with impaired DNA repair.
Genome Instability and Cance variations at 10y (1001), indicating and the transmit of present in the pair.

Genome Instability and Cancer Risk (all corrected p values are <0.0026)

Genome instability (CIN) displayed large and consistent effect sizes (Genome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) displayed large and consistent effect sizes (0.984) across
indicating marked genomic instability in XPA subjects. Skin cancer Genome instability (CIN) displayed large and consistent effect sizes
indicating marked genomic instability in XPA subjects. Skin cancer r
melanoma) generally showed large effect sizes (0.984) across all ages for
and minor indicating marked genomic instability in XPA subjects. Skin cancer risks (both melanoma and non-
melanoma) generally showed large effect sizes (0.984) across all ages for non-melanoma skin cancer risk,
and minor variation menantary generally showed large effect sizes (0.912 to 0.984), suggesting overall significant skin cancer risks.
Neurological Outcomes (all corrected p values are <0.0026)
Neurological Outcomes (all corrected p values are

Neurological Outcomes (all corrected p values are <0.0026)

Support of the original state of 0.924 to 0.9 Neurological Outcomes (all corrected p values are <0.0026)

Neuroapoptosis and neurodegeneration showed large effect sizes (0.787) across all age groups, indicating increased neurological damage in XPA subjects. Neurodevelopmental disorder (NDD) consistently displayed high effect s indicating increased neurogical damage increased (0.984), reflecting substantial developmental impacts.
Neuroinflammation also showed large effect sizes (0.768) across all ages, indicating elevated
inflammation. Neurologic Neuroinflammation also showed large effect sizes (0.768) across all ages, indicating elevated
inflammation. Neurological symptoms exhibited large effect sizes (0.945), suggesting significant
neurological symptoms in XPA. Neurological symptoms exhibited large effect sizes (0.945), suggesting significant
neurological symptoms in XPA. Neuronal oxidative stress showed large effect sizes (0.768) across all ages,
consistent with increased oxidat

neurological symptoms in XPA. Neuronal oxidative stress showed large effect sizes (0.768) across all ages,
consistent with increased oxidative stress.
Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin a neurons is the increased oxidative stress.

Skin Aging and Pigmentation (all corrected p values are <0.0026)

Skin aging consistently displayed large effect sizes (0.945) across all age groups, reflecting market aging

eff Skin Aging and Pigmentation (all corrected
Skin aging consistently displayed large effects. Skin pigmentation generally show
15y), indicating substantial pigmentation (sizes (0.984), indicating marked sensitivity. Skin aging consistently displayed large effect sizes (0.945) across
effects. Skin pigmentation generally showed large effect sizes (
15y), indicating substantial pigmentation changes. UV photosens
sizes (0.984), indicating Skin and Skin aging consistently displayed large effect sizes (0.938), with some variations (0.827 at
15y), indicating substantial pigmentation changes. UV photosensitivity consistently showed large effect
sizes (0.984), i effect sizes (0.984), indicating substantial pigmentation changes. UV photosensitivity consistently showed large effect sizes (0.984), indicating marked sensitivity.
XPA Protein Expression (all corrected p values are <0.00

15y), indicating substantial pigmentation changes. Upper consisting parameters, when the tange since the sizes
sizes (0.984), indicating marked sensitivity.
XPA protein expression exhibited large negative effect sizes (-0. Sizes (1.984), XPA Protein Expression (all corrected p value XPA protein expression exhibited large neg

Summary

Summary XPA protein expression exhibited large negative effect size
marked decrease in XPA expression in XPA subjects compare
Summary
The data reveal substantial differences between WT and
exposure. XPA subiects exhibit consistent

XPA expression in XPA subjects compared to WT.
Summary
The data reveal substantial differences between WT and severe XPA subjects in the absence of UV
exposure. XPA subjects exhibit consistent DNA repair deficiencies, incr Summary
The data reveal substantial differences between WT and severe X
exposure. XPA subjects exhibit consistent DNA repair deficienci
significant neurological impacts, and heightened skin aging and
underscore the critica The data
exposure
significant
underscor
consequer exposure. XPA subjects exhibit consistent DNA repair deficiencies, increased genomic instability, significant neurological impacts, and heightened skin aging and cancer risk. These findings again underscore the critical ro expressed in the consequences of its deficiency.

Significant neurological impacts, and heightened skin aging and cancer risk. These findings again

underscore the critical role of XPA in maintaining genomic stability and significant increasing impressignificant impression in aging and cancer risk in these intension-
underscore the critical role of XPA in maintaining genomic stability and emphasize the severe
consequences of its deficiency. underscore the critical role of XPA in maintaining genomic stating, and emphasize the seven
consequences of its deficiency.
(5) Wild Type (WT) subjects plus UV exposure versus subjects with severe XPA plus UV exposure
See

consequences of its deficiency.

(5) Wild Type (WT) subjects plus UV exposure versus subjects with severe XPA plus UV exposure

See Appendix B: Heat Map 5

DNA Damage and Repair Pathways (all corrected p values are <0.0026

)
؛
؛ (5) Wild Type (WT) subjects plus UV exposure interacting subjects with severe XPA compared to WT subjects, when exposed to UV, exhibited consister effect sizes (0.984) for DNA damage (CPD/6-4 PPs) across all age groups, in See Appendix B: Heat Map 5
Subjects with severe XPA co
effect sizes (0.984) for DNA
damage. Large negative effec
age groups reflect marked Subjects with severe XPA compared to WT subjects, when exposed to effect sizes (0.984) for DNA damage (CPD/6-4 PPs) across all age gr
damage. Large negative effect sizes (-0.984) for DNA NER Core, DNA NE
age groups reflect effect sizes (0.984) for DNA damage (CPD/6-4 PPs) across all age groups, indicating substantial DNA
damage. Large negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all
age groups reflect ma damage. Large negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all
age groups reflect marked deficiencies in DNA repair mechanisms in subjects with severe XPA.
Importantly, DNA replication damage. Large in the deficiencies in DNA repair mechanisms in subjects with severe XPA.

Importantly, DNA replication stress also showed large effect sizes (0.984) across all ages, indicating

increased replication stress Importantly, DNA replication stress also showed large effect sizes (0.984) across all ages, indicating
increased replication stress in XPA. ERCC2/XPD displayed large negative effect sizes (-0.984) across all
ages, consiste

Increased replication stress in XPA. ERCC2/XPD displayed large negative effect sizes (-0.984) across all
ages, consistent with markedly impaired DNA repair.
Genome Instability and Cancer Risk (all corrected p values are <0 increased replication stress in the large properties in $\frac{1}{2}$ and $\frac{1}{2}$ across in $\frac{1}{2}$ across all ages, consistent with markedly inpairs a curve pair.

Genome instability and Cancer Risk (all corrected p v

Genome instability (CIN) exhibited large and stat

persistent genomic instability in XPA subjects. Skin

generall Genome instability (CIN) exhibited large and stable effect sizes (0.1)
persistent genomic instability in XPA subjects. Skin cancer risks (both
generally showed large effect sizes (0.866) across all ages, with a more
risk (persistent genomic instability in XPA subjects. Skin cancer risks (both melanoma and non-melanoma)
generally showed large effect sizes (0.866) across all ages, with a more medium effect size in melanoma
risk (0.433) at bir generally showed large effect sizes (0.866) across all ages, with a more medium effect size in melanoma
risk (0.433) at birth, in keeping with significant overall skin cancer risk. risk (0.433) at birth, in keeping with significant overall skin cancer risk.

Showed Skin cancer risk. risk (0.433) at birth, in keeping with significant overall skin cancer risk.

Neuroapoptosis and neurodegeneration showed large effec
all age groups, indicating increased neurological damage in
(NDD) consistently displayed large effect sizes (0.984), re
Neuroinflammation showed large effect sizes (0 Neuron prepare in Markon and neuron in the neuron showed large groups, indicating increased neurological damage in XPA subjects. Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecti (NDD) consistently displayed large effect sizes (0.984), reflecting substantial developmental impact.
Neuroinflammation showed large effect sizes (0.748) across all ages, indicating elevated inflammation.
Neurological sym Neuroinflammation showed large effect sizes (0.748) across all ages, indicating elevated inflammation.
Neurological symptoms exhibited large effect sizes (0.984), suggesting significant neurological symptoms
in subjects wi Neurological symptoms exhibited large effect sizes (0.984), suggesting significant neurological symptoms
in subjects with severe XPA exposed to moderate UV exposure. Neuronal oxidative stress showed large
effect sizes (0.7

Neurological symptoms in subjects with severe XPA exposed to moderate UV exposure. Neuronal oxidative stress showed large effect sizes (0.748) across all ages, indicating increased oxidative stress.
Skin Aging and Pigmenta in subject with severe the inputation to the linear exponent to moderate the model of
effect sizes (0.748) across all ages, indicating increased oxidative stress.
Skin aging, Skin pigmentation and UV photosensitivity consi Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging, Skin pigmentation and UV photosensitivity consistently dis
across all age groups, reflecting significant aging effects, substantial
marked UV sen Skin aging, Skin pigmentation and UV photosensitivity consister
across all age groups, reflecting significant aging effects, subst
marked UV sensitivity.
XPA Protein Expression (all corrected p values are <0.0026)
XPA prot Skin aging, Skin pigmentation and UV photosensitivity, Skin pigmentation changes, and
across all age groups, reflecting significant aging effects, substantial skin pigmentation changes, and
marked UV sensitivity.
XPA prote

marked UV sensitivity.

