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Abstract 18

Introduction 19

Pre- and post-exposure prophylaxis (PrEP and PEP) are important pillars of the HIV prevention 20

portfolio to reduce the risk of infection just before or after HIV exposure. While PrEP efficacy 21

has been elucidated in many randomized clinical trials, corresponding data for PEP is extremely 22

difficult to obtain in a controlled setting. Consequently, it is almost impossible to study the 23

impact of PEP initiation delay and duration on HIV risk reduction clinically, which would 24

inform recommendations on PEP use. 25

Methods 26

We employ pharmacokinetics, pharmacodynamics, and viral dynamics models, along with 27

individual factors, such as drug adherence to investigate the impact of initiation delay and 28

PEP duration on HIV risk reduction. We evaluated PEP using two- and three-drug regimens 29

with a FTC/TDF backbone. Moreover, we study PEP efficacy in the context of PrEP-to-PEP 30

transitions. 31
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Results 32

In our simulations, early initiation of PEP emerged as a pivotal factor for HIV risk reduction. 33

We found that 2-drug (FTC/TDF) PEP may insufficiently protect when initiated > 1 hour post- 34

exposure. When adding a third drug, early initiation was still a critical factor, however, over 90% 35

efficacy could be achieved when PEP was initiated 48hours post-exposure and taken for at least 36

14-28days, depending on the efficacy of the third-drug component. When investigating PrEP- 37

PEP transitions, we observed that preceding PrEP can (i) contribute directly to prophylactic 38

efficacy, and (ii) boost subsequent PEP efficacy by delaying initial viral dynamics and building-up 39

drug concentrations, overall facilitating self-managed transitioning between PrEP and PEP. 40

Conclusions 41

Our study confirms the critical role of early (< 48hours) PEP initiation, preferably with three 42

drugs taken for 28days. Self-start with TDF/FTC and later addition of a third drug is better 43

than not self-starting. Furthermore, our study highlights the synergy between recent PrEP 44

intake and PEP and may help to inform recommendations on PEP use. 45

Introduction 46

The human immunodeficiency virus (HIV) remains a public health challenge with an estimated 47

1.3 million new infections in 2022 [1]. To date, with a handful of exceptions, HIV infection cannot 48

be cured [2]. However, major successes in antiviral drug development allow to not only to prevent 49

AIDS, but to suppress the virus to an extent where the treated individual is non-infectious [3,4]. 50

However, an HIV diagnosis needs to made and subsequent treatment currently needs to be 51

taken life-long, which, in addition to individual burden, relies on HIV testing and treatment 52

availability, medical care infrastructure and funding. HIV prevention through vaccination would 53

constitute an ideal means to fight the pandemic. However, developing an effective HIV vaccine 54

turned out to be extremely challenging, with all recent vaccine trials prematurely terminated due 55

to failure in demonstrating clinical efficacy [5]. In the absence of effective vaccines, pre-exposure 56

prophylaxis (PrEP) has partly taken its place. Four effective regimen are currently available: 57

once daily emtricitabine (FTC) with either tenofovir disoproxil fumerate (TDF) or tenofovir 58

alfenamide (TAF) can be administered orally, long-acting cabotegravir (CAB) can be injected 59

every two month. Monthly dapivirine (DPV) vaginal rings to prevent infection through receptive 60

vaginal intercourse recently received positive review by the European Medicines Agency (EMA). 61

Twice-yearly injectable lenecapavir demonstrated potential in clinical phase III. Of the available 62

PrEP options, oral TDF/FTC is widely available as a generic and rolled out in both low- and 63

high-income countries. 64

Post-exposure prophylaxis (PEP) taken after suspected sexual-, or occupational exposure to 65

