Modelling the impact of initiation delay, duration and prior $_1$ PrEP usage on the prophylactic efficacy of FTC/TDF -containing $\frac{2}{3}$ post-exposure prophylaxis 3 Lanxin Zhang¹, Simon Collins² Julie Fox³, Max von Kleist^{1, 4,§} 4 1 Project group 5 "Systems Medicine of Infectious Disease", Robert Koch Institute, Berlin, ⁵ Germany ⁶ 2 HIV i-Base, United Kingdom 7 3 Department of Infectious Disease, King's College London, United Kingdom ⁸ 4 Mathematics for Data Science, Dep. of Mathematics and Computer Science, Freie Universität Berlin, Germany 10 § Corresponding author: Max von Kleist ¹¹ Nordufer 20, Berlin, 13353, Germany 12 E-mail addresses of authors: 13 LZ: lzhang@zedat.fu-berlin.de 14 SC: simon.collins@i-base.org.uk 15 JF: julie.fox@kcl.ac.uk ¹⁶ MvK: max.kleist@fu-berlin.de ¹⁷

$\Lambda\text{bstract}$

$\frac{1}{19}$

Pre- and post-exposure prophylaxis (PrEP and PEP) are important pillars of the HIV prevention $_{20}$ portfolio to reduce the risk of infection just before or after HIV exposure. While PrEP efficacy 21 has been elucidated in many randomized clinical trials, corresponding data for PEP is extremely 22 difficult to obtain in a controlled setting. Consequently, it is almost impossible to study the 23 impact of PEP initiation delay and duration on HIV risk reduction clinically, which would ²⁴ inform recommendations on PEP use. 25

$\bf{Methods}$ and $\bf{26}$

We employ pharmacokinetics, pharmacodynamics, and viral dynamics models, along with $_{27}$ individual factors, such as drug adherence to investigate the impact of initiation delay and ²⁸ PEP duration on HIV risk reduction. We evaluated PEP using two- and three-drug regimens 29 with a FTC/TDF backbone. Moreover, we study PEP efficacy in the context of PrEP-to-PEP $_{30}$ transitions. $\frac{31}{2}$

$\textbf{Results}$ 32

In our simulations, early initiation of PEP emerged as a pivotal factor for HIV risk reduction. ³³ We found that 2-drug (FTC/TDF) PEP may insufficiently protect when initiated > 1 hour postexposure. When adding a third drug, early initiation was still a critical factor, however, over 90% ³⁵ efficacy could be achieved when PEP was initiated 48hours post-exposure and taken for at least ³⁶ 14-28days, depending on the efficacy of the third-drug component. When investigating PrEP- ³⁷ PEP transitions, we observed that preceding PrEP can (i) contribute directly to prophylactic ³⁸ efficacy, and (ii) boost subsequent PEP efficacy by delaying initial viral dynamics and building-up ³⁹ drug concentrations, overall facilitating self-managed transitioning between PrEP and PEP. ⁴⁰

Conclusions $\frac{41}{41}$

Our study confirms the critical role of early \ll 48 hours) PEP initiation, preferably with three \sim 42 drugs taken for 28days. Self-start with TDF/FTC and later addition of a third drug is better ⁴³ than not self-starting. Furthermore, our study highlights the synergy between recent PrEP ⁴⁴ intake and PEP and may help to inform recommendations on PEP use. ⁴⁵

Introduction $\frac{46}{46}$

The human immunodeficiency virus (HIV) remains a public health challenge with an estimated $\frac{47}{47}$ 1.3 million new infections in 2022 [\[1\]](#page-17-0). To date, with a handful of exceptions, HIV infection cannot ⁴⁸ be cured [\[2\]](#page-17-1). However, major successes in antiviral drug development allow to not only to prevent ⁴⁹ AIDS, but to suppress the virus to an extent where the treated individual is non-infectious $[3, 4]$ $[3, 4]$. ₅₀ However, an HIV diagnosis needs to made and subsequent treatment currently needs to be $_{51}$ taken life-long, which, in addition to individual burden, relies on HIV testing and treatment $_{52}$ availability, medical care infrastructure and funding. HIV prevention through vaccination would ⁵³ constitute an ideal means to fight the pandemic. However, developing an effective HIV vaccine ⁵⁴ turned out to be extremely challenging, with all recent vaccine trials prematurely terminated due $\frac{55}{100}$ to failure in demonstrating clinical efficacy [\[5\]](#page-17-4). In the absence of effective vaccines, pre-exposure ⁵⁶ prophylaxis (PrEP) has partly taken its place. Four effective regimen are currently available: ⁵⁷ once daily emtricitabine (FTC) with either tenofovir disoproxil fumerate (TDF) or tenofovir $\frac{58}{100}$ alfenamide (TAF) can be administered orally, long-acting cabotegravir (CAB) can be injected ⁵⁹ every two month. Monthly dapivirine (DPV) vaginal rings to prevent infection through receptive ω vaginal intercourse recently received positive review by the European Medicines Agency (EMA). ⁶¹ Twice-yearly injectable lenecapavir demonstrated potential in clinical phase III. Of the available 62 PrEP options, oral TDF/FTC is widely available as a generic and rolled out in both low- and 63 high-income countries. $\frac{64}{100}$

Post-exposure prophylaxis (PEP) taken *after* suspected sexual-, or occupational exposure to 65 HIV [\[6\]](#page-17-5) denotes another important preventive measure to reduce infection risk. Current guidelines 66 recommend to initiate oral PEP within 72hours after suspected virus exposure and to continue 67 the regimen for 28 days $[6-8]$ $[6-8]$. National $[6, 8]$ $[6, 8]$ and international guidelines $[9]$ differ with regards 68 to recommending two- or three-drug regimens for PEP: For example, $TDF/FTC + \text{ralegravir}$ 69 or dolutegravir are recommended in the US, whereas the WHO 2014 guidelines also discuss τ scenarios where two-drug regimens with generics may be recommended. To date, TDF/FTC $_{71}$ denotes the preferred backbone in PEP, whereas different choices of third-component drugs may $\frac{72}{2}$ be used [\[10\]](#page-17-8). However, because of operational and ethical challenges no randomized controlled ⁷³

trial has been conducted to test PEP efficacy directly. Current evidence for non-occupational $\frac{74}{6}$ PEP efficacy has been synthesized from animal transmission models, observational studies of τ health care workers receiving prophylaxis after occupational exposures, and observational- and τ_6 case studies of PEP use $[6, 8]$ $[6, 8]$. However, results from observational studies may be impacted by τ many factors such as individual adherence- and risk behavior $[11]$ and differences in regards τ to the utilized PEP drugs $[8]$. Although the developed guidelines are based on impressive τ_9 trans-disciplinary synthesis of evidence across heterogeneous data sources, it has not been ∞ possible to date to elucidate the sensitivity of particular PEP regimen to delays in initiation, ⁸¹ PEP duration, as well as the impact of PrEP on PEP efficacy.

In the absence of randomized controlled trial data on PEP efficacy, mathematical modelling may 83 support the synthesis of evidence, by integrating available knowledge on drug pharmacokinetics, $\frac{84}{100}$ as well as early viral dynamics. However, to our knowledge, no such modelling exists to date. ϵ By considering population pharmacokinetics, we extended a recently developed mathematical ∞ model $[12]$ to analyse PEP efficacy for two- and three-drug regimens, and to test the impact of ϵ delays in 'time to PEP', as well as PEP duration. Finally, we investigate the transition from \approx PrEP to PEP, providing a comprehensive understanding of the continuum preventive portfolio. ⁸⁹