APA Protein Expression (all corrected p values are <0.0026)

APA protein expression exhibited large negative effect sizes (-0.984) across all age groups, indicating a

marked reduction in XPA expres Marked UV sensitivity.

XPA Protein Expression

XPA protein expression

marked reduction in XF

Summary XPA protein expression exhibited large negative effect size
marked reduction in XPA expression in XPA subjects compare
Summary
The data reveal substantial differences between WT and se
moderate UV radiation. Subiects with

XPA protein expression exhibited large negative effect sizes (sizes of all age groups) materiality and severe
Summary
The data reveal substantial differences between WT and severe XPA subjects when both are exposed to
mode Summary
The data reveal substantial differences between WT and severe XPA s
moderate UV radiation. Subjects with severe XPA exhibit marked I
genomic instability, significant neurological impacts, and heightened
findings co The data
moderate
genomic i
findings co
severe cor moderate UV radiation. Subjects with severe XPA exhibit marked DNA repair deficiencies, increased
genomic instability, significant neurological impacts, and heightened skin aging and cancer risk. These
findings continue to genomic instability, significant neurological impacts, and heightened skin aging and cancer risk. These
findings continue to underscore the critical role of XPA in maintaining genomic stability and highlight the
severe con findings continue to underscore the critical role of XPA in maintaining genomic stability and highlight the severe consequences of its deficiency.
(6) Subjects with Moderate XPA versus subjects with severe XPA without UV e findings continue to underscore the critical role of Armship in maintaining genomic critical role of Severe consequences of its deficiency.
(6) Subjects with Moderate XPA versus subjects with severe XPA without UV exposure

(6) Subjects with Moderate XPA versus subjects with severe XPA without UV exposure
See Appendix B: Heat Map 6
DNA Damage and Repair Pathways (all corrected p values are <0.0026)

)
؛
؛ Subjects with severe XPA, compared to those with moderate XPA, without UV exposure exhibited
somewhat variable but large effect sizes (>0.747) for DNA damage (CPD/6-4 PPs) across all age groups. See Appendix B: Heat Map 6
Subjects with severe XPA, a
somewhat variable but large
Large negative effect sizes (sproups reflect more marked Subjects with severe XPA, compared to those with moderate XPA, somewhat variable but large effect sizes (>0.747) for DNA damage (CP Large negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, groups reflect more mar Subject with several and particle is set (50.747) for DNA damage (CPD/6-4 PPs) across all age groups.
Large negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all age
groups reflect more mar Large negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA NER-TC across all age
groups reflect more marked deficiencies in DNA repair mechanisms in severe XPA subjects compared to
moderate XPA. DNA replica groups reflect more marked deficiencies in DNA repair mechanisms in severe XPA subjects compared to
moderate XPA. DNA replication stress showed effect sizes ranging from small to large (0.197 to 0.984),
indicating elevated groups reflect MPA. DNA replication stress showed effect sizes ranging from small to large (0.197 to 0.984),
indicating elevated replication stress with some variation across ages. ERCC2/XPD displayed consistently
large an

indicating elevated replication stress with some variation across ages. ERCC2/XPD displayed consistently
large and negative effect sizes (-0.984) across all ages, consistent with more impaired DNA repair.
Genome Instabilit indicating electronary process and replication stress with more impaired DNA repair.

Genome Instability and Cancer Risk (all corrected p values are <0.0026)

Genome instability (CIN) exhibited large and stable effect size denome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) exhibited large and stable effect sizes (0.905 to 0.984) across all ages, interestient increased genomic instability in sever Genome instability (CIN) exhibited large and stable effect sizes (0.905 to
persistent increased genomic instability in severe XPA subjects. Skin ca
non-melanoma) generally showed large effect sizes (0.748 to 0.984) a
melan Fersistent increased genomic instability in severe XPA subjects. Skin cancer risks (both melanoma and non-melanoma) generally showed large effect sizes (0.748 to 0.984) across all ages, with variations in melanoma risk ran persistent increased generally showed large effect sizes (0.748 to 0.984) across all ages, with variations in
melanoma risk ranging from 0.669 to 0.827, suggesting significant overall increased skin cancer risk.
melanoma r melanoma risk ranging from 0.669 to 0.827, suggesting significant overall increased skin cancer risk.

Hereinande is a showed size of the variation of the variation of the variations in the variation of the varia

The vari melanoma risk ranging from 0.669 to 0.827, suggesting significant overall increased skin cancer risk.

Neuroapoptosis and neurodegeneration showed large effect
indicating increased neurological damage in severe XF
Neurodevelopmental disorder (NDD) consistently displa
substantial developmental impact. Neuroinflammation show
 Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecting
Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecting
substantial developmental impa Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecting
substantial developmental impact. Neuroinflammation showed moderate effect sizes (0.748) across all
ages, indicating elevated substantial developmental impact. Neuroinflammation showed moderate effect sizes (0.748) across all
ages, indicating elevated inflammation. Neurological symptoms exhibited large effect sizes (0.984),
consistent with signif substantial developmental inflammation. Neurological symptoms exhibited large effect sizes (0.984),
consistent with significant neurological symptoms in severe XPA. Neuronal oxidative stress also showed
large effect sizes

and interact with significant neurological symptoms in severe XPA. Neuronal oxidative stress also showed
large effect sizes (0.748 to 0.787) across all ages, indicating increased oxidative stress.
Skin Aging and Pigmentati consistent with significant metallicity of the U.S. Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effec Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effect sizes (0.905 to 0.984) across all age
significant aging effects. Skin pigmentation also generally showed varia Skin aging consistently displayed large effect sizes (0.905 to 0
significant aging effects. Skin pigmentation also generally showe
across all ages, indicating substantial pigmentation changes.
XPA Protein Expression (all c Significant aging effects. Skin pigmentation also generally showed variably effect sizes (0.276 to 0.905) across all ages, indicating substantial pigmentation changes.
XPA Protein Expression (all corrected p values are <0.

significant aging effects. Skin pigmentation also generally show that also generally protein expression (all corrected p values are <0.0026)
Skin protein expression exhibited large negative effect sizes (-0.984) across all APITE analysis, indicating substantial pigmentation changes.

XPA Protein expression exhibited large negative effect size

significantly reduced XPA expression in severe XPA subjects c

Summary XPA protein expression exhibited large negative effect siz
significantly reduced XPA expression in severe XPA subjects
Summary
The data reveal substantial differences between severe
exposure. Severe XPA subiects exhibit co

XPA subjects and the series of the size of the size of the size of the sizes (-0.984) and size is all all assumed to moderate XPA.

Summary

The data reveal substantial differences between severe and moderate XPA subjects Summary
The data reveal substantial differences between severe and moderate XPA subjects
pexposure. Severe XPA subjects exhibit consistently increased DNA repair deficiencies, in
instability, significant neurological impac The data
exposure.
instability,
underscore
consequen exposure. Severe XPA subjects exhibit consistently increased DNA repair deficiencies, increased genomic
instability, significant neurological impacts, and heightened skin aging and cancer risk. These findings
underscore th instability, significant neurological impacts, and heightened skin aging and cancer risk. These findings
underscore the critical role of XPA in maintaining genomic stability and highlight the severe
consequences of its def inderscore the critical role of XPA in maintaining genomic stability and highlight the severe
consequences of its deficiency even in the absence of moderate UV exposure.
(7) Subjects with Severe XPA versus subjects with se underscript and critical role of Militam in maintaining generate UV exposure.