HIV [6] denotes another important preventive measure to reduce infection risk. Current guidelines 66

recommend to initiate oral PEP within 72hours after suspected virus exposure and to continue 67

the regimen for 28 days [6–8]. National [6, 8] and international guidelines [9] differ with regards 68

to recommending two- or three-drug regimens for PEP: For example, TDF/FTC + raltegravir 69

or dolutegravir are recommended in the US, whereas the WHO 2014 guidelines also discuss 70

scenarios where two-drug regimens with generics may be recommended. To date, TDF/FTC 71

denotes the preferred backbone in PEP, whereas different choices of third-component drugs may 72

be used [10]. However, because of operational and ethical challenges no randomized controlled 73
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trial has been conducted to test PEP efficacy directly. Current evidence for non-occupational 74

PEP efficacy has been synthesized from animal transmission models, observational studies of 75

health care workers receiving prophylaxis after occupational exposures, and observational- and 76

case studies of PEP use [6, 8]. However, results from observational studies may be impacted by 77

many factors such as individual adherence- and risk behavior [11] and differences in regards 78

to the utilized PEP drugs [8]. Although the developed guidelines are based on impressive 79

trans-disciplinary synthesis of evidence across heterogeneous data sources, it has not been 80

possible to date to elucidate the sensitivity of particular PEP regimen to delays in initiation, 81

PEP duration, as well as the impact of PrEP on PEP efficacy. 82

In the absence of randomized controlled trial data on PEP efficacy, mathematical modelling may 83

support the synthesis of evidence, by integrating available knowledge on drug pharmacokinetics, 84

as well as early viral dynamics. However, to our knowledge, no such modelling exists to date. 85

By considering population pharmacokinetics, we extended a recently developed mathematical 86

model [12] to analyse PEP efficacy for two- and three-drug regimens, and to test the impact of 87

delays in ‘time to PEP’, as well as PEP duration. Finally, we investigate the transition from 88

PrEP to PEP, providing a comprehensive understanding of the continuum preventive portfolio. 89

Methods 90

We combined population pharmacokinetic models of oral FTC, TDF, EFV and DTG [13–16] with 91

viral dynamics models [17,18] and a novel numerical scheme [19] to estimate the prophylactic 92

efficacy of PEP with a TDF/FTC backbone for any dosing pattern of interest, as well as various 93

PrEP-to-PEP transitions. The overarching goal was to understand sensitivity of PEP efficacy 94

towards timing, delay and duration of PEP with- and without prior PrEP administration. 95

Prophylactic efficacy. In clinical trials, average HIV risk reduction is quantified in terms 96

of incidence reduction in an intervention vs. a control arm [20–23]. In a mathematical model 97

of within-host viral replication, the same quantity may be derived directly by computing the 98

reduction of infection probability per viral exposure due to a prophylactic regimen S: 99

φ = 1− PI(Yt,S)
PI(Yt,∅)

(1)

where PI(Yt,S) and PI(Yt,∅) denote the the infection probability in the presence- and absence 100

of a prophylactic regimen S upon exposure with Yt viral particles at time t. Notably, the 101

infection probability is the complement of the probability that the virus may eventually be 102

eliminated in the exposed host, i.e. PI(Yt,S) = 1− PE(Yt,S). 103

Virus exposure model. We used previously developed exposure models for sex without 104

condoms [24]. In these models, the number of infectious viruses (inoculum size Yt) that are 105

transmitted to- and reaching an anatomical site where they may spark an infection, are estimated 106

from a binomial distribution, Yt ∼ B(VL, r), where VL denotes the donor virus load, and the 107

‘success rate’ r depended on the type of exposure. Throughout this study, unless stated otherwise, 108

we utilize the exposure model designed for receptive vaginal intercourse. 109

HIV viral dynamics model. To compute the viral elimination probability in the exposed 110

host for prophylactic regimen S, we employ a within-host viral dynamics model [17,18], depicted 111

in Fig S1. The model considers replication of free infectious viruses, early- and productively 112

infected T-cells, as well as long-lived cells such as macrophages and latently infected T-cells, 113

which are believed to be an obstacle for the within-host clearance of HIV [25]. The model was 114
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derived from first principles [17] and allows to model pharmacodynamic effects of all antiviral 115

classes [26]. Moreover, it allows to incorporate state-of-the-art population pharmacokinetic 116

models. 117

Pharmacokinetics. We used the previously developed pharmacokinetic models of emtricitabine 118