$Methods$

We combined population pharmacokinetic models of oral FTC, TDF, EFV and DTG [\[13–](#page-18-1)[16\]](#page-18-2) with $_{91}$ viral dynamics models $[17, 18]$ $[17, 18]$ and a novel numerical scheme $[19]$ to estimate the prophylactic $\frac{92}{2}$ efficacy of PEP with a TDF/FTC backbone for any dosing pattern of interest, as well as various ⁹³ PrEP-to-PEP transitions. The overarching goal was to understand sensitivity of PEP efficacy 94 towards timing, delay and duration of PEP with- and without prior PrEP administration. $\frac{1}{100}$ **Prophylactic efficacy.** In clinical trials, *average* HIV risk reduction is quantified in terms $\frac{96}{1000}$ of incidence reduction in an intervention vs. a control arm $[20-23]$ $[20-23]$. In a mathematical model 97 of within-host viral replication, the same quantity may be derived directly by computing the ⁹⁸ reduction of infection probability *per viral exposure* due to a prophylactic regimen S :

$$
\varphi = 1 - \frac{P_I(Y_t, \mathcal{S})}{P_I(Y_t, \varnothing)}\tag{1}
$$

where $P_I(Y_t, \mathcal{S})$ and $P_I(Y_t, \varnothing)$ denote the the infection probability in the presence- and absence 100 of a prophylactic regimen S upon exposure with Y_t viral particles at time t. Notably, the 101 infection probability is the complement of the probability that the virus may eventually be ¹⁰² eliminated in the exposed host, i.e. $P_I(Y_t, S) = 1 - P_E(Y_t)$ $, S$). 103

Virus exposure model. We used previously developed exposure models for sex without 104 condoms [\[24\]](#page-19-1). In these models, the number of infectious viruses (inoculum size Y_t) that are 105 transmitted to- and reaching an anatomical site where they may spark an infection, are estimated ¹⁰⁶ from a binomial distribution, $Y_t \sim \mathcal{B}(VL, r)$, where VL denotes the donor virus load, and the 107 'success rate' r depended on the type of exposure. Throughout this study, unless stated otherwise, $\frac{108}{100}$ we utilize the exposure model designed for receptive vaginal intercourse. 109

HIV viral dynamics model. To compute the viral elimination probability in the exposed ¹¹⁰ host for prophylactic regimen S , we employ a within-host viral dynamics model [\[17,](#page-18-3)18], depicted 111 in Fig [S1.](#page-14-0) The model considers replication of free infectious viruses, early- and productively ¹¹² infected T-cells, as well as long-lived cells such as macrophages and latently infected T-cells, ¹¹³ which are believed to be an obstacle for the within-host clearance of HIV [\[25\]](#page-19-2). The model was 114

derived from first principles [\[17\]](#page-18-3) and allows to model pharmacodynamic effects of all antiviral 115 classes [\[26\]](#page-19-3). Moreover, it allows to incorporate state-of-the-art population pharmacokinetic ¹¹⁶ models. ¹¹⁷

Pharmacokinetics. We used the previously developed pharmacokinetic models of emtricitabine 118 (FTC) [\[13\]](#page-18-1) and tenofovir disoproxil fumarate (TDF) [\[14\]](#page-18-7), which allow to predict prodrug phar- ¹¹⁹ macokinetics in blood plasma, as well as the pharmacokinetics of the active tri-phosphorylated ¹²⁰ moieties in peripheral blood mononuclear cells (PBMC). In line our recent findings [\[12\]](#page-18-0), we as- ¹²¹ sume that the concentration of tenofovir-diphosphate (TFV-DP) and emtricitabine-triphosphate 122 (FTC-TP) in PBMCs predicts the prophylactic effect. We adopted recently developed PK models ¹²³ for dolutegravir (DTG) [\[15\]](#page-18-8) and efavirenz (EFV) [\[27\]](#page-19-4). To capture the impact of individual $_{124}$ pharmacokinetic variability, we sampled PK parameters for 1000 virtual patients per drug, ¹²⁵ utilizing distributions described in the aforementioned original sources. We considered once ¹²⁶ daily oral doses of 300/200mg, 50mg and 400mg for TDF/FTC, DTG and EFV. **PK-PD link.** The active intracellular components of TDF/FTC, i.e. TFV-DP and FTC-TP 128 are nucleotides reverse transcriptase inhibitors (NRTI). To evaluate their combinatorial effect, we ¹²⁹ adopted a model for the molecular mechanism of action (MMOA) and drug-drug interaction [\[28\]](#page-19-5). ¹³⁰

For DTG and EFV, their direct effect can be modelled using the Emax equation [\[29\]](#page-19-6), corrected 131 by plasma protein binding, and was assumed to be additive with the TDF/FTC backbone. ¹³² Numerics. We adopted the numerical scheme (PGS) from [\[19\]](#page-18-5) to formulate a set of ordinary 133 differential equations that allows computing extinction probabilities $P_E(Y_t)$, S of each compartment of the viral dynamics model, subject to pharmacokinetics and pharmacodynamics of the ¹³⁵ considered drugs, eq. [\(S16\)](#page-16-0). 136

$\textbf{Results}$ and the set of $\textbf{1}$ and $\$

'Time to PEP' is the most critical parameter.

Currently, the WHO recommends to initiate PEP up to 3 days after potential viral exposure ¹³⁹ and to continue PEP for 28 days [\[9\]](#page-17-7). Using our modelling framework, we evaluated how ¹⁴⁰ PEP initiation delay may alter prophylactic efficacy. As a first test case, we explored the $_{141}$ efficacy of 2-drug (oral TDF/FTC) PEP, as these drugs may be available in many settings $_{142}$ where PrEP is implemented. We created 1000 virtual individuals and simulated individual 143 pharmacokinetics based on the dosing profiles in Fig [1A](#page-8-0). Using the model, we then computed ¹⁴⁴ the prophylactic efficacy for each virtual individual, if a 2-drug PEP with daily TDF/FTC was ¹⁴⁵ initiated at different time points post viral exposure and taken for 28 days. Fig [1C](#page-8-0) (red line, grey ¹⁴⁶ areas) depicts summary statistics of derived PEP efficacy estimates across the cohort of virtual ¹⁴⁷ individuals (median, interquartile ranges and 95% confidence intervals). From the simulations, it ¹⁴⁸ is evident that $\geq 90\%$ 2-drug PEP efficacy in only achieved if TDF/FTC is initiated within one 149 hour after virus exposure. Efficacy steeply drops to $< 50\%$ when TDF/FTC-PEP was initiated 150 20hours after virus exposure. We also found that longer duration of 2-drug TDF/TFC PEP 151 could not compensate for delayed initiation (Fig [1B](#page-8-0), Fig [1D](#page-8-0) red line) with efficacy remaining ¹⁵² low (median efficacy $\langle 20\% \rangle$, when PEP was initiated 48 hours after virus exposure and taken 153 for up to 7 weeks. We tested whether a third drug component (DTG or EFV) may impact on ¹⁵⁴ prophylactic efficacy and change sensitivity to 'time to PEP' and 'PEP duration', Fig [1A](#page-8-0)–D. ¹⁵⁵ Compared to 2-drug PEP, 3-drug PEP provided > 88% protection against sexual transmission, ¹⁵⁶ when initiated 2days post-exposure and continued for 28days (Fig [1E](#page-8-0)). When initiated 2days 157 post-exposure, we predicted that $TDF/FTC + EFV$ provided $> 90\%$ HIV risk reduction when 158

taken at least for 2 weeks, whereas TDF/FTC + DTG provided $85 - -90\%$ HIV risk reduction 159 when taken for at least 4 weeks, Fig [1E](#page-8-0). In contrast to 2-drug PEP, we predicted that PEP_{160} efficacy with $TDF/FTC + EFV$ or DTG increased with extended duration of PEP.

Third drug may be added later, if TDF/FTC is initiated quickly.