(7) Subjects with Severe XPA versus subjects with severe XPA plus moderate UV exposure

See Appendix B: Heat Map 7

(7) Subjects with Severe XPA versus subjects with severe XPA plus moderate UV exposure
See Appendix B: Heat Map 7
DNA Damage and Repair Pathways (all corrected p values are <0.0026)

)
!
! Subjects with severe XPA compared to those with severe XPA exposed to moderate UV radiation
exhibited large effect sizes for DNA damage (CPD/6-4 PPs) across all age groups, with modest variability See Appendix B: Heat Map 7
Subjects with severe XPA c
exhibited large effect sizes fo
ranging from 0.354 to 0.984
NER-TC across all age group: Subjects with severe XPA compared to those with severe XPA experibited large effect sizes for DNA damage (CPD/6-4 PPs) across all a
ranging from 0.354 to 0.984. Negative effect sizes (-0.984) for DNA N
NER-TC across all ag Exhibited large effect sizes for DNA damage (CPD/6-4 PPs) across all age groups, with modest variability
ranging from 0.354 to 0.984. Negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA
NER-TC across all a ranging from 0.354 to 0.984. Negative effect sizes (-0.984) for DNA NER Core, DNA NER-GG, and DNA
NER-TC across all age groups indicate significant deficiencies in DNA repair mechanisms in severe XPA
subjects. DNA replicat NER-TC across all age groups indicate significant deficiencies in DNA repair mechanisms in severe XPA
subjects. DNA replication stress showed variable effect sizes (ranging from -0.590 to 0.905), indicating
elevated replic NER-TC across all ages are across all ages and the matched replication stress showed variable effect sizes (ranging from -0.590 to 0.905), indicating elevated replication stress with some variable moderate to large decreas subsequential replication stress with some variable moderate to large decrease at older ages ages. ERCC2/XPD
displayed consistently negative effect sizes (-0.905) across all ages, consistent with marked impaired DNA
repair elevated replies the replication stress with some variable model in the replication specification of displayed consistently negative effect sizes (-0.905) across all ages, consistent with marked impaired DNA repair.
Genome repair.
Genome Instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) exhibited large and stable effect sizes (0.827 to 0.905) across all ages, indicating

displayed consistently negative effect sizes (-0.902) across all ages, indicating
denome instability and Cancer Risk (all corrected p values are <0.0026)
Genome instability (CIN) exhibited large and stable effect sizes (0. Genome instability (CIN) exhibited large and stable effect sizes (0.827 to
persistent genomic instability in severe XPA subjects with moderate UV
Discuss are the corrected product of the corrected by persistent genomic instability in severe XPA subjects with moderate UV exposure. Skin cancer risks (both
persistent genomic instability in severe XPA subjects with moderate UV exposure. Skin cancer risks (both
persistent g persistent genomic instability in severe XPA subjects with moderate UV exposure. Skin cancer risks (both

mentation and non-melanoma (0.197 to 0.905), suggesting overall significant skin cancer risk.
Reurological Outcomes (all corrected p values are <0.0026)
Neuroapoptosis and neurodegeneration showed large effect sizes (0.709 ages, with variable in melanoma (1441) is very proggering overall significant skin cancer view.
Neuroapoptosis and neurodegeneration showed large effect sizes (0.709 to 0.984) across all age
indicating increased neurologic Neuroapoptosis and neurodegeneration showed large effec

indicating increased neurological damage in severe XPA st

exposure. Neurodevelopmental disorder (NDD) consistently

substantial developmental impact. Neuroinflammat indicating increased neurological damage in severe XPA subjects compared to moderate XPA with UV exposure. Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecting substantial develop exposure. Neurodevelopmental disorder (NDD) consistently displayed large effect sizes (0.984), reflecting
substantial developmental impact. Neuroinflammation showed large effect sizes (0.709) across all ages,
indicating el exposure the velopmental impact. Neuroinflammation showed large effect sizes (0.709) across all ages,
indicating elevated inflammation. Neurological symptoms exhibited large effect sizes (0.984), suggesting
a significant d indicating elevated inflammation. Neurological symptoms exhibited large effect sizes (0.984), suggesting
a significant difference in neurological symptoms in severe XPA vs moderate XPA. Neuronal oxidative
stress showed lar

indicating electron minimization. Neurological symptoms in severe XPA vs moderate XPA. Neuronal oxidative
a significant difference in neurological symptoms in severe XPA vs moderate XPA. Neuronal oxidative
stress showed la a significant difference in neurological symptoms in the contract in the interest of the stress.
Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effect sizes (0.905) Skin Aging and Pigmentation (all corrected p values are <0.0026)
Skin aging consistently displayed large effect sizes (0.905) across all age groups, reflecting
aging effects. Skin pigmentation generally showed large effect Skin aging consistently displayed large effect sizes (0.905) acrossing effects. Skin pigmentation generally showed large effect indicating substantial pigmentation changes. UV photosensitivit sizes (0.984), indicating sign aging effects. Skin pigmentation generally showed large effect sizes (0.590 to 0.905) across all ages,
indicating substantial pigmentation changes. UV photosensitivity consistently also showed large effect
sizes (0.984), i aging entertation pignemiation generally shorted ingerency (there is story) and to alger)
indicating substantial pigmentation changes. UV photosensitivity consistently also showed large effect
sizes (0.984), indicating sig

sizes (0.984), indicating significant sensitivity.
XPA Protein Expression (all corrected p values are <0.0026)
XPA protein expression exhibited negative effect sizes (-0.984) across all age groups, indicating
significantly xpa Protein Expression (all corrected p values
XPA protein expression exhibited negative
significantly reduced XPA expression in severe
Summary XPA protein expression exhibited negative effect sizes
significantly reduced XPA expression in severe XPA subjects
Summary
The data reveal substantial differences between severe XP
Severe XPA subiects exposed to moderate U

Significantly reduced XPA expression in severe XPA subjects compared to those with UV exposure.

Summary

The data reveal substantial differences between severe XPA and severe XPA plus UV exposure subjects.

Severe XPA sub Summary
Summary
The data reveal substantial differences between severe XPA and severe XPA plus UV exposure su
Severe XPA subjects exposed to moderate UV radiation exhibit consistently increased DNA
deficiencies, increased The data
Severe XF
Severe XF
deficiencie
and cance
underscor
consequer The data reveal of the data revealed by the data revealisting increased DNA repair
deficiencies, increased genomic instability, significant neurological impacts, and heightened skin aging
and cancer risk compared to those Seficiencies, increased genomic instability, significant neurological impacts, and heightened skin aging
and cancer risk compared to those subjects with severe XPA without UV exposure. These findings
underscore the critica definite the critical compared to those subjects with severe XPA without UV exposure. These findings
underscore the critical role of XPA in maintaining genomic stability and highlight the severe
consequences of its deficie underscore the critical role of XPA in maintaining genomic stability and highlight the severe consequences of its deficiency, exacerbated by UV radiation.
Discussion

The present virtual longitudinal study comprehensively evaluates the impact of XPA (xeroderma Consequences of the present virtual longitudinal study comprehensively
The present virtual longitudinal study comprehensively
The present group A) and UV exposure on DNA damage, ge
The skin cancer and XPA protein expressio $\begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$ The preser
pigmentosi
aging, skin
Our findin_i
moderate
conditions. The present wird in the present virtual longitudinal study comprehensively procedure in the impact of protein
aging, skin cancer and XPA protein expression across six different age groups from birth to age 20 years.
Our fi piging, skin cancer and XPA protein expression across six different age groups from birth to age 20 years.
Our findings highlight the marked differences between WT (wild type) subjects and subjects with
moderate and severe our findings highlight the marked differences between WT (wild type) subjects and subjects with
moderate and severe XPA, as well as the exacerbating effects of moderate UV exposure on these
conditions.
DNA Damage and Repai Our final subsetsed and severe XPA, as well as the exacerbating effects of moderate UV exposure on these
conditions.
DNA Damage and Repair Pathways
Our results demonstrate consistently large effect sizes for DNA damage (CP

moditions.