(FTC) [13] and tenofovir disoproxil fumarate (TDF) [14], which allow to predict prodrug phar- 119

macokinetics in blood plasma, as well as the pharmacokinetics of the active tri-phosphorylated 120

moieties in peripheral blood mononuclear cells (PBMC). In line our recent findings [12], we as- 121

sume that the concentration of tenofovir-diphosphate (TFV-DP) and emtricitabine-triphosphate 122

(FTC-TP) in PBMCs predicts the prophylactic effect. We adopted recently developed PK models 123

for dolutegravir (DTG) [15] and efavirenz (EFV) [27]. To capture the impact of individual 124

pharmacokinetic variability, we sampled PK parameters for 1000 virtual patients per drug, 125

utilizing distributions described in the aforementioned original sources. We considered once 126

daily oral doses of 300/200mg, 50mg and 400mg for TDF/FTC, DTG and EFV. 127

PK-PD link. The active intracellular components of TDF/FTC, i.e. TFV-DP and FTC-TP 128

are nucleotides reverse transcriptase inhibitors (NRTI). To evaluate their combinatorial effect, we 129

adopted a model for the molecular mechanism of action (MMOA) and drug-drug interaction [28]. 130

For DTG and EFV, their direct effect can be modelled using the Emax equation [29], corrected 131

by plasma protein binding, and was assumed to be additive with the TDF/FTC backbone. 132

Numerics. We adopted the numerical scheme (PGS) from [19] to formulate a set of ordinary 133

differential equations that allows computing extinction probabilities PE(Yt),S of each compart- 134

ment of the viral dynamics model, subject to pharmacokinetics and pharmacodynamics of the 135

considered drugs, eq. (S16). 136

Results 137

‘Time to PEP’ is the most critical parameter. 138

Currently, the WHO recommends to initiate PEP up to 3 days after potential viral exposure 139

and to continue PEP for 28 days [9]. Using our modelling framework, we evaluated how 140

PEP initiation delay may alter prophylactic efficacy. As a first test case, we explored the 141

efficacy of 2-drug (oral TDF/FTC) PEP, as these drugs may be available in many settings 142

where PrEP is implemented. We created 1000 virtual individuals and simulated individual 143

pharmacokinetics based on the dosing profiles in Fig 1A. Using the model, we then computed 144

the prophylactic efficacy for each virtual individual, if a 2-drug PEP with daily TDF/FTC was 145

initiated at different time points post viral exposure and taken for 28 days. Fig 1C (red line, grey 146

areas) depicts summary statistics of derived PEP efficacy estimates across the cohort of virtual 147

individuals (median, interquartile ranges and 95% confidence intervals). From the simulations, it 148

is evident that ≥ 90% 2-drug PEP efficacy in only achieved if TDF/FTC is initiated within one 149

hour after virus exposure. Efficacy steeply drops to < 50% when TDF/FTC-PEP was initiated 150

20hours after virus exposure. We also found that longer duration of 2-drug TDF/TFC PEP 151

could not compensate for delayed initiation (Fig 1B, Fig 1D red line) with efficacy remaining 152

low (median efficacy < 20%), when PEP was initiated 48hours after virus exposure and taken 153

for up to 7 weeks. We tested whether a third drug component (DTG or EFV) may impact on 154

prophylactic efficacy and change sensitivity to ‘time to PEP’ and ‘PEP duration’, Fig 1A–D. 155