In many settings, all three drugs may not be available within reasonable time. However, 163 TDF/FTC may be readily available to individuals who already used, or have access to PrEP. ¹⁶⁴ We investigated whether prompt PEP initiation with TDF/FTC and later addition of a third 165 drug may effectively prevent infection (schematic in Fig [2A](#page-9-0)). Reading Fig [2B](#page-9-0)-E bottom-to-top, ¹⁶⁶ indicates that adding DTG or EFV to a TDF/FTC backbone increases PEP efficacy (lowest ¹⁶⁷ row: TDF/FTC only) and that earlier addition of the third drug results in greater efficacy 168 (top row). Reading Fig [2B](#page-9-0)-E horizontally (left-to-right), indicates that the earlier TDF/FTC is ¹⁶⁹ initiated, the better. For the three drug combinations, a 'window of opportunity' arises, where ¹⁷⁰ the PEP efficacy exceeds 95%. For TDF/FTC + DTG the duration of PEP strongly impacts on 171 its prophylactic efficacy (compare panels B and D in Fig [2\)](#page-9-0), whereas the impact is less strong 172 for PEP with $TDF/FTC + EFV$, which is already efficient for 2 weeks PEP. The simulations 173 highlight that if TDF/FTC is available within 12-24 hours, the third drug should be added in 174 less than a weeks time and PEP should preferably be taken for 28days from the first TDF/TFC ¹⁷⁵ \cos . 176

Previous PrEP can boost subsequent PEP efficacy and widen the 'window of $\frac{177}{177}$ opportunity' and the set of the set

The pharmacologically active components of TDF and FTC (TFV-DP and FTC-TP respectively) ¹⁷⁹ are built-up slowly within HIV target cells $[13,14,24,30]$ $[13,14,24,30]$ $[13,14,24,30]$ $[13,14,24,30]$, which limits the 'window of opportunity' 180 for 2-drug (TDF/FTC) PEP (Fig [1C](#page-8-0)) and necessitates almost instantaneous PEP initiation to ¹⁸¹ achieve sufficient efficacy. However, TFV-DP and FTC-TP may persist for many hours even ¹⁸² after a single, or a few dosing events. To assess the combined impact of earlier TDF/FTC ¹⁸³ PrEP intake with PEP, we investigated the efficacy of PEP following an 'on-demand' (2-1-1) 184 PrEP regimen [\[31\]](#page-20-1) (schematic in Fig [3A](#page-10-0)). In our simulations, viral exposure occurs 2 (panels B, 185 F), 3 (panels C, G) or 7 (panels D, H) days after the last PrEP 'on demand' dose. A two- or ¹⁸⁶ three drug PEP regimen is then initiated within $0-72$ hours post virus exposure (x-axis) and 187 continued for either for 7 (panels B-E) or 28 days (panels F-I).

Reading Fig [3B](#page-10-0)–D and Fig [3F](#page-10-0)–H left-to-right shows that if the last PrEP-on-demand dosing 189 event was 7days ago, the added benefit of earlier PrEP-on-demand on subsequent PEP efficacy ¹⁹⁰ had almost vanished, compare to Fig [3E](#page-10-0) and Fig [3I](#page-10-0) (no preceding PrEP). However, if PrEP- 191 on-demand was taken less than 7days prior to virus exposure, it increases subsequent PEP ¹⁹² efficacy, as residual FTC-TP and TFV-DP concentrations may be present that either prevent ¹⁹³ infection in some individuals, delay sero-conversion [\[32,](#page-20-2) [33\]](#page-20-3), or result in a 'pre-loading' of drug ¹⁹⁴ concentrations for subsequent PEP. For example, if on-demand-PrEP was stopped 2days prior ¹⁹⁵ to virus exposure, subsequent PEP with TDF/FTC may be $>90\%$ efficient, even when initiated 196 within three days, Fig $3B$, F. For the three-drug PEP regimen we observed a $>90\%$ efficacy when 197 initiated within three days after viral exposure and taken for >7days, Fig [3C](#page-10-0),G. Overall, we ¹⁹⁸ observe that earlier PrEP combined with subsequent PEP can increase efficacy. ¹⁹⁹

Next, we investigated the concomitant impact of preceding daily PrEP with 1–7 average doses 200 per week, stopped 2days before viral exposure, in conjunction with subsequent 2-drug or 3-drug ²⁰¹

PEP, initiated 2-, 3-, or 7 days after virus exposure and taken for 28 days (schematic in Fig [4A](#page-11-0)). 202 As controls, we performed simulations without earlier PrEP (grey-shaded areas), as well as 203 PrEP-only simulations (empty box plots) in Fig. [4B](#page-11-0)-D. Our simulations confirm the combined 204 action of PrEP and PEP: Earlier PrEP boosts the efficacy of PEP, if PEP is initiated 2-, or 3days ²⁰⁵ post-exposure, Fig. [4B](#page-11-0)–C: Compared both to 'no-PrEP' (grey-shaded areas), as well as 'no-PEP' ²⁰⁶ (empty boxplots), prophylactic efficacy is increased for the PrEP+PEP combination. However, ²⁰⁷ PEP does not offer any additional protection when initiated 7days post-exposure (compare ²⁰⁸ empty- vs. coloured box-plots in Fig [4D](#page-11-0)). Interestingly, our model predicts that PrEP-only with 209 100% adherence offers > 90% protection, when stopped 2 days before virus exposure (empty bars ²¹⁰ in Fig. [4D](#page-11-0)). Also, for the PrEP+PEP combination we observe $> 95\%$ protection, if 4/7 doses of 211 earlier PrEP were taken and 3-drug PEP was initiated 3days post exposure. For comparison, ²¹² PEP-only offers only 50% (TDF/FTC/DTG) and 65% (TDF/FTC/EFV) protection if initiated 213 3days post exposure (Fig. [1C](#page-8-0) and Fig. [4C](#page-11-0)). If PEP is initiated 2days post-exposure, preceding ²¹⁴ PrEP may lift prophylactic efficacy from 90% (TDF/FTC/DTG) and 95% (TDF/FTC/EFV) 215 to almost complete protection, if adherence during preceding PrEP was 2/7 doses (EFV) vs. ²¹⁶ $3/7 \text{ (DTG)}$.

Lastly, we tested scenarios in which the probability of PEP adherence declined substantially 218 over time. We modelled PrEP with incomplete adherence 48 hours prior to virus exposure ²¹⁹ (schematic: Fig [5A](#page-12-0)). We further assumed a substantial decrease in PEP-adherence after 7days, ²²⁰ Fig [5B](#page-12-0). Overall, compared to a full 28days PEP regimen simulated in Fig [4B](#page-11-0), we can see a ²²¹ drug-specific decline in efficacy that is clearly seen in simulations without preceding PrEP (grey ²²² shaded area in Fig [4C](#page-11-0)): Two-drug TDF/FTC is already quite inefficient $(20%) when initiated 223$ 2, 3 or 7days post exposure and hence poor PEP-adherence marginally impacts (grey-shaded ²²⁴ areas in Fig [4B](#page-11-0)–D vs Fig [5C](#page-12-0)–E). In contrast, for the three-drug combinations, we see that poor ²²⁵ PEP-adherence negatively impacts on prophylactic efficacy (compare shaded areas in Fig. [4B](#page-11-0)–C ²²⁶ with Fig. [5C](#page-12-0)–D). However, if $\geq 4/7$ doses of earlier PrEP were taken and subsequent 3-drug PEP 227 was initiated \leq 3days post-exposure, we predicted that prophylactic efficacy may exceed 95%. 228 In summary, we observe that preceding PrEP can substantially boost subsequent PEP efficacy ²²⁹ for all drug regimen, and 'buy time' with regards to PEP initiation, particularly if preceding ²³⁰ PrEP adherence was good (≥ 3 doses/week). 231

Discussion 232

We evaluated the impact of delays in 'time to PEP', PEP duration and PrEP-to-PEP transition, 233 based on a combined model of drug-specific pharmacokinetics and viral dynamics. Our modelling ²³⁴ by-and-large confirms recent UK, US and WHO guidelines on PEP [\[6–](#page-17-5)[8\]](#page-17-6), which recommend to ²³⁵ combine a TDF/FTC backbone with a third drug, initiate PEP as early as possible and to take ²³⁶ it for 28days. Moreover, our simulations indicate that early PEP initiation after suspected virus ²³⁷ exposure denotes the most critical parameter. For TDF/FTC two-drug PEP, instantaneous ²³⁸ initiation would be required, which may be infeasible. Adding a third drug to the $TDF/FTC-$ 239 backbone 'buys time'. However, protection may still be incomplete (Fig [1C](#page-8-0)), if a three drug PEP ²⁴⁰ was initiated 72 hours post virus exposure and taken for 28 days. The duration of PEP was a less $_{241}$ sensitive parameter for EFV, compared to DTG. The latter is contributed to the half-life $(t_{1/2})$) ²⁴² of the drugs, with DTG having a relatively short half-life $(t_{1/2} = 13.5 - 15.9h \mid 15]$ compared to 243 EFV $(t_{1/2} = 40 - 55h)$ [\[27\]](#page-19-4). The long half-life may increase the likelihood that virus is cleared 244 before the drug is washed out of the body. While early PEP initiation may be particularly ²⁴⁵