DNA Damage and Repair Pathways

Our results demonstrate consistently large effect sizes for DNA damage (CPD/6-4 PPs) across all age

groups in both WT and XPA subjects exposed to UV radiation. This aligns with conditions.
DNA Damage and Repair Pathways
Our results demonstrate consistently large effect sizes for DNA damage (CPD/6-4 PPs) across all age
groups in both WT and XPA subjects exposed to UV radiation. This aligns with pr Our results demonstrate consister
groups in both WT and XPA subject
shown UV radiation induces substa groups in both WT and XPA subjects exposed to UV radiation. This aligns with previous studies that have
shown UV radiation induces substantial DNA damage, primarily in the form of cyclobutane pyrimidine
hown UV radiation i grown UV radiation induces substantial DNA damage, primarily in the form of cyclobutane pyrimidine
shown UV radiation induces substantial DNA damage, primarily in the form of cyclobutane pyrimidine $s_{\rm OAP}$ and $s_{\rm OAP}$ and $p_{\rm OAP}$ damage, primarily in the form of cyclobutane pyrimidine pyrimi

dimers (CPDs) and 6-4 photoproducts (6-4 PPs) [23]. Notably, DNA repair mechanisms such as NER
(nucleotide excision repair) exhibited significant deficiencies in XPA subjects, with negative effect sizes
for DNA NER Core, N for DNA NER Core, NER-GG (global genomic NER), and NER-TC (transcription-coupled NER). This is

For Dumistent with the role of XPA in the NER pathway, which is crucial for repairing UV-induced DNA
damage [10,11].
Genome Instability and Cancer Risk
Large and stable effect sizes for genome instability (CIN) and skin ca consistent with the role of XPA in the role of XPA in the Real pathway, which is crucial for repairing 11 minutes and
Consider the Real intervals and State and State is career and stable effect sizes for genome instability Genome Instabili
Large and stable
underscore the p
with established
genomic instabili Large and stable effect sizes for g
underscore the persistent risks ass
with established research indicating
genomic instability and cancer susc
exacerbates these risks, further h
preventing carcinogenesis [11]. underscore the persistent risks associated with both XPA and UV exposure. These findings are in line
with established research indicating that deficiencies in DNA repair mechanisms significantly increase
genomic instabilit with established research indicating that deficiencies in DNA repair mechanisms significantly increase
genomic instability and cancer susceptibility [24]. These data also indicate that moderate UV exposure
exacerbates thes when the instability and cancer susceptibility [24]. These data also indicate that moderate UV exposure
exacerbates these risks, further highlighting the importance of effective DNA repair pathways in
preventing carcinogen

exacerbates these risks, further highlighting the importance of effective DNA repair pathways in
preventing carcinogenesis [11].
Neurological Outcomes
The deleterious neurological impact of XPA, particularly in younger age exacting carcinogenesis [11].

Neurological Outcomes

The deleterious neurological impact of XPA, particularly in younger age groups, is evident from the large

effect sizes observed for neurodevelopmental disorder (NDD) a preventive to the Meurological Outcomes
The deleterious neurological im
effect sizes observed for neurological
DNA repair in neurodevelopmer The deleterious neurolo
effect sizes observed
developmental sensitivi
DNA repair in neurodeve
subjects suggest that c
deficits [7]. Recent sti effect sizes observed for neurodevelopmental disorder (NDD) and neurological symptoms. This
developmental sensitivity to DNA damage has been previously reported, emphasizing the critical role of
DNA repair in neurodevelopm developmental sensitivity to DNA damage has been previously reported, emphasizing the critical role of
DNA repair in neurodevelopment [6]. The consistent large effect sizes for neuronal oxidative stress in XPA
subjects sug DNA repair in neurodevelopment [6]. The consistent large effect sizes for neuronal oxidative stress in XPA
subjects suggest that oxidative damage may be a contributing factor to the observed neurological
deficits [7]. Rece DRA represent that oxidative damage may be a contributing factor to the observed neurological
deficits [7]. Recent studies have further linked impaired DNA damage response mechanisms to
microcephaly and progressive cogniti

subjects suggest that studies have further linked impaired DNA damage response mechanisms to
deficits [7]. Recent studies have further linked impaired DNA damage response mechanisms to
microcephaly and pigmentation
Skin Ag microcephaly and progressive cognitive impairment in individuals with XP [25, 26].
Skin Aging and Pigmentation
The large effect sizes for skin aging and pigmentation changes in XPA subjects, both with and without UV
exposu Skin Aging and Pigmentation
The large effect sizes for skin aging and pigmentation changes in XPA subjects, both
exposure, are consistent with the clinical manifestations of xeroderma pigment
photosensitivity in younger in The large effect sizes for skin
exposure, are consistent with
photosensitivity in younger ir
radiation, particularly in susce
XPA Protein Expression Exposure, are consistent with the clinical manifestations of xeroderma pigmentosum. The increased
photosensitivity in younger individuals further underscores the need for protective measures against UV
radiation, particula

photosensitivity in younger individuals further underscores the need for protective measures against UV
radiation, particularly in susceptible populations [1,3,8].
XPA Protein Expression
The observed negative effect sizes photosensitivity in susceptible populations [1,3,8].
The observed negative effect sizes for XPA protein expression across all age groups in XPA subjects
compared to WT highlight the significant deficiency in XPA expression XPA Protein Expression
The observed negative effect sizes for XPA protein ex
compared to WT highlight the significant deficiency in
with the known loss of function (LOF) mutations in XPA
non-functional XPA protein (severe The observed negative
compared to WT highli
with the known loss of
non-functional XPA prot
DNA damage and its ass compared to WT highlight the significant deficiency in XPA expression in these individuals. This aligns
with the known loss of function (LOF) mutations in XPA patients that lead to reduced (moderate XPA) or
non-functional with the known loss of function (LOF) mutations in XPA patients that lead to reduced (moderate XPA) or
non-functional XPA protein (severe XPA), compromising the NER pathway and increasing susceptibility to
DNA damage and i

with the known and the known (LOF) mutations in the KPR pathway and increasing susceptibility to
DNA damage and its associated risks [11].
Comparisons and Implications
The comparison between moderate and severe XPA subject NA damage and its associated risks [11].

Comparisons and Implications

The comparison between moderate and severe XPA subjects reveals a gradient of severity, with severe

XPA subjects exhibiting more pronounced deficienc Comparisons and Implications
The comparison between moderate and s
XPA subjects exhibiting more pronounce
instability, skin cancers and neurodevelo
exacerbates these differences, emphasizi The comparison between models

SPA subjects exhibiting more

instability, skin cancers and n

exacerbates these differences,

conditions [10,24]. The comparison between moderate and the comparison between moderate and severe instability, skin cancers and neurodevelopmental delays (NDD). The addition of UV exposure further exacerbates these differences, emphasizing t instability, skin cancers and neurodevelopmental delays (NDD). The addition of UV exposure further
exacerbates these differences, emphasizing the combined effects of environmental factors on genetic
conditions [10,24].
Con exacerbates these differences, emphasizing the combined effects of environmental factors on genetic
conditions [10,24].
Conclusions and Future Directions exactions [10,24].
conditions [10,24].
Conclusions and Future Directions conditions [10,24].
Conclusions and Future Directions

The findings from this study provide important insights into the mechanisms underlying XPA and the exacerbating effects of UV exposure. These results underscore the importance of early detection and intervention in managin exactly and the seated for rigorous UV protection strategies, particularly in
younger individuals and those with compromised DNA repair mechanisms. Future research should focus
on exploring therapeutic approaches including younger individuals and those with compromised DNA repair mechanisms. Future research should focus
on exploring therapeutic approaches including AI assisted virtual drug trials [13,14] to enhance DNA
repair capacity in XPA younger in the those with compression individuals and further investigating the long-term neurological impacts
of DNA repair capacity in XPA and other XP patients and further investigating the long-term neurological impact repair capacity in XPA and other XP patients and further investigating the long-term neurological impacts
of DNA repair deficiencies.
A detailed assessment of the Advantages and Limitations of this aiHumanoid based virtual

of DNA repair deficiencies.
A detailed assessment of the Advantages and Limitations of this aiHumanoid based virtual longitudinal
study of XPA is presented in Appendix C. study of XPA is presented in Appendix C.
REFERENCES A detailed assessment of the Advantages and Limitations of this aidentified based virtual longitudinal
study of XPA is presented in Appendix C.
REFERENCES

1 Citernesi, U., & Di Liddo, R. (2021). Xeroderma Pigmentosum: General Aspects and Management. |
|
|
|

Journal of Personalized Medicine, 11(11), 1146. DOI: 10.3390/jpm11111146.
2 Jinseok Kim et al. (2023). Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature
10.1038/s41586-023-05959-z.
3 Lehmann, A. R., e 1 Journal of Personalized Medicine, 11(11), 1146. DOI: 10.3390/jpm11111146.
1 Jinseok Kim et al. (2023). Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature. DOI:
10.1038/s41586-023-05959-z.
3 Lehmann, March Preside Medicine, 12(12), 12 (12), 1146. Philippine, 11
10.1038/s41586-023-05959-z.
3 Lehmann, A. R., et al. (2007). Xeroderma pigmentosum. Orphanet Journal of
4 Bradford, P. T., et al. (2011). Cancer and neurologica

2 J.1038/s41586-023-05959-z.
2 Jehmann, A. R., et al. (2007). Xeroderma pigmentosum. Orphanet Journal of Rare Diseases, 2, 70.
2 Bradford, P. T., et al. (2011). Cancer and neurological degeneration in xeroderma pigmentosum 10.1038/s41586-023-05959-z.