Compared to 2-drug PEP, 3-drug PEP provided > 88% protection against sexual transmission, 156

when initiated 2days post-exposure and continued for 28days (Fig 1E). When initiated 2days 157

post-exposure, we predicted that TDF/FTC + EFV provided > 90% HIV risk reduction when 158
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taken at least for 2 weeks, whereas TDF/FTC + DTG provided 85−−90% HIV risk reduction 159

when taken for at least 4 weeks, Fig 1E. In contrast to 2-drug PEP, we predicted that PEP 160

efficacy with TDF/FTC + EFV or DTG increased with extended duration of PEP. 161

Third drug may be added later, if TDF/FTC is initiated quickly. 162

In many settings, all three drugs may not be available within reasonable time. However, 163

TDF/FTC may be readily available to individuals who already used, or have access to PrEP. 164

We investigated whether prompt PEP initiation with TDF/FTC and later addition of a third 165

drug may effectively prevent infection (schematic in Fig 2A). Reading Fig 2B-E bottom-to-top, 166

indicates that adding DTG or EFV to a TDF/FTC backbone increases PEP efficacy (lowest 167

row: TDF/FTC only) and that earlier addition of the third drug results in greater efficacy 168

(top row). Reading Fig 2B-E horizontally (left-to-right), indicates that the earlier TDF/FTC is 169

initiated, the better. For the three drug combinations, a ‘window of opportunity’ arises, where 170

the PEP efficacy exceeds 95%. For TDF/FTC + DTG the duration of PEP strongly impacts on 171

its prophylactic efficacy (compare panels B and D in Fig 2), whereas the impact is less strong 172

for PEP with TDF/FTC + EFV, which is already efficient for 2 weeks PEP. The simulations 173

highlight that if TDF/FTC is available within 12-24 hours, the third drug should be added in 174

less than a weeks time and PEP should preferably be taken for 28days from the first TDF/TFC 175

dose. 176

Previous PrEP can boost subsequent PEP efficacy and widen the ‘window of 177

opportunity’ 178

The pharmacologically active components of TDF and FTC (TFV-DP and FTC-TP respectively) 179

are built-up slowly within HIV target cells [13,14,24,30], which limits the ‘window of opportunity’ 180

for 2-drug (TDF/FTC) PEP (Fig 1C) and necessitates almost instantaneous PEP initiation to 181

achieve sufficient efficacy. However, TFV-DP and FTC-TP may persist for many hours even 182

after a single, or a few dosing events. To assess the combined impact of earlier TDF/FTC 183

PrEP intake with PEP, we investigated the efficacy of PEP following an ’on-demand’ (2-1-1) 184

PrEP regimen [31] (schematic in Fig 3A). In our simulations, viral exposure occurs 2 (panels B, 185

F), 3 (panels C, G) or 7 (panels D, H) days after the last PrEP ’on demand’ dose. A two- or 186

three drug PEP regimen is then initiated within 0–72 hours post virus exposure (x-axis) and 187

continued for either for 7 (panels B-E) or 28 days (panels F-I). 188

Reading Fig 3B–D and Fig 3F–H left-to-right shows that if the last PrEP-on-demand dosing 189

event was 7days ago, the added benefit of earlier PrEP-on-demand on subsequent PEP efficacy 190

had almost vanished, compare to Fig 3E and Fig 3I (no preceding PrEP). However, if PrEP- 191

on-demand was taken less than 7days prior to virus exposure, it increases subsequent PEP 192

efficacy, as residual FTC-TP and TFV-DP concentrations may be present that either prevent 193

infection in some individuals, delay sero-conversion [32,33], or result in a ‘pre-loading’ of drug 194

concentrations for subsequent PEP. For example, if on-demand-PrEP was stopped 2days prior 195

to virus exposure, subsequent PEP with TDF/FTC may be >90% efficient, even when initiated 196

within three days, Fig 3B,F. For the three-drug PEP regimen we observed a >90% efficacy when 197

initiated within three days after viral exposure and taken for >7days, Fig 3C,G. Overall, we 198

observe that earlier PrEP combined with subsequent PEP can increase efficacy. 199