difficult in settings with less established health infrastructure, we simulated scenarios, in which ²⁴⁶ PEP may be initiated with available TDF/FTC and later intensified with a third drug. Overall, 247 if TDF/FTC can be initiated within less than 24hours, the third drug may be added, as soon as ²⁴⁸ it becomes available (Fig [2\)](#page-9-0), on condition that PEP is taken 28days. We found that preceding ²⁴⁹ TDF/FTC-based PrEP can substantially boost PEP efficacy, if stopped no more than 3 days ²⁵⁰ before suspected virus exposure (Fig. [3\)](#page-10-0), or taken at $4/7$ days on average (Fig $4-5$). Thus, $_{251}$ individuals taking PrEP up to the time of exposure (-3days) could re-initiate the regimen and ²⁵² may add a third drug when it becomes available. The combined effects of PrEP+PEP in this ²⁵³ scenario indicate synergy, which could arise from the fact that previous PrEP delays initial viral ²⁵⁴ replication [\[33\]](#page-20-3), or pre-loads drug levels for subsequent PEP. Our simulations further highlighted ²⁵⁵ that daily PrEP-only with 100% adherence may provide $> 90\%$ protection, if stopped no more 256 than 48hours before exposure (Fig. [4D](#page-11-0) and Fig. [5E](#page-12-0)). Essentially, this observation is backed by ²⁵⁷ the long pharmacokinetic halflifes of TFV-DP and FTC-TP in PBMCs, in the range of 4–7 and ²⁵⁸ $1-2.2$ days respectively [\[34](#page-20-4)[–38\]](#page-20-5).

Our work has a number of limitations: Foremost, there is a lack of data that could be inputted ²⁶⁰ into the model, due to a lack of clinical research into PEP. To strengthen the model further $_{261}$ clinical trials with clinically relevant endpoints may be required.

Our simulations refer to exposure with 'wild type' viruses, whereas NNRTI drug resistance, ²⁶³ which may amount to $10-20\%$ of transmitted viruses in Africa and the Americas [\[39,](#page-21-0) [40\]](#page-21-1) $_{264}$ may severely diminish EFV-based PEP efficacy [\[27\]](#page-19-4) and thus the suitability of EFV as a PEP ²⁶⁵ component. Notably, while we include EFV in our analysis to explore the impact of a 3rd drug ²⁶⁶ components with very high molecular potency $[41]$, we are not advocating EFV for PEP as it is $_{267}$ contraindicated both for psychological side effects and low risk of serious liver toxicity. However, ²⁶⁸ while some clinical trials suggest superiority of integrase inhibitors (DTG over EFV) [\[42](#page-21-3)[–45\]](#page-21-4) ₂₆₉ with regards to 'time to viral load suppression', we would like to emphasize that viral load 270 kinetics decay more strongly for integrase inhibitors, merely because they inhibit a later stage of ²⁷¹ the viral replication cycle and not because of superior efficacy (or potency) $[46-48]$ $[46-48]$. Hence, the 272 current preference for integrase inhibitors in PEP regimen should be motivated by tolerability 273 and low prevalence of drug resistance rather than alleged efficacy. We did not investigate ²⁷⁴ ritonavir-boosted protease inhibitors lopinavir (LPV/r) or atazanavir (ATV/r) as third drug 275 components in our model [\[7\]](#page-17-10). While these compounds have high molecular potency [\[41\]](#page-21-2) we expect ²⁷⁶ PEP efficacy to be similar to EFV. However, previous work suggests very steep dose-response 277 curves for LPV/r and ATV/r, implying that prophylactic effect may rapidly drop in case of $\frac{278}{278}$ incomplete PEP-adherence, or discontinuation [\[49\]](#page-22-0). In our model, we assume that the effect of ²⁷⁹ the considered drugs is associated with systemic drug levels. Both EFV and DTG are lipophilic ²⁸⁰ drugs that can rapidly cross cellular membranes by passive diffusion, such that their unbound ²⁸¹ drug concentration in plasma strongly correlates with effect-site concentrations ('free drug ²⁸² hypothesis' [\[50,](#page-22-1) [51\]](#page-22-2)). With regards to TDF/FTC, their phosphate moieties $(TFV-DP/FTC-TP)$ 283 in peripheral blood mononuclear cells (PBMCs) were used as an effect marker, since our recent ²⁸⁴ work [\[12\]](#page-18-0) indicated strong correlation with effect, whereas concentrations in tissue homogenates 285 were not predictive regarding prophylactic efficacy.

With regards to pharmacodynamics, we simulated synergistic effects between TFV-DP and ₂₈₇ FTC-TP, based on recent results [\[28\]](#page-19-5) and assumed that the direct antiviral effects of DTG and ²⁸⁸ EFV are additive to the TDF/FTC-backbone. 289

In our simulations, we modelled viral challenges after sexual exposure (receptive vaginal in- ²⁹⁰ tercourse). Notably, the majority of non-occupational PEP is administered after potential ²⁹¹ sexual exposure (PEPSE) [\[52\]](#page-22-3) and women denote the major HIV risk group [\[53\]](#page-22-4). Occupational 292

virus exposures, through e.g. needle-stick injuries during healthcare procedures may lead to ²⁹³ the translocation of larger amounts of viruseswhich may negatively impact on prophylactic ²⁹⁴ efficacy [\[30\]](#page-20-0). Thus, our predictions may be optimistic regarding occupational exposures with ²⁹⁵ patient blood. 296

Conclusions 297

Our modelling suggests that 'time to PEP' denotes the most critical parameter. Three-drug ²⁹⁸ PEP, preferably initiated no later than 48hours after virus exposure, and taken for 28days ²⁹⁹ remains the optimal regimen. Three-drug PEP for 14days is less efficient than 28days and 2-drug ³⁰⁰ (TDF/FTC) PEP only has high efficacy, if started within one hour after exposure. Self-start 301 2-drug (TDF/FTC) PEP with a subsequent addition of a 3rd drug in the clinic works better 302 than not self-starting. Lastly, previous $PrEP$ intake \lt 7 days prior to virus exposure boosts 303 subsequent PEP efficacy and may widen the window period for 'time to PEP' past 72hours. 304

Sensitivity to 'time to PEP' and 'PEP duration'

Time from exposure to first dose of PEP	TDF/FTC			TDF/FTC + DTG			TDF/FTC+EFV		
	PEP duration			PEP duration			PEP duration		
	14 days	28 days	7 weeks	14 days	28 days	7 weeks	14 days	28 days	7 weeks
$0-2$ hr	$>83\%$	$>84\%$	$>84\%$	$>99\%$	$>99\%$	$>99\%$	$>99\%$	>99%	$>99\%$
	$(68\%, 98\%)$	$(69\%, 99\%)$	$(69\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$
$2-8hr$	$>60\%$	$>61\%$	$>61\%$	$>99\%$	$>99\%$	$>99\%$	$>99\%$	$>99\%$	$>99\%$
	$(38\%, 94\%)$	$(38\%, 99\%)$	$(38\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$
$8 - 12$ hr	$> 51\%$	$> 52\%$	$> 52\%$	$>99\%$	>99%	>99%	$>99\%$	$>99\%$	>99%
	$(28\%, 90\%)$	$(28\%, 98\%)$	$(28\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$
$12 - 24$ hr	$>34\%$	$>35\%$	$>35\%$	>96%	$>99\%$	$>99\%$	$>99\%$	$>99\%$	$>99\%$
	$(15\%, 72\%)$	$(15\%, 93\%)$	$(15\%, 99\%)$	$(93\%, 98\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$	$(99\%, 99\%)$
$24 - 48$ hr	$>16\%$	>17%	>17%	$>63\%$	$>88\%$	>90%	>93%	>96%	>98%
	$(6\%, 37\%)$	$(6\%, 57\%)$	$(6\%, 87\%)$	$(57\%, 70\%)$	$(85\%, 90\%)$	$(88\%, 92\%)$	$(91\%, 96\%)$	$(95\%, 98\%)$	$(98\%, 99\%)$
72 hr	8%	8%	8%	32%	50%	52%	56%	64%	74%
	$(3\%, 18\%)$	$(3\%, 28\%)$	$(3\%, 49\%)$	$(28\%, 36\%)$	$(47\%, 52\%)$	$(50\%, 54\%)$	$(53\%, 63\%)$	$(61\%, 71\%)$	$(72\%, 79\%)$