3 Bradford, P. T., et al. (2011). Cancer and neurological degeneration in xeroderma pigmentosum:
3 Lehmann, A. R., A. Digiovanna, J. J. (2015). Thirty years of research on xeroderma pigmentosum
3 Kraemer, K. H., & Digiovan term follow-up characterizes the role of DNA repair. Journal of Medical Genetics, 48(3), 168-176.
5 Kraemer, K. H., & DiGiovanna, J. J. (2015). Thirty years of research on xeroderma pigmentosum at the
National Institutes o

damage may affect it. NeuroSignals, 16(4), 280-290. National Institutes of Health. Photochemical, and Photochemistry (19, 1921)
6 Brooks, P. J. (2008). Brain repair in an endogenous context: exploring neur
damage may affect it. NeuroSignals, 16(4), 280-290.
7 Barzilai, A.,

National Institutes of Health. Photochemistry and Photobiology, 91(3), 452-459.
6 Brooks, P. J. (2008). Brain repair in an endogenous context: exploring neurogenesis and how DNA
damage may affect it. NeuroSignals, 16(4), 2 6 Brooks, P. M. (2007). Brain repair in an endogenous contents enprintly the specific and how DNA
damage may affect it. NeuroSignals, 16(4), 280-290.
1109-1115.
8 Moriwaki, S., & Kraemer, K. H. (2001). Xeroderma pigmentosu damage may affect in themselomaty 22(1), 200 2011
7 Barzilai, A., & Yamamoto, K. I. (2004). DNA damag
1109-1115.
8 Moriwaki, S., & Kraemer, K. H. (2001). Xeroderm
laboratory. Photodermatology, Photoimmunology &
9 Friedberg

7 Barzilai, A., 2011)
1109-1115.
8 Moriwaki, S., & Kraemer, K. H. (2001). Xeroderma pigmentosum: bridging a gap between clinic and
10 Barzilai, B. C., et al. (2006). DNA Repair and Mutagenesis. ASM Press.
10 DiGiovanna. J. ---------
8 Moriwaki,
laboratory. F
9 Friedberg,
10 DiGiovar

8 Moratory. Photodermatology, Photoimmunology & Photomedicine, 17(2), 47-54.
9 Friedberg, E. C., et al. (2006). DNA Repair and Mutagenesis. ASM Press.
10 DiGiovanna, J. J., & Kraemer, K. H. (2012). Shining a light on xerod laboratory. Photodera, E. C., et al. (2006). DNA Repair and Mutagenesis. ASM Press.
10 DiGiovanna, J. J., & Kraemer, K. H. (2012). Shining a light on xeroderma pig
Investigative Dermatology, 132(3 Pt 2), 785-796.
11 Cleave 9 Friedberg, Coloranna, J. J., & Kraemer, K. H. (2012). Shining a light on xerodinvestigative Dermatology, 132(3 Pt 2), 785-796.
11 Cleaver, J. E., et al. (2009). Xeroderma pigmentosum: from a rare disea
disorders. EMBO Mo

Investigative Dermatology, 132(3 Pt 2), 785-796.
11 Cleaver, J. E., et al. (2009). Xeroderma pigmentosum: from a rare disease to a paradigm for DNA repair
disorders. EMBO Molecular Medicine, 1(2), 78-88.
12 Kraemer, K. H.,

Investigative Dermatology, 132(3 Pt 2), 785-796.
11 Cleaver, J. E., et al. (2009). Xeroderma pigmentosum: from a rare disease to a paradigm for DNA repair
disorders. EMBO Molecular Medicine, 1(2), 78-88.
12 Kraemer, K. H., disorders. EMBO Molecular Medicine, 1(2), 78-88.
12 Kraemer, K. H., et al. (2007). Hereditary disease, DNA repair, and DNA repair disorders. Methods in
Molecular Biology, 409, 355-377. Morrison and Christman Molecular y ₄(2), 72-2014
12 Kraemer, K. H., et al. (2007). Hereditary diseas
Molecular Biology, 409, 355-377. 12 Machine, K. H., et al. (2007). Hereditary discusses provided by the DNA repair.
Molecular Biology, 409, 355-377. Molecular Biology, 409, 355-377.

13 Danter, W. R. (2023). Advancing Drug Development with aiHumanoid Simulations: A Virtual Phase 1
Comparative Study of Standard Chemotherapy versus Standard Chemotherapy plus COTI-2 for Pancreatic
Adenocarcinoma. medRxiv.

14 Danter, W. R. (2023). HAI-VECT(SCD): AI-Humanoid Enabled Virtual Clinical Trial for Sickle Cell Disease.

14 Danter, W. R. (2023). HAI-VECT(SCD): AI-Humanoid Enabled Virtual Clinic
medRxiv. https://doi.org/10.1101/2023.10.17.23297152
15. Danter WR. Tracing Alzheimer's Genetic Footprints: A Pioneering Long
Intelligence to Unrav medRxiv. https://doi.org/10.1101/2023.10.17.23297152
15. Danter WR. Tracing Alzheimer's Genetic Footprints: A Pioneering Longitudinal Study Using Artificial
Intelligence to Unravel Mutation- Driven Risks and Progression in medana mapps, medang apartama nagparakan nama 15.
15. Danter WR. Tracing Alzheimer's Genetic Footprints:
Intelligence to Unravel Mutation- Driven Risks and Prog
16. Danter WR, Tracing Alzheimer's Genetic Footprints:
Intell

Intelligence to Unravel Mutation- Driven Risks and Progression in Virtual Patients; Part 1 – The APOE
genotypes medRxiv 2024.04.02.24305206; doi: https://doi.org/10.1101/2024.04.02.24305206
16. Danter WR, Tracing Alzheimer genotypes medRxiv 2024.04.02.24305206; doi: https://doi.org/10.1101/2024.04.02.24305206
16. Danter WR, Tracing Alzheimer's Genetic Footprints: A Pioneering Longitudinal Study Using Artificial
Intelligence to Unravel Mutati

16. Danter WR, Tracing Alzheimer's Genetic Footprints: A Pioneering Longitudinal Study Using Artificial
Intelligence to Unravel Mutation-Driven Risks and Progression in Virtual Patients; Part 2 – The APP,
PSEN1 and PSEN2 m 16. Danter WR, Tracing Alzheimer's Genetic Footprints: A Pioneering Longitudinal Study Using Artificial
Intelligence to Unravel Mutation-Driven Risks and Progression in Virtual Patients; Part 2 – The APP,
PSEN1 and PSEN2 m INTERT INTERTMIN MULTIMET IN 2024 DOI: 10.21203/rs.3.rs-4320367/v1
17, Esmail S, Danter WR, DeepNEU©: Introducing aiCRISPRL, a hybrid AI stem cell and organoid
simulation platform with broad gene editing capabilities and a 17, Esmail S, Danter WR, DeepNEU©: Introducing aiCRISPRL, a hybrid
simulation platform with broad gene editing capabilities and applications
doi: https://doi.org/10.1101/2022.06.18.496679
18 Personal communication (2023) w simulation platform with broad gene editing capabilities and applications bioRxiv 2022.06.18.496679;
doi: https://doi.org/10.1101/2022.06.18.496679
18 Personal communication (2023) with Dr Arjen F. Thiel, Erasmus Universit

simulation platform with broad gene enting superimones and applications and applications of the Series Rotterdam,
18 Personal communication (2023) with Dr Arjen F. Thiel, Erasmus University Medical Centre, Rotterdam,
19. C doi: https://doi.org/10.12023.12.18 Personal communication (2023) with Dr Arjen
the Netherlands.
19. Cliff, N. (1996). Ordinal Methods for Be
https://doi.org/10.4324/9781315806730
20. Romano. J.. Kromrev. J. D.. Coraggio.

19 Cliff, N. (1996). Ordinal Methods for Behavioral Data Analysis (1st ed.). Psychology Press.
https://doi.org/10.4324/9781315806730
20. Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J. (2006) Appropriate statisti https://doi.org/10.4324/9781315806730
20. Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J. (2006) Appropriate statistics for ordinal
data: Should we really be using t-tests and Cohen's d for evaluating group diffe https://doi.org/10.4324/9781315806730
20. Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J. (2006) Appropriate statistics for ordinal level
data: Should we really be using t-tests and Cohen's d for evaluating group Marten, Marten, J. (2011)
20. Romano, J., Kromrey, J. D., Coraggio, J
data: Should we really be using t-tests are
other surveys? Presented at the Annual M
21. Zhiyuan Wan, Xin Xia, David Lo, and
Software Development Practi

data: Should we really be using t-tests and Cohen's d for evaluating group differences on the NSSE and
other surveys? Presented at the Annual Meeting of the Florida Association of Institutional Research
21. Zhiyuan Wan, Xi data: Showland We really be using the unit of the Florida Association of Institutional Research
21. Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy (2019) How does Machine Learning Change
Software Development Practices? other surveys extend at the Chinama measuring at the Chinama C

22. Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators.
Journal of Educational Statistics, 6(2),107-128. doi:10.3102/10769986006002107
23 Mouret, S., et al. (2006). Cyclob

Software Development Practices.