Next, we investigated the concomitant impact of preceding daily PrEP with 1–7 average doses 200

per week, stopped 2days before viral exposure, in conjunction with subsequent 2-drug or 3-drug 201
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PEP, initiated 2-, 3-, or 7days after virus exposure and taken for 28days (schematic in Fig 4A). 202

As controls, we performed simulations without earlier PrEP (grey-shaded areas), as well as 203

PrEP-only simulations (empty box plots) in Fig. 4B-D. Our simulations confirm the combined 204

action of PrEP and PEP: Earlier PrEP boosts the efficacy of PEP, if PEP is initiated 2-, or 3days 205

post-exposure, Fig. 4B–C: Compared both to ‘no-PrEP’ (grey-shaded areas), as well as ‘no-PEP’ 206

(empty boxplots), prophylactic efficacy is increased for the PrEP+PEP combination. However, 207

PEP does not offer any additional protection when initiated 7days post-exposure (compare 208

empty- vs. coloured box-plots in Fig 4D). Interestingly, our model predicts that PrEP-only with 209

100% adherence offers > 90% protection, when stopped 2 days before virus exposure (empty bars 210

in Fig. 4D). Also, for the PrEP+PEP combination we observe > 95% protection, if 4/7 doses of 211

earlier PrEP were taken and 3-drug PEP was initiated 3days post exposure. For comparison, 212

PEP-only offers only 50% (TDF/FTC/DTG) and 65% (TDF/FTC/EFV) protection if initiated 213

3days post exposure (Fig. 1C and Fig. 4C). If PEP is initiated 2days post-exposure, preceding 214

PrEP may lift prophylactic efficacy from 90% (TDF/FTC/DTG) and 95% (TDF/FTC/EFV) 215

to almost complete protection, if adherence during preceding PrEP was 2/7 doses (EFV) vs. 216

3/7 (DTG). 217

Lastly, we tested scenarios in which the probability of PEP adherence declined substantially 218

over time. We modelled PrEP with incomplete adherence 48 hours prior to virus exposure 219

(schematic: Fig 5A). We further assumed a substantial decrease in PEP-adherence after 7days, 220

Fig 5B. Overall, compared to a full 28days PEP regimen simulated in Fig 4B, we can see a 221

drug-specific decline in efficacy that is clearly seen in simulations without preceding PrEP (grey 222

shaded area in Fig 4C): Two-drug TDF/FTC is already quite inefficient (< 20%) when initiated 223

2, 3 or 7days post exposure and hence poor PEP-adherence marginally impacts (grey-shaded 224

areas in Fig 4B–D vs Fig 5C–E). In contrast, for the three-drug combinations, we see that poor 225

PEP-adherence negatively impacts on prophylactic efficacy (compare shaded areas in Fig. 4B–C 226

with Fig. 5C–D). However, if ≥4/7 doses of earlier PrEP were taken and subsequent 3-drug PEP 227

was initiated ≤ 3days post-exposure, we predicted that prophylactic efficacy may exceed 95%. 228

In summary, we observe that preceding PrEP can substantially boost subsequent PEP efficacy 229

for all drug regimen, and ‘buy time’ with regards to PEP initiation, particularly if preceding 230

PrEP adherence was good (≥ 3 doses/week). 231

Discussion 232

We evaluated the impact of delays in ‘time to PEP’, PEP duration and PrEP-to-PEP transition, 233

based on a combined model of drug-specific pharmacokinetics and viral dynamics. Our modelling 234

by-and-large confirms recent UK, US and WHO guidelines on PEP [6–8], which recommend to 235

combine a TDF/FTC backbone with a third drug, initiate PEP as early as possible and to take 236

it for 28days. Moreover, our simulations indicate that early PEP initiation after suspected virus 237

exposure denotes the most critical parameter. For TDF/FTC two-drug PEP, instantaneous 238

initiation would be required, which may be infeasible. Adding a third drug to the TDF/FTC- 239

backbone ‘buys time’. However, protection may still be incomplete (Fig 1C), if a three drug PEP 240

was initiated 72hours post virus exposure and taken for 28days. The duration of PEP was a less 241

sensitive parameter for EFV, compared to DTG. The latter is contributed to the half-life (t1/2) 242

of the drugs, with DTG having a relatively short half-life (t1/2 = 13.5− 15.9h [15] compared to 243