Fig 1. Sensitivity of TDF/FTC-based PEP on initiation delay and PEP duration. A $\&$ B: Schematic of the dosing regimen in panel C and D, respectively. C: PEP efficacy of TDF/FTC (red line), $TDF/FTC + EFV$ (blue line), or $TDF/FTC + DTG$ (green line) when initiated at different delays post virus exposure and taken for 28 days once-daily. D: Efficacy of TDF/FTC (red line), $TDF/FTC + EFV$ (blue line) and TDF/FTC + DTG (green line) when initiated 48 hours post virus exposure and taken for different durations. E: Numerical results for different 'times to PEP', 'PEP durations' and regimen. Values denote the median efficacy and 95% confidence interval evaluated at the maximum 'time to PEP' of the indicated interval (e.g. 8hr for the 2-8hr interval). All computations were conducted on 1000 virtual patients. The daily oral dose for each drug corresponds to 300/200mg TDF/FTC, 50mg DTG and 400mg EFV. The colored lines depict the median predicted PEP efficacy, whereas the dark- and light grey areas present the inter-quartile range and the 95% confidence range, respectively. Dashed horizontal lines indicate 90% prophylactic efficacy.

Self-start PEP with TDF/FTC, then get third PEP drug at clinic

Fig 2. Efficacy of TDF/FTC-based PEP with delayed initiation of TDF/FTC and further delay of the third drug. A:Schematic of the dosing regimen. For the drug combinations TDF/FTC + DTG and $TDF/FTC + EFV$, PEP efficacy was computed for virus exposures occurring within 1 to 48 hours before the first dose of TDF/FTC. The third drug was then added to the PEP regimen 1 to 7 days after the the first dose of TDF/FTC. B: PEP efficacy for the drug combination $TDF/FTC + DTG$, PEP duration was 14 days from the first dose of TDF/FTC. C: Corresponding PEP efficacy for TDF/FTC + EFV. D: PEP efficacy for $TDF/FTC + DTG$ when taken for 28 days after the first TDF/FTC dose. E: Corresponding PEP efficacy for $TDF/FTC + EFV$. In panel B-E, the top row outlined in black denotes the scenario where the third drug is immediately added to the TDF/FTC backbone; the bottom row represents the scenario where no third drug was added to the TFC/TDF backbone.

Impact of previous on-demand PrEP on subsequent PEP efficacy

Fig 3. PEP Efficacy Following On-Demand PrEP. A: Schematic of the dosing regimen. Truvada was initially administered as "on-demand" PrEP (2-1-1), followed by viral exposure after a certain period. Subsequently, the PEP regimen was initiated after various time intervals, potentially incorporating a third drug. B-D: the efficacy profiles for PEP with overall duration of 7 days, and the exposure occurred 2 days, 3 days and 7 days after the on-demand PrEP, respectively. F-H: the efficacy profiles for PEP with overall duration of 28 days. E&I: PEP efficacy of baseline scenario without preceeding PrEP. All computations were performed on 1000 virtual patients. The daily dose for each drug corresponds to 200 mg FTC, 300 mg TDF, 50 mg DTG, and 400 mg EFV. The colored lines represent the median efficacy value in cases where PEP was initiated at the respective time point along the x-axis. The shaded areas depict the quantile range of prophylactic efficacy.

Impact of previous daily PrEP on subsequent PEP efficacy

Fig 4. Predicted efficacy of once-daily PEP, in cases where PrEP was recently taken. A: Schematic of dosing regimen: PrEP with incomplete, variable levels of adherence was taken and stopped 24hours before virus exposure. PEP with either TDF/FTC , or $TDF/FTC + DTG$ or EFV was then initiated after a variable delay and taken for 28 days. PEP efficacy is calculated with regards to preceding PrEP adherence, as well as delay in PEP initiation. B-D: Computed prophylactic efficacy for the distinct PrEP+PEP regimen, if PEP was initiated 2, 3, or 7 days post-exposure and taken daily for 28days. The grey-shaded area indicates PEP efficacy, with no prior PrEP, while empty boxplots highlight the prophylactic effect of preceding PrEP, without subsequent PEP. Boxplots show the median, interquartile ranges and whiskers encompass the 95% confidence interval.

Impact of previous daily PrEP on subsequent PEP efficacy with incomplete adherence

Fig 5. Predicted efficacy of PEP with strongly declining adherence, in cases where PrEP was recently taken. A: Schematic of dosing regimen: PrEP with incomplete, variable levels of adherence was taken and stopped 24 hours before virus exposure. PEP with either TDF/FTC, or TDF/FTC + DTG or EFV was then initiated after a variable delay and adherence strongly decreases over time. PEP efficacy is calculated with regards to preceding PrEP adherence, as well as delay in PEP initiation. B: Simulated PEP adherence probability with a half maximum at 7 days post PEP initiation. C–E: Computed prophylactic efficacy for the distinct PrEP+PEP regimen, if PEP was initiated 2, 3, or 7 days post-exposure and adherence declined substantially after 7 days. The grey-shaded area indicates PEP efficacy without prior PrEP, while empty boxplots highlight the prophylactic effect of preceding PrEP, without subsequent PEP. Boxplots show the median, interquartile ranges and whiskers encompass the 95% confidence interval.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . medRxiv preprint doi: [https://doi.org/10.1101/2024.07.22.24310798;](https://doi.org/10.1101/2024.07.22.24310798) this version posted July 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted me

$\text{Supporting Information}$ 318

Supplementary Text S1: Viral dynamics of HIV 319

We employ a viral dynamic model of HIV $[17, 18]$ $[17, 18]$, which contains six viral compartments: free $\frac{320}{20}$ infectious viruses V, early infected cells, i.e. T-cells T_1 and macrophages M_1 , productively 321 infected cells T_2 and M_2 , and the latently infected T-cells T_L . As depicted in Fig [S1,](#page-14-0) the 322 dynamics can be defined by 15 reactions whose reaction propensities are denoted as a_1 through a_2 a_{15} . The drug classes that are investigated in this work are also integrated in this viral dynamics. 324 Equations [\(S1\)](#page-2-0)–[\(S15\)](#page-15-0) define the concrete propensity of reaction.

Figure S1. Illustration of the viral dynamic model and the interference mechanisms of different drug classes. Free infectious viruses V can infect target cells and create early infected T-cells T_1 and macrophages M_1 after successful infection. In early infected cells, the viral DNA can become integrated into the host genome, creating late infected cells T_2 and M_2 , which are able to release new viruses. Early infected T-cells T_1 can become latently infected, i.e. the cells will transition into a resting state, denoted as T_L . The latent infected T-cells can replicate itself or be reactivated and turn into T_2 cells. Viral compartments can also be eliminated. $a_{i\in1...15}$ denotes the propensity of each reaction (see equations [\(S1\)](#page-2-0)-[\(S15\)](#page-15-0)). RTI: reverse transcriptase inhibitor; InI: integrase inhibitor.