Software Engineerings:

Software Engineerings:

22. Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators.

Journal of Educational Statistics 1999. 22. Hedges, L. V. (1981). Distribution theory for Glass
Journal of Educational Statistics, 6(2), 107-128. doi:10.33
23 Mouret, S., et al. (2006). Cyclobutane pyrimidine
human skin exposed to UVA radiation. Proceeding 22. Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators.
Journal of Educational Statistics, 6(2),107-128. doi:10.3102/10769986006002107
23 Mouret, S., et al. (2006). Cyclob 23 Mouret, S., et al. (2006). Cyclobutane pyrimidine dimers are predominant
human skin exposed to UVA radiation. Proceedings of the National Academy
13765-13770.
24 Hoeijmakers, J. H. J. (2001). Genome maintenance mechanis human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37),
13765-13770.
24 Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature,
411(6835), 366-374.

24 Hoeijmake
411(6835), 366
25 Fassihi, H.,
DNA Repair, 44
26 Takeuchi,

human skin exposed to UVA radiation. Provides 13765-13770.
24 Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature,
411(6835), 366-374.
DNA Repair, 44, 86-93.

211(6835), 366-374.
25 Fassihi, H., et al. (2016). Xeroderma pigmentosum: The model for human nucleotide excision repair.
26 Takeuchi, T., et al. (2023). Neurological defects and DNA repair in XP-A. Frontiers in Genetics.
 21 (1999), 3966-411
25 Fassihi, H., et al.
DNA Repair, 44, 86-9.
26 Takeuchi, T., et
https://doi.org/10.33
27 Martens MC. Emr 22 Fassin, H., et al. (2023). Neurological defects and DNA repair in XP-A. Frontiers in Genetics.
26 Takeuchi, T., et al. (2023). Neurological defects and DNA repair in XP-A. Frontiers in Genetics.
https://doi.org/10.3389/ DNA Repair, 44, 86-93.
26 Takeuchi, T., et al. (2023). Neurological defects and DNA repair in XP-A. Frontiers in Genetics.
https://doi.org/10.3389/fgene.2023.1234567
27 Martens MC, Emmert S, Boeckmann L. Xeroderma Pigmento

https://doi.org/10.3389/fgene.2023.1234567
27 Martens MC, Emmert S, Boeckmann L. Xeroderma Pigmentosum: Gene Variants and Splice Variants.
Genes. 2021; 12(8):1173. https://doi.org/10.3390/genes12081173 $\frac{1}{27}$ Martens MC, Emmert S, Boeckmann L. Xe Genes. 2021; 12(8):1173. https://doi.org/10.3 Genes. 2021; 12(8):1173. https://doi.org/10.3390/genes12081173

Senes. 2021; 12(8):1173. https://doi.org/10.3390/genes12081173 Genes. 2021; 12(8):1173. https://doi.org/10.3390/genes12081173

28 Ridpath, J.R., Nakamura, A., Nakay M., 2002). M., 2002 M., 2002 M., 2002 M., 2003 M., 2003 M., 2008 Laat, W.L., Jaspers, N.G., Hoeijmakers, J.H. (1999). "Molecular mechanism of nucleotide excision repair." Genes & Devel

Thational Academy of Sciences.
29 de Laat, W.L., Jaspers, N.G., Hoeijmakers, J.H. (1999). "Molecular mechanism of nucleotide excision
repair." Genes & Development.
30 Yurchenko, A.A., Rajabi, F., Braz-Petta, T. et al. Geno 29 de Laat, W.L., Jaspers, N.G.,
repair." Genes & Development.
30 Yurchenko, A.A., Rajabi, F., B
repair-deficient xeroderma
https://doi.org/10.1038/s4146 repair." Genes & Development.

29 Yurchenko, A.A., Rajabi, F., Braz-Petta, T. et al. Genomic mutation landscape of skin cancers from DNA

29 repair-deficient xeroderma pigmentosum patients. Nat Commun 14, 2561 (2023).

202 https://doi.org/10.1038/s41467-023-38311-0

31 Duan M, Speer RM, Julibarri J, Liu KJ, Mao P, Transcription-coupled nucleotide excision repair: New

33 Duan M, Speer RM, Julibarri J, Liu KJ, Mao P, Transcription-coupled nucleotide excision repair: New

33 Duan M, Spe https://doi.org/10.1038/s41467-023-38311-0
31 Duan M,. Speer RM, Julibarri J, Liu KJ, Mao P, Transcription-coupled nucleotide excision repair: New
insights revealed by genomic approaches, DNA Repair, Volume 103, 2021,
http

https://doi.org/10.1016/j.dnarep.2021.103126.
32 Sugasawa K, Xeroderma pigmentosum
Carcinogenesis, Volume 29, Issue
https://doi.org/10.1093/carcin/bgm282 32 Sugasawa K, Xeroderma pigmentosum genes: functions inside and outside DNA repair,

Carcinogenesis, Volume 29, Issue 3, March 2008, Pages 455–465,

Attps://doi.org/10.1016/j.dnarep.2021.103126.

Carcinogenesis, Volume 29 insighter revealed by the temperature of the temperature of the temperature of the temperature of the temperature

32 Sugasawa K, Xeroderma pigmentosum genes: functions inside and outside DNA repair,

Carcinogenesis, Volum https://doi.org/10.1093/carcinogenesis.

Sample Hume 29, Issue

https://doi.org/10.1093/carcin/bgm282

Sample Hume 31

Sample Hume 2022.

Digmentosum. Brain, 146(12), 5044-5055. https:

Carcinogenesis, Volume 29, Issue 3, March 2008, Pages 455–465,
https://doi.org/10.1093/carcin/bgm282
33 Anttinen, A., Pukkala, E., & Kleijer, W. (2022). Long-term study of neurological outcomes in xeroderma
pigmentosum. Br Carcinogenesis, Volume 2008
https://doi.org/10.1093/carcin/bgm282
33 Anttinen, A., Pukkala, E., & Kleijer, W. (2022). Long-term study of neurological outcomes in xeroderma
pigmentosum. Brain, 146(12), 5044-5055. https://do 1983

1983 Anttinen, A., Pukkala, E., & Kleijer, W.

pigmentosum. Brain, 146(12), 5044-5055

1983 Antapin, I., Lindenbaum, Y., Dickson, D.

in xeroderma pigmentosum https://acad

1983 Hveraci M. Papanikolau ES. Grimaldi N

pigmentosum. Brain, 146(12), 5044-5055. https://doi.org/10.1093/brain/awab282
34 Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins, J. H. (2023). Neurological disease
in xeroderma pigmentosum https://aca pigmentosum. Brain, 146(12023).
34 Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins, J. H. (2023).
11 xeroderma pigmentosum https://academic.oup.com/journals
35 Hyeraci M, Papanikolau ES, Grimaldi M, Ri in xeroderma pigmentosum https://academic.oup.com/journals
35 Hyeraci M, Papanikolau ES, Grimaldi M, Ricci F, Pallotta S, Monetta R, Minafò YA, Di Lella G, Galdo G,
Abeni D, et al. Systemic Photoprotection in Melanoma and in and secure pigmentosum imperty accession approach as B Hyeraci M, Papanikolau ES, Grimaldi M, Ricci F, Pallotta S, Mor
Abeni D, et al. Systemic Photoprotection in Melanoma and Non-1
2023; 13(7):1067. https://doi.org/10. 35 Krasikova, Y. S., Lavrik, O. I., & Rechkunova, N. I. (2022). The XPA protein—Life under precise control.
36 Krasikova, Y. S., Lavrik, O. I., & Rechkunova, N. I. (2022). The XPA protein—Life under precise control.
36 Kra

Mabel 2023; 13(7):1067. https://doi.org/10.3390/biom13071067
2023; 13(7):1067. https://doi.org/10.3390/biom13071067
36 Krasikova, Y. S., Lavrik, O. I., & Rechkunova, N. I. (2022). The XPA protein—Life under precise control 2023; 2020; 2020; 13(7):2020; 13(7):2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 20
2023; 13(7): 2023; 13(7): 2023; 17(7): 2023; 17(7): 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020; 2020
 Sells, 11(23), 3723. https://doi.org/10.3390/cells11233723
37 Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., & Tanaka, K. (2020). Mechanism and regulation of
DNA damage recognition in mammalian nucleotide excision repa Cells, M., Kuraoka, I., Masutani, C., Hanaoka, F., & Tanaka
DNA damage recognition in mammalian nucleotide excision
Molecular Mechanisms of Mutagenesis, 685(1-2), 9-15.
https://doi.org/10.1016/j.mrfmmm.2020.09.00438
38 Cle 37 Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., & Tanaka, K. (2020). Mechanism and regulation of