EFV (t1/2 = 40− 55h) [27]. The long half-life may increase the likelihood that virus is cleared 244

before the drug is washed out of the body. While early PEP initiation may be particularly 245
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difficult in settings with less established health infrastructure, we simulated scenarios, in which 246

PEP may be initiated with available TDF/FTC and later intensified with a third drug. Overall, 247

if TDF/FTC can be initiated within less than 24hours, the third drug may be added, as soon as 248

it becomes available (Fig 2), on condition that PEP is taken 28days. We found that preceding 249

TDF/FTC-based PrEP can substantially boost PEP efficacy, if stopped no more than 3 days 250

before suspected virus exposure (Fig. 3), or taken at 4/7 days on average (Fig 4–5). Thus, 251

individuals taking PrEP up to the time of exposure (-3days) could re-initiate the regimen and 252

may add a third drug when it becomes available. The combined effects of PrEP+PEP in this 253

scenario indicate synergy, which could arise from the fact that previous PrEP delays initial viral 254

replication [33], or pre-loads drug levels for subsequent PEP. Our simulations further highlighted 255

that daily PrEP-only with 100% adherence may provide > 90% protection, if stopped no more 256

than 48hours before exposure (Fig. 4D and Fig. 5E). Essentially, this observation is backed by 257

the long pharmacokinetic halflifes of TFV-DP and FTC-TP in PBMCs, in the range of 4–7 and 258

1-2.2 days respectively [34–38]. 259

Our work has a number of limitations: Foremost, there is a lack of data that could be inputted 260

into the model, due to a lack of clinical research into PEP. To strengthen the model further 261

clinical trials with clinically relevant endpoints may be required. 262

Our simulations refer to exposure with ‘wild type’ viruses, whereas NNRTI drug resistance, 263

which may amount to 10 − 20% of transmitted viruses in Africa and the Americas [39, 40] 264

may severely diminish EFV-based PEP efficacy [27] and thus the suitability of EFV as a PEP 265

component. Notably, while we include EFV in our analysis to explore the impact of a 3rd drug 266

components with very high molecular potency [41] , we are not advocating EFV for PEP as it is 267

contraindicated both for psychological side effects and low risk of serious liver toxicity. However, 268

while some clinical trials suggest superiority of integrase inhibitors (DTG over EFV) [42–45] 269

with regards to ‘time to viral load suppression’, we would like to emphasize that viral load 270

kinetics decay more strongly for integrase inhibitors, merely because they inhibit a later stage of 271

the viral replication cycle and not because of superior efficacy (or potency) [46–48]. Hence, the 272

current preference for integrase inhibitors in PEP regimen should be motivated by tolerability 273

and low prevalence of drug resistance rather than alleged efficacy. We did not investigate 274

ritonavir-boosted protease inhibitors lopinavir (LPV/r) or atazanavir (ATV/r) as third drug 275

components in our model [7]. While these compounds have high molecular potency [41] we expect 276

PEP efficacy to be similar to EFV. However, previous work suggests very steep dose-response 277

curves for LPV/r and ATV/r, implying that prophylactic effect may rapidly drop in case of 278

incomplete PEP-adherence, or discontinuation [49]. In our model, we assume that the effect of 279

the considered drugs is associated with systemic drug levels. Both EFV and DTG are lipophilic 280

drugs that can rapidly cross cellular membranes by passive diffusion, such that their unbound 281

drug concentration in plasma strongly correlates with effect-site concentrations (‘free drug 282

hypothesis’ [50,51]). With regards to TDF/FTC, their phosphate moieties (TFV-DP/FTC-TP ) 283

in peripheral blood mononuclear cells (PBMCs) were used as an effect marker, since our recent 284

work [12] indicated strong correlation with effect, whereas concentrations in tissue homogenates 285

were not predictive regarding prophylactic efficacy. 286

With regards to pharmacodynamics, we simulated synergistic effects between TFV-DP and 287