325

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . medRxiv preprint doi: [https://doi.org/10.1101/2024.07.22.24310798;](https://doi.org/10.1101/2024.07.22.24310798) this version posted July 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted me

Here we assume a continuous virus production model, where T_2 and M_2 cells will produce 326 viruses continuously until they are eliminated. The used parameters except for the replication ³²⁷ rate of T_L are listed in [\[18\]](#page-18-4), Table 1 therein. The T_L replication rate ζ is adopted from [\[54\]](#page-22-5). 328

Supplementary Text S2: numerical approach for PEP efficacy 329

In the *Methods* section we defined the prophylactic efficacy of a given prophylactic regimen, as the 330 reduction in infection probability *per exposure*. Since extinction probability is the complement of 331 infection probability, we can compute the extinction probability by adopting a recently developed 332 numerical approach [\[19\]](#page-18-5). Based on the viral dynamics model in Fig [S1,](#page-14-0) the extinction probability 333 P_E of each single viral compartment can be derived as follows: 334

$$
\frac{dP_E(\hat{V})}{dt} = (a_1(t) + a_4(t) + a_8(t)) \cdot P_E(\hat{V}) - a_4(t) \cdot P_E(\hat{T}_1) - a_8(t) \cdot P_E(\hat{M}_1) - a_1(t)
$$
\n
$$
\frac{dP_E(\hat{T}_1)}{dt} = (a_2 + a_5(t) + a_7(t)) \cdot P_E(\hat{T}_1) - a_5(t) \cdot P_E(\hat{T}_2) - a_7(t) \cdot P_E(\hat{T}_L) - a_2
$$
\n
$$
\frac{dP_E(\hat{T}_2)}{dt} = (a_3 + a_6)P_E(\hat{T}_2) - a_6 \cdot P_E(\hat{V}) \cdot P_E(\hat{T}_2) - a_3
$$
\n
$$
\frac{dP_E(\hat{T}_L)}{dt} = (a_{13} + a_{14} + a_{15}) \cdot P_E(\hat{T}_L) - a_{14} \cdot P_E(\hat{T}_2) - a_{15} \cdot P_E(\hat{T}_L)^2 - a_{13}
$$
\n
$$
\frac{dP_E(\hat{M}_1)}{dt} = (a_9 + a_{11}(t))P_E(\hat{M}_1) - a_{11}(t) \cdot P_E(\hat{M}_2) - a_9
$$
\n
$$
\frac{dP_E(\hat{M}_2)}{dt} = (a_{10} + a_{12})P_E(\hat{M}_2) - a_{12} \cdot P_E(\hat{V}) \cdot P_E(\hat{M}_2) - a_{10}
$$
\n(9.11)

The time-dependent reaction rates are given in eqs $(S1)$ – $(S15)$. The system of ordinary differential 335 equations [\(S16\)](#page-16-0) is solved backwards using standard ODE solvers, as outlined in [\[19\]](#page-18-5). $\qquad \qquad \qquad$ 336

 $References$ 337

- 1. UNAIDS. Global HIV and AIDS statistics 2023 fact sheet. [https://www.unaids.](https://www.unaids.org/en/resources/fact-sheet) ³³⁸ [org/en/resources/fact-sheet](https://www.unaids.org/en/resources/fact-sheet), 2023. 339
- 2. Thumbi Ndung'u, Joseph M McCune, and Steven G Deeks. Why and where an HIV cure ³⁴⁰ is needed and how it might be achieved. *Nature*, $576(7787)$: $397-405$, 2019 .
- 3. Robert W Eisinger, Carl W Dieffenbach, and Anthony S Fauci. HIV viral load and ³⁴² transmissibility of HIV infection: undetectable equals untransmittable. $Jama$, $321(5):451-$ 343 $452, 2019.$ ³⁴⁴
- 4. Myron S Cohen, Ying Q Chen, Marybeth McCauley, Theresa Gamble, Mina C Hos- ³⁴⁵ seinipour, Nagalingeswaran Kumarasamy, James G Hakim, Johnstone Kumwenda, Beatriz ³⁴⁶ Grinsztejn, Jose HS Pilotto, et al. Prevention of HIV-1 infection with early antiretroviral 347 therapy. New England journal of medicine, $365(6)$:493-505, 2011.
- 5. Raphael J Landovitz, Hyman Scott, and Steven G Deeks. Prevention, treatment and cure ³⁴⁹ of HIV infection. Nature Reviews Microbiology, $21(10):657-670$, 2023 .
- 6. Fiona Cresswell, Kaveh Asanati, Sanjay Bhagani, Marta Boffito, Valerie Delpech, Jayne ³⁵¹ Ellis, Julie Fox, Linda Furness, Margaret Kingston, Massoud Mansouri, et al. UK guideline ³⁵² for the use of HIV post-exposure prophylaxis 2021. HIV medicine, 23(5):494–545, 2022. 353
- 7. World Health Organization. Guidelines on post-exposure prophylaxis for HIV and the ³⁵⁴ use of co-trimoxazole prophylaxis for HIV-related infections among adults, adolescents ³⁵⁵ and children: recommendations for a public health approach. [https://www.who.int/](https://www.who.int/southeastasia/publications/i/item/9789241506830) ³⁵⁶ [southeastasia/publications/i/item/9789241506830](https://www.who.int/southeastasia/publications/i/item/9789241506830), 2014.
- 8. Kenneth L Dominguez, Dawn K Smith, Vasavi Thomas, Nicole Crepaz, Karen Lang, ³⁵⁸ Walid Heneine, Janet M McNicholl, Laurie Reid, Brandi Freelon, Steven R Nesheim, et al. ³⁵⁹ Updated guidelines for antiretroviral postexposure prophylaxis after sexual, injection ³⁶⁰ drug use, or other nonoccupational exposure to HIV—United States, 2016. [https:](https://stacks.cdc.gov/view/cdc/38856) ³⁶¹ $\frac{1}{\sqrt{3}}$ /stacks.cdc.gov/view/cdc/38856, 2016.
- 9. World Health Organization et al. Post-exposure prophylaxis to prevent HIV infection: ³⁶³ joint WHO/ILO guidelines on post-exposure prophylaxis (PEP) to prevent hiv infection. ³⁶⁴ <https://www.who.int/publications/i/item/9789241596374>, 2007.
- 10. P Gantner, C Allavena, C Duvivier, A Cabie, J Reynes, A Makinson, I Ravaux, S Bregigeon, ³⁶⁶ L Cotte, D Rey, et al. Post-exposure prophylaxis completion and condom use in the 367 context of potential sexual exposure to HIV. HIV medicine, $21(7):463-469$, 2020 .
- 11. Mauro Schechter, Regina F Do Lago, Aaron B Mendelsohn, Ronaldo I Moreira, Lawrence H ³⁶⁹ Moulton, Lee H Harrison, Praca Onze Study Team, et al. Behavioral impact, acceptability, ³⁷⁰ and HIV incidence among homosexual men with access to postexposure chemoprophylaxis 371 for HIV. JAIDS Journal of Acquired Immune Deficiency Syndromes, 35(5):519–525, 2004. ³⁷²