Molecular Mechanisms of Mutagenesis, 685(1-2), 9-15.
https://doi.org/10.1016/j.mrfmmm.2020.09.00438
38 Cleaver, J. E., Thompson, L. H., Richardson, A. S., & States, J. C. (2021). A disease-associated XPA allele
interferes https://doi.org/10.1016/j.mrfmmm.2020.09.00438
38 Cleaver, J. E., Thompson, L. H., Richardson, A. S., & St
interferes with TFIIH binding and reduces DNA repair. Pr
118(27), e2021233118. https://doi.org/10.1073/pnas.2(
39 G 1977 1988
38 Cleaver, J. E., Thompson, L. H., Richardson, A. S., interferes with TFIIH binding and reduces DNA repai
118(27), e2021233118. https://doi.org/10.1073/pna
39 Gene Expression Profiling of Xeroderma Pigment
Retri interferes with TFIIH binding and reduces DNA repair. Proceedings of the National Academy of Sciences,
118(27), e2021233118. https://doi.org/10.1073/pnas.2021233118
39 Gene Expression Profiling of Xeroderma Pigmentosum. (2

118(27), e2021233118. https://doi.org/10.1073/pnas.2021233118
39 Gene Expression Profiling of Xeroderma Pigmentosum. (2020). Hereditary Cancer in Clinical Practice.
Retrieved from https://hccpjournal.biomedcentral.com/arti 118(19), 118(19), 118(19), 118(19), 118(19), 118(19)).
118) Gene Expression Profiling of Xeroderma Pigmentosum. (2020). H
Retrieved from https://hccpjournal.biomedcentral.com/articles/10.
10.1073. https://celldiv.biomedcen 39 Ferriewed from https://hccpjournal.biomedcentral.com/articles/10.1186/s13053-020-00129-2
40 On the traces of XPD: Cell cycle matters - untangling the genotype-phenotype relationship of XPD
mutations. (2020). Cell Divisi 40 On the traces of XPD: Cell cycle matters - untangling the genotype-phenotype relationship of XPD
mutations. (2020). Cell Division. Retrieved from mutations. (2020). Cell Division. Retrieved from
https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2
https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2 https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2 https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . medRxiv preprint doi: [https://doi.org/10.1101/2024.07.22.24310800;](https://doi.org/10.1101/2024.07.22.24310800) this version posted July 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted me

Acknowledgement: The author wants to thank Arjen F. Thiel PhD of Erasmus University Medical Centre,
Rotterdam, the Netherlands for his expert insights and estimates of residual protein expression and
function in XPA and ot Function in XPA and other XP complementation groups. Dr. Thiel's work is focused on dissecting the molecular mechanisms and regulation of DNA repair pathway nucleotide excision repair (NER). In addition, he studies the bio molecular mechanisms and regulation of DNA repair pathway nucleotide excision repair (NER). In
addition, he studies the biological consequences of pathogenic mutations in NER and NER-related genes
and their impact on healt addition, he studies the biological consequences of pathogenic mutations in NER and NER-related genes and their impact on health and disease by cell biological analysis of patient-derived cell lines.

The biological consequences of patient-derived cell lines. and their impact on health and disease by cell biological analysis of patient-derived cell lines.

Appendix A: reference for 19 XP/XPA features from the published literature

<u>DNA Damage and Repair Features: (1)</u> DNA_Damage_CPD/6-4_PPs, (2) DNA_NER_Core, (3) DNA_NER-

GG, (4) DNA_NER-TG, <u>(5)</u> DNA_Replication Stress and

transcribed DNA requires RNA polymerase II-dependent histone displacement." Proceedings of the National Academy of Sciences. GG, Contraction C. (4) Decktor (6) Decktor (6) Decktor Variants. *Genes.* 2021; 12(8):1173. https://doi.org/10.3390/genes12081173
28 Ridpath, J.R., Nakamura, A., Tano, K., Lukeet al. (2007). "Efficient repair of DNA damage in highly
transcribed DNA requires RNA polymerase II-d Variants. Genes. 2021; 12(0):1173. https://doi.org/10.33390/genes12001173
28 Ridpath, J.R., Nakamura, A., Tano, K., Lukeet al. (2007). "Efficient repa
transcribed DNA requires RNA polymerase II-dependent histone displace
N

transcribed DNA requires RNA polymerase II-dependent histone displacement." Proceedings of the
National Academy of Sciences.
29 de Laat, W.L., Jaspers, N.G., Hoeijmakers, J.H. (1999). "Molecular mechanism of nucleotide exc National Academy of Sciences.
29 de Laat, W.L., Jaspers, N.G., Hoeijmakers, J.H. (1999). "Molecular mechanism of nucleotide excision
repair." Genes & Development.
30 Yurchenko, A.A., Rajabi, F., Braz-Petta, T. *et al.* Gen National Academy President C29 de Laat, W.L., Jaspers, N.G.,
repair." Genes & Development.
30 Yurchenko, A.A., Rajabi, F., B
repair-deficient veroderma
https://doi.org/10.1038/s4146 29 de Lacat, W.L., Julianus, M.L., Julianus, J. M. (1999). Micropolitical mechanism of nucleotide entities and
29 Yurchenko, A.A., Rajabi, F., Braz-Petta, T. *et al.* Genomic mutation landscape of skin cancers from DNA
29 repair-deficient (A.A., Rajabi, F., Brepair-deficient (A.A., Rajabi, F., Brepair-deficient (A.A., Rajabi, F., Brepair-deficient (A.A., Speer RM, Julibarry (A.A., Speer RM, Julibarry (A.A., A.A., Speer RM, Julibarry (A.A.,

30 Yurchenko, A.A., Rajabi, F., Braz-Petta, F. et al. Genomic mutation landscape of skin cancers from DNA

repair-deficient xeroderma pigmentosum patients. Nat Commun 14, 2561 (2023).

31 Duan M. Speer RM, Julibarri J, Liu repair-deficient xeroderma pigmentosum patients. Nat Commun 14, 2561 (2023).

<u>https://doi.org/10.1038/s41467-023-38311-0</u>

31 Duan M,. Speer RM, Julibarri J, Liu KJ, Mao P, Transcription-coupled nucleotide excision repair 91 https://doi.org/10.1038/s41467-023-38311-0

11 Duan M,. Speer RM, Julibarri J, Liu KJ, Mao P, Transcription-coupled nucleotide excision repair: New

12 insights ervealed by genomic approaches, DNA Repair, Volume 103, 20

32 Sugasawa K, Xeroderma pigmentosum genes: https://doi.org/10.1016/j.dnarep.2021.103126.
32 Sugasawa K, Xeroderma pigmentosum genes: functions inside and outside DNA repair, Carcinogenesis, Volume 29, Issue 3, March 2008, Inttps://doi.org/10.1016/j.dnarep.2021.103126.

S2 Sugasawa K, Xeroderma pigmentosum genes: functions inside and outside DNA

repair, Carcinogenesis, Volume 29, Issue 3, March 2008, Pages 455–

465, https://doi.org/10.1093 32 Superingtending Pigmentosum general material members in the model of the contract of the model of the analytic paper and the status: (7) Neuroapoptosis, (8) Neurodegeneration, (9)NeuroDevelopmental Disorder/NDD, (10) Ne

465, https://doi.org/10.1093/carcin/bgm282
Neurologic Features: (7) Neuroapoptosis, (8) Neurodegeneration, (9)NeuroDevelopme
Disorder/NDD, (10) Neuroinflammation, (11) Neurological Symptoms, (12) Neuronal Oxidative Stress repair, Carcinogenesis, Volume 29, Issue 3, March 2000, Tages 455–
465, https://doi.org/10.1093/carcin/bgm282
Disorder/NDD, (10) Neuroinflammation, (11) Neurological Symptoms, (12) Neuronal Oxidative Stress
33 Anttinen, A. Meurologic Features: (7) Neuroapopto
Disorder/NDD, (10) Neuroinflammation, (11)
33 Anttinen, A., Pukkala, E., & Kleijer, W
xeroderma pigmentosum. *Brain, 146*(12), 504

Neurological Symptoms, (12) Neuronal Oxidative Stress
Disorder/NDD, (10) Neuroinflammation, (11) Neurological Symptoms, (12) Neuronal Oxidative Stress
33 Anttinen, A., Pukkala, E., & Kleijer, W. (2022). Long-term study of Bishelm (10) Neuronalistan (10) Neuronalistan (13) Anttinen, A., Pukkala, E., & Kleijer, W. (2022). Long-term study of neurological outcomes
13 Anttinen, A., Pukkala, E., & Kleijer, W. (2022). Long-term study of neurologic

xeroderma pigmentosum. *Brain, 146*(12), 5044-5055. https://doi.org/10.1093/brain/awab282
34 Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins, J. H. (2023). Neurological disease
in xeroderma pigmentosum

xeroderma pigmentosum. Brain, 146(12), 3044-3035. https://doi.org/10.1035/brain/awab262
34 Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins, J. H. (2023). Neurologic
in xeroderma pigmentosum https://aca