- 12. Lanxin Zhang, Sara Iannuzzi, Ayyappa Chaturvedula, Elizabeth Irungu, Jessica E Haberer, ³⁷³ Craig W Hendrix, and Max von Kleist. Model-based predictions of protective HIV pre- ³⁷⁴ exposure prophylaxis adherence levels in cisgender women. Nature medicine, pages $1-10$, 375 $2023.$ 376
- 13. Katy L Garrett, Jingxian Chen, Brian M Maas, Mackenzie L Cottrell, Heather A Prince, ³⁷⁷ Craig Sykes, Amanda P Schauer, Nicole White, and Julie B Dumond. A pharmacoki- ³⁷⁸ netic/pharmacodynamic model to predict effective HIV prophylaxis dosing strategies ³⁷⁹ for people who inject drugs. Journal of Pharmacology and Experimental Therapeutics, 380 $367(2):245-251, 2018.$ 381
- 14. Rebecca N Burns, Craig W Hendrix, and Ayyappa Chaturvedula. Population pharmacoki- ³⁸² netics of tenofovir and tenofovir-diphosphate in healthy women. The Journal of Clinical 383 $Pharmacology, 55(6):629-638, 2015.$ 384
- 15. Sulav Duwal, Laura Dickinson, Saye Khoo, and Max von Kleist. Hybrid stochastic ³⁸⁵ framework predicts efficacy of prophylaxis against HIV: An example with different ³⁸⁶ dolutegravir prophylaxis schemes. PLOS Computational Biology, $14(6)$:e1006155, 2018. 387
- 16. Laura Dickinson, Janaki Amin, Laura Else, Marta Boffito, Deirdre Egan, Andrew Owen, ³⁸⁸ Saye Khoo, David Back, Catherine Orrell, Amanda Clarke, et al. Pharmacokinetic and ³⁸⁹ pharmacodynamic comparison of once-daily efavirenz (400 mg vs. 600 mg) in treatment- ³⁹⁰ naive HIV-infected patients: results of the encore1 study. Clinical Pharmacology \mathcal{C}_{391} $Therapeutics, 98(4): 406-416, 2015.$
- 17. Max Von Kleist, Stephan Menz, and Wilhelm Huisinga. Drug-class specific impact of an- ³⁹³ tivirals on the reproductive capacity of HIV. PLOS Computational Biology, 6(3):e1000720, 394 $2010.$ 395
- 18. Max von Kleist, Stephan Menz, Hartmut Stocker, Keikawus Arasteh, Christof Schütte, 396 and Wilhelm Huisinga. HIV quasispecies dynamics during pro-active treatment switching: ³⁹⁷ impact on multi-drug resistance and resistance archiving in latent reservoirs. PlOS ONE, ³⁹⁸ $6(3):e18204, 2011.$ 399
- 19. Lanxin Zhang, Junyu Wang, and Max von Kleist. Numerical approaches for the rapid ⁴⁰⁰ analysis of prophylactic efficacy against HIV with arbitrary drug-dosing schemes. PLOS $\mu_{0.401}$ $Computational \, Biology, 17(12):e1009295, 2021.$
- 20. Jared M. Baeten, Deborah Donnell, Patrick Ndase, Nelly R. Mugo, James D. Campbell, ⁴⁰³ Jonathan Wangisi, Jordan W. Tappero, Elizabeth A. Bukusi, Craig R. Cohen, Elly ⁴⁰⁴ Katabira, Allan Ronald, Elioda Tumwesigye, Edwin Were, Kenneth H. Fife, James Kiarie, ⁴⁰⁵ Carey Farquhar, Grace John-Stewart, Aloysious Kakia, Josephine Odoyo, Akasiima ⁴⁰⁶ Mucunguzi, Edith Nakku-Joloba, Rogers Twesigye, Kenneth Ngure, Cosmas Apaka, ⁴⁰⁷ Harrison Tamooh, Fridah Gabona, Andrew Mujugira, Dana Panteleeff, Katherine K. ⁴⁰⁸ Thomas, Lara Kidoguchi, Meighan Krows, Jennifer Revall, Susan Morrison, Harald ⁴⁰⁹ Haugen, Mira Emmanuel-Ogier, Lisa Ondrejcek, Robert W. Coombs, Lisa Frenkel, Craig ⁴¹⁰ Hendrix, Namandjé N. Bumpus, David Bangsberg, Jessica E. Haberer, Wendy S. Stevens, 411 Jairam R. Lingappa, and Connie Celum. Antiretroviral prophylaxis for HIV prevention in ⁴¹²

heterosexual men and women. New England Journal of Medicine, 367(5):399–410, August 413 $2012.$ 414

- 21. Jeanne M. Marrazzo, Gita Ramjee, Barbra A. Richardson, Kailazarid Gomez, Nyaradzo ⁴¹⁵ Mgodi, Gonasagrie Nair, Thesla Palanee, Clemensia Nakabiito, Ariane van der Straten, ⁴¹⁶ Lisa Noguchi, Craig W. Hendrix, James Y. Dai, Shayhana Ganesh, Baningi Mkhize, ⁴¹⁷ Marthinette Taljaard, Urvi M. Parikh, Jeanna Piper, Benoît Mâsse, Cynthia Grossman, 418 James Rooney, Jill L. Schwartz, Heather Watts, Mark A. Marzinke, Sharon L. Hillier, ⁴¹⁹ Ian M. McGowan, and Z. Mike Chirenje. Tenofovir-based preexposure prophylaxis for $\frac{420}{20}$ HIV infection among african women. New England Journal of Medicine, 372(6):509–518, ⁴²¹ February 2015. $\frac{422}{20}$
- 22. Sinead Delany-Moretlwe, James P Hughes, Peter Bock, Samuel Gurrion Ouma, Portia ⁴²³ Hunidzarira, Dishiki Kalonji, Noel Kayange, Joseph Makhema, Patricia Mandima, Carrie ⁴²⁴ Mathew, et al. Cabotegravir for the prevention of HIV-1 in women: results from hptn $_{425}$ 084, a phase 3, randomised clinical trial. The Lancet, 399(10337):1779–1789, 2022. 426
- 23. Michael C. Thigpen, Poloko M. Kebaabetswe, Lynn A. Paxton, Dawn K. Smith, Charles E. ⁴²⁷ Rose, Tebogo M. Segolodi, Faith L. Henderson, Sonal R. Pathak, Fatma A. Soud, Kata L. ⁴²⁸ Chillag, Rodreck Mutanhaurwa, Lovemore Ian Chirwa, Michael Kasonde, Daniel Abebe, ⁴²⁹ Evans Buliva, Roman J. Gvetadze, Sandra Johnson, Thom Sukalac, Vasavi T. Thomas, ⁴³⁰ Clyde Hart, Jeffrey A. Johnson, C. Kevin Malotte, Craig W. Hendrix, and John T. Brooks. ⁴³¹ Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in botswana. ⁴³² New England Journal of Medicine, 367(5):423–434, August 2012.
- 24. S Duwal, V Sunkara, and M von Kleist. Multiscale systems-pharmacology pipeline to ⁴³⁴ assess the prophylactic efficacy of nrtis against HIV-1. CPT Pharmacometrics Syst 435 $Pharmacol, 5(7):377–87, 07 2016.$
- 25. Tae-Wook Chun, Susan Moir, and Anthony S Fauci. HIV reservoirs as obstacles and ⁴³⁷ opportunities for an HIV cure. Nature Immunology, $16(6)$:584–589, may 2015.
- 26. Sulav Duwal and Max von Kleist. Top-down and bottom-up modeling in system pharma- ⁴³⁹ cology to understand clinical efficacy: An example with nrtis of HIV-1. European Journal 440 of Pharmaceutical Sciences, 94:72–83, 2016. ⁴⁴¹
- 27. Sulav Duwal, Daniel Seeler, Laura Dickinson, Saye Khoo, and Max von Kleist. The utility ⁴⁴² of efavirenz-based prophylaxis against HIV infection. a systems pharmacological analysis. ⁴⁴³ Front Pharmacol, 10:199, 2019. 444
- 28. Sara Iannuzzi and Max von Kleist. Mathematical modelling of the molecular mechanisms ⁴⁴⁵ of interaction of tenofovir with emtricitabine against HIV. Viruses, 13(7):1354, jul 2021. ⁴⁴⁶
- 29. Ting-Chao Chou. Theoretical basis, experimental design, and computerized simulation ⁴⁴⁷ of synergism and antagonism in drug combination studies. Pharmacological Reviews, ⁴⁴⁸ $58(3):621-681$, 2006 . 449