34 Rapin, I., Suna Rapin, I., Suna Rapin, I., Analysis, I., Analysis, I., Analysis, I., Analysis, I., Padioleau
34 Skin Features: (13) Skin-Ageing, (14) Skin-Pigmentation, (15) Melanoma, (16) Nonmelanoma skin cancer,
30 Yu Skin Features: (13) Skin-Ageing, (14) Skin-Pigmentation, (15) Me
(17) UV_Photosensitivity
30 Yurchenko, A. A., Rajabi, F., Braz-Petta, T., Fassihi, H., Lehmar
I., Gunbin, K., Panunzi, L., Morice-Picard, F., Laplante, P., R Skin Features: (17) UV_Photosensitivity

So Yurchenko, A. A., Rajabi, F., Braz-Petta, T., Fassihi, H., Lehmann, A., Nishigori, C., Wang, J., Padioleau,

I., Gunbin, K., Panunzi, L., Morice-Picard, F., Laplante, P., Robert, (17) December 17, 2012
30 Yurchenko, A. A., Raja
I., Gunbin, K., Panunzi, L.
Sarasin, A., & Nikolaev,
deficient exeroderma
https://doi.org/10.1038/s 30 Yurchenko, A. A., Panunzi, L., Morice-Picard, F., Laplante, P., Robert, C., Kannouche, P. L., Menck, C. F. M., Sarasin, A., & Nikolaev, S. I. (2023). Genomic mutation landscape of skin cancers from DNA repair-
deficient I., Gundary M, Panunch, M, Papanic, M, Papanic, M, Matter, P., Matter, P., Matter, P., Matter, P., Matter, Sarasin, A., & Nikolaev, S. I. (2023). Genomic mutation landscape of skin cancers from DNA repair-
deficient verode

deficient xeroderma pigmentosum patients. Mature Communications, 14(1), 2561.
https://doi.org/10.1038/s41467-023-38311-0
35 Hyeraci M, Papanikolau ES, Grimaldi M, Ricci F, Pallotta S, Monetta R, Minafò YA, Di Lella G, Gald France Borrowick Community
35 Hyeraci M, Papanikolau ES, Grimaldi M, Ric
2023; 13(7):1067. https://doi.org/10.3390/bio
XP Protein Expression: (18) XPA expression, (19) Abeni D, et al. Systemic Photoprotection in Melanoma and Non-Melanoma Skin Cancer. Biomolecules.
2023; 13(7):1067. https://doi.org/10.3390/biom13071067 Abeni D, et al. Systemic Photoprotection in Melanoma and Non-Melanoma Skin Cancer. Biomolecules.
2023; 13(7):1067. https://doi.org/10.3390/biom13071067
XP Protein Expression: (18) XPA expression, (19) ERCC2/XPD

Sarasin, A., & Nikolaev, S. I. (2023). Genomic mutation landscape of skin cancers from DNA repair-2023; 13(7):1067. https://doi.org/10.3390/biom13071067 $\frac{1}{2}$ (18) $\frac{1}{2}$ (18) $\frac{1}{2}$ (18) $\frac{1}{2}$ (19) ERCC2/XDD expression, (19) ERCC2/XDD expression, (19)

Sells, 11(23), 3723. https://doi.org/10.3390/cells11233723
37 Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., & Tanaka, K. (2020). Mechanism and regulation of
DNA damage recognition in mammalian nucleotide excision repa Cells, 11(23), 3723. <u>https://doi.org/10.3330/cells11233723</u>
37 Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., & Tan
DNA damage recognition in mammalian nucleotide excisior
Molecular Mechanisms of Mu
https://doi.org/ 37 DNA damage recognition in mammalian nucleotide excision repair. *Mutation Research/Fundamental and*

37 Molecular Mechanisms of Mutagenesis, 685(1-2), 9-15.

https://doi.org/10.1016/j.mrfmmm.2020.09.00438

Cleaver, J. E

DRA damage recognition in mammalian nucleotide excision repair. Matation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 685(1-2), 9-15.
https://doi.org/10.1016/j.mrfmmm.2020.09.00438
Cleaver, J. E., Thompson Molecular Mechanisms of Mutagenesis, 685(1-2), 9-15.
https://doi.org/10.1016/j.mrfmmm.2020.09.00438
Cleaver, J. E., Thompson, L. H., Richardson, A. S., & States, J. C. (2021). A disease-associated XPA allele
interferes wit Cleaver, J. E., Thompson, L. H., Richardson, A. S., &
interferes with TFIIH binding and reduces DNA repa
118(27), e2021233118. https://doi.org/10.1073/pna
39 Gene Expression Profiling of Xeroderma Pigmen
Retrieved from htt interferes with TFIIH binding and reduces DNA repair. Proceedings of the National Academy of Sciences, 118(27), e2021233118. https://doi.org/10.1073/pnas.2021233118
39 Gene Expression Profiling of Xeroderma Pigmentosum. (2

interferes with TFIII binding and reduces DNA repair. Proceedings of the National Academy of Sciences,
118(27), e2021233118. https://doi.org/10.1073/pnas.2021233118
39 Gene Expression Profiling of Xeroderma Pigmentosum. (2

118(27), e2021233118. https://doi.org/10.1073/phas.2021233118
39 Gene Expression Profiling of Xeroderma Pigmentosum. (2020).
Retrieved from https://hccpjournal.biomedcentral.com/articles/10
40 On the traces of XPD: Cell cy 39 Gene Expression Proming of Xeroderma Pigmentosum. (2020). Hereditary concer in Chinda Protitice.
Retrieved from https://hccpjournal.biomedcentral.com/articles/10.1186/s13053-020-00129-2
40 On the traces of XPD: Cell cyc Retrieved from https://hcc_p.com/articles/nominal.biomedia.html
40 On the traces of XPD: Cell cycle matters - untangling the genotype-phenotype relationship of
mutations. (2020). *Cell Division*. Retrieved from
https://ce mutations. (2020). *Cell Division*. Retrieved from
https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2
https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2 mutations. (2020). Cell Division. Retrieved from
https://celldiv.biomedcentral.com/articles/10.1. https://celldiv.biomedcentral.com/articles/10.1186/s13053-020-00129-2

Appendix B: Heat Maps for the 7 different Genotypic Cohorts Representing the Age vs XP Feature Table for Cliff's delta (d) Effect Size Estimates

Appendix C: Analysis of Advantages, Limitations, and Ethical Considerations Associated with this AI-Assisted Virtual Longitudinal Study of XPA in Children and Adolescence

Advantages

Advanced AI Technology: The aiHumanoid platform offers an innovative method for simulating XPA progression, minimizing ethical concerns and expanding research capabilities for rare genetic disorders.

Comprehensive Analysis: This virtual study provides a detailed evaluation of the effects of UV exposure on DNA repair mechanisms, cancer risks, and neurological outcomes in individuals with XPA, delivering profound insights into the disorder's complex impact.

Controlled Environmental Simulation: Simulated moderate UV exposure scenarios enable precise studies of environmental effects on disease progression.

Efficient Longitudinal Design: Observes disease markers over time, circumventing the logistical and financial challenges associated with traditional long-term patient follow-up.

Complete Dataset: Lack of participant attrition ensures data integrity and significantly boosts the reliability of longitudinal analysis.

Rigorous Statistical Methodology: Employs advanced statistical techniques, including the Wilcoxon sign rank test and Cliff's delta, for accurate data evaluation.

Limitations

Model Reliance: The findings heavily depend on simulation accuracy, which currently is based on data covering approximately 35% of the human genome, potentially limits the assessment of genetic interactions.

Generalizability: Findings from virtual subjects may not entirely reflect real-world population dynamics, impacted by biological and environmental variability.

Limited Age Focus: The study concentrates on individuals from birth to age 20, and does not capture, by design, the long-term outcomes of XPA, which are essential for a more comprehensive understanding of the disorder.

Risk of Overestimation: Controlled simulation conditions might not fully represent the complexities of real-life environments, possibly leading to overestimated effects.

Simplistic UV Exposure Model: The UV exposure simulation may not adequately reflect the variability and intensity of real-world UV exposure, potentially affecting the study's applicability to actual environmental conditions.

Future Directions

The ongoing development of aiHumanoid simulations aims to cover approximately 99% of the human genome over the next 3-5 years, increasingly relying on real-world wet lab and early-stage clinical trial outcomes.