- 30. Sulav Duwal, Christof Schütte, and Max von Kleist. Pharmacokinetics and pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against $_{451}$ HIV-1 infection. *PLOS ONE*, 7(7):e40382, 2012. 452
- 31. Guillemette Antoni, Cécile Tremblay, Constance Delaugerre, Isabelle Charreau, Eric Cua, 453 Daniela Rojas Castro, François Raffi, Julie Chas, Thomas Huleux, Bruno Spire, et al. Ondemand pre-exposure prophylaxis with tenofovir disoproxil fumarate plus emtricitabine $\frac{455}{455}$ among men who have sex with men with less frequent sexual intercourse: a post-hoc ⁴⁵⁶ analysis of the anrs ipergay trial. The lancet HIV , $7(2):e113-e120$, 2020 .
- 32. Deborah Donnell, Eric Ramos, Connie Celum, Jared Baeten, Joan Dragavon, Jordan ⁴⁵⁸ Tappero, Jairam R Lingappa, Allan Ronald, Kenneth Fife, Robert W Coombs, et al. The ⁴⁵⁹ effect of oral preexposure prophylaxis on the progression of HIV-1 seroconversion. AIDS, ⁴⁶⁰ $31(14):2007-2016, 2017.$ 461
- 33. Juan Ambrosioni, Elisa Petit, Geoffroy Liegeon, Montserrat Laguno, and José M Miró. 462 Primary HIV-1 infection in users of pre-exposure prophylaxis. The Lancet HIV, 8(3):e166–463 $e174, 2021.$
- 34. Jose R Castillo-Mancilla, Jia-Hua Zheng, Joseph E Rower, Amie Meditz, Edward M ⁴⁶⁵ Gardner, Julie Predhomme, Caitlin Fernandez, Jacob Langness, Jennifer J Kiser, Lane R ⁴⁶⁶ Bushman, et al. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood $_{467}$ spots for determining recent and cumulative drug exposure. AIDS research and human $_{468}$ $retroviruses, 29(2):384-390, 2013.$
- 35. Jenna L Yager, Kristina M Brooks, Jose R Castillo-Mancilla, Cricket Nemkov, Mary ⁴⁷⁰ Morrow, Skyler Peterson, Mustafa Ibrahim, Lane Bushman, Jennifer J Kiser, Saman- ⁴⁷¹ tha MaWhinney, et al. Tenofovir-diphosphate in peripheral blood mononuclear cells ⁴⁷² during low, medium and high adherence to emtricitabine/tenofovir alafenamide vs. emtricitabine/tenofovir disoproxil fumarate. $AIDS$, $35(15):2481-2487$, 2021 .
- 36. Xinhui Chen, Sharon M Seifert, Jose R Castillo-Mancilla, Lane R Bushman, Jia-Hua ⁴⁷⁵ Zheng, Jennifer J Kiser, Samantha MaWhinney, and Peter L Anderson. Model linking ⁴⁷⁶ plasma and intracellular tenofovir/emtricitabine with deoxynucleoside triphosphates. ⁴⁷⁷ PLOS ONE, $11(11):e0165505$, 2016 . 478
- 37. Peter L Anderson, Albert Y Liu, Jose R Castillo-Mancilla, Edward M Gardner, Sharon M ⁴⁷⁹ Seifert, Cricket McHugh, Theresa Wagner, Kayla Campbell, Mary Morrow, Mustafa ⁴⁸⁰ Ibrahim, et al. Intracellular tenofovir-diphosphate and emtricitabine-triphosphate in dried ⁴⁸¹ blood spots following directly observed therapy. Antimicrobial agents and chemotherapy, 482 $62(1):10-1128, 2018.$
- 38. Nicolette A Louissaint, Ying-Jun Cao, Paul L Skipper, Rosa G Liberman, Steven R ⁴⁸⁴ Tannenbaum, Sridhar Nimmagadda, Jean R Anderson, Stephanie Everts, Rahul Bakshi, ⁴⁸⁵ Edward J Fuchs, et al. Single dose pharmacokinetics of oral tenofovir in plasma, peripheral ⁴⁸⁶ blood mononuclear cells, colonic tissue, and vaginal tissue. AIDS research and human 487 $retroviruses, 29(11):1443-1450, 2013.$

- 39. Sizulu Moyo, Gillian Hunt, Khangelani Zuma, Mpumi Zungu, Edmore Marinda, Mu- ⁴⁸⁹ sawenkosi Mabaso, Vibha Kana, Monalisa Kalimashe, Johanna Ledwaba, Inbarani Naidoo, ⁴⁹⁰ et al. HIV drug resistance profile in south africa: findings and implications from the 2017 ⁴⁹¹ national HIV household survey. $PLOS$ ONE, $15(11):e0241071$, 2020 .
- 40. World Health Organization. HIV drug resistance – brief report 2024. [https://www.who.](https://www.who.int/publications/i/item/9789240086319) ⁴⁹³ $int/publications/i/item/9789240086319, 2024.$ $int/publications/i/item/9789240086319, 2024.$
- 41. Lin Shen, Susan Peterson, Ahmad R Sedaghat, Moira A McMahon, Marc Callender, Haili ⁴⁹⁵ Zhang, Yan Zhou, Eleanor Pitt, Karen S Anderson, Edward P Acosta, and Robert F ⁴⁹⁶ Siliciano. Dose-response curve slope sets class-specific limits on inhibitory potential of ⁴⁹⁷ anti-HIV drugs. Nature medicine, $14(7)$:762–6, Jul 2008.
- 42. George W Rutherford and Hacsi Horvath. Dolutegravir plus two nucleoside reverse ⁴⁹⁹ transcriptase inhibitors versus efavirenz plus two nucleoside reverse transcriptase inhibitors $\frac{500}{200}$ as initial antiretroviral therapy for people with HIV: a systematic review. PLOS ONE, $_{501}$ $11(10):e0162775, 2016.$ 502
- 43. Steve Kanters, Marco Vitoria, Michael Zoratti, Meg Doherty, Martina Penazzato, Ajay ⁵⁰³ Rangaraj, Nathan Ford, Kristian Thorlund, Aslam H Anis, Mohammad Ehsanul Karim, ⁵⁰⁴ et al. Comparative efficacy, tolerability and safety of dolutegravir and efavirenz 400mg $\frac{1}{505}$ among antiretroviral therapies for first-line HIV treatment: a systematic literature review $\frac{506}{200}$ and network meta-analysis. *EClinicalMedicine*, 28, 2020.
- 44. Avania Bangalee, S Hanley, and V Bangalee. Dolutegravir as first-line antiretroviral ⁵⁰⁸ therapy in south africa: Beware the one-size-fits-all approach. South African Medical ₅₀₉ $Journal, 112(10):787-790, 2022.$
- 45. Karen Jacobson and Onyema Ogbuagu. Integrase inhibitor-based regimens result in ⁵¹¹ more rapid virologic suppression rates among treatment-naïve human immunodeficiency 512 virus–infected patients compared to non-nucleoside and protease inhibitor–based regimens $\frac{513}{2}$ in a real-world clinical setting: a retrospective cohort study. Medicine, 97(43):e13016, ⁵¹⁴ $2018.$ 515
- 46. Adriana Andrade, Jeremie Guedj, Susan L Rosenkranz, Darlene Lu, John Mellors, ⁵¹⁶ Daniel R Kuritzkes, Alan S Perelson, Ruy M Ribeiro, et al. Early HIV RNA decay 517 during raltegravir-containing regimens exhibits two distinct subphases (1a and 1b). AIDS, $\frac{1}{10}$ $29(18):2419-2426, 2015.$ 519
- 47. Daniel A Donahue, Richard D Sloan, Bjorn D Kuhl, Tamara Bar-Magen, Susan M Schader, ⁵²⁰ and Mark A Wainberg. Stage-dependent inhibition of HIV-1 replication by antiretroviral $_{521}$ drugs in cell culture. Antimicrobial agents and chemotherapy, $54(3):1047-1054$, 2010 . $\qquad \qquad$ 522
- 48. Ahmad R Sedaghat, Jason B Dinoso, Lin Shen, Claus O Wilke, and Robert F Siliciano. ⁵²³ Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. *Proceedings* 524 of the National Academy of Sciences, $105(12):4832-4837$, 2008 .

- 49. Sulav Duwal, Laura Dickinson, Saye Khoo, and Max von Kleist. Mechanistic frame- ⁵²⁶ work predicts drug-class specific utility of antiretrovirals for HIV prophylaxis. PLOS 527 $computational\,biology, 15(1):e1006740, 01\,2019.$
- 50. Dennis A Smith, Li Di, and Edward H Kerns. The effect of plasma protein binding ⁵²⁹ on in vivo efficacy: misconceptions in drug discovery. Nature reviews Drug discovery, $\frac{1}{530}$ $9(12):929-939, 2010.$
- 51. LB Avery, RP Bakshi, YJ Cao, and CW Hendrix. The male genital tract is not a pharma- ⁵³² cological sanctuary from efavirenz. Clinical Pharmacology & Therapeutics, $90(1):151-156$, 533 $2011.$ 534
- 52. Binta Sultan, Paul Benn, and Laura Waters. Current perspectives in HIV post-exposure ⁵³⁵ prophylaxis. HIV/AIDS-Research and Palliative Care, pages 147–158, 2014.
- 53. Grant Murewanhema, Godfrey Musuka, Perseverance Moyo, Enos Moyo, and Tafadzwa ⁵³⁷ Dzinamarira. HIV and adolescent girls and young women in sub-saharan africa: A call 538 for expedited action to reduce new infections. *IJID regions*, 5:30–32, 2022.
- 54. Daniel B Reeves, Elizabeth R Duke, Thor A Wagner, Sarah E Palmer, Adam M Spivak, ⁵⁴⁰ and Joshua T Schiffer. A majority of HIV persistence during antiretroviral therapy is due $_{541}$ to infected cell proliferation. *Nature communications*, $9(1):1-16$, 2018 .