FTC-TP, based on recent results [28] and assumed that the direct antiviral effects of DTG and 288

EFV are additive to the TDF/FTC-backbone. 289

In our simulations, we modelled viral challenges after sexual exposure (receptive vaginal in- 290

tercourse). Notably, the majority of non-occupational PEP is administered after potential 291

sexual exposure (PEPSE) [52] and women denote the major HIV risk group [53]. Occupational 292
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virus exposures, through e.g. needle-stick injuries during healthcare procedures may lead to 293

the translocation of larger amounts of viruseswhich may negatively impact on prophylactic 294

efficacy [30]. Thus, our predictions may be optimistic regarding occupational exposures with 295

patient blood. 296

Conclusions 297

Our modelling suggests that ‘time to PEP’ denotes the most critical parameter. Three-drug 298

PEP, preferably initiated no later than 48hours after virus exposure, and taken for 28days 299

remains the optimal regimen. Three-drug PEP for 14days is less efficient than 28days and 2-drug 300

(TDF/FTC) PEP only has high efficacy, if started within one hour after exposure. Self-start 301

2-drug (TDF/FTC) PEP with a subsequent addition of a 3rd drug in the clinic works better 302

than not self-starting. Lastly, previous PrEP intake < 7days prior to virus exposure boosts 303

subsequent PEP efficacy and may widen the window period for ‘time to PEP’ past 72hours. 304
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Fig 1. Sensitivity of TDF/FTC-based PEP on initiation delay and PEP duration. A & B:
Schematic of the dosing regimen in panel C and D, respectively. C: PEP efficacy of TDF/FTC (red line),
TDF/FTC + EFV (blue line), or TDF/FTC + DTG (green line) when initiated at different delays post
virus exposure and taken for 28 days once-daily. D: Efficacy of TDF/FTC (red line), TDF/FTC + EFV
(blue line) and TDF/FTC + DTG (green line) when initiated 48 hours post virus exposure and taken for
different durations. E: Numerical results for different ‘times to PEP’, ‘PEP durations’ and regimen.
Values denote the median efficacy and 95% confidence interval evaluated at the maximum ‘time to PEP’
of the indicated interval (e.g. 8hr for the 2-8hr interval). All computations were conducted on 1000
virtual patients. The daily oral dose for each drug corresponds to 300/200mg TDF/FTC, 50mg DTG
and 400mg EFV. The colored lines depict the median predicted PEP efficacy, whereas the dark- and
light grey areas present the inter-quartile range and the 95% confidence range, respectively. Dashed
horizontal lines indicate 90% prophylactic efficacy.
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Fig 2. Efficacy of TDF/FTC-based PEP with delayed initiation of TDF/FTC and further
delay of the third drug. A:Schematic of the dosing regimen. For the drug combinations TDF/FTC +
DTG and TDF/FTC + EFV, PEP efficacy was computed for virus exposures occurring within 1 to 48
hours before the first dose of TDF/FTC. The third drug was then added to the PEP regimen 1 to 7 days
after the the first dose of TDF/FTC. B: PEP efficacy for the drug combination TDF/FTC + DTG, PEP
duration was 14 days from the first dose of TDF/FTC. C: Corresponding PEP efficacy for TDF/FTC +
EFV. D: PEP efficacy for TDF/FTC + DTG when taken for 28 days after the first TDF/FTC dose. E:
Corresponding PEP efficacy for TDF/FTC + EFV. In panel B-E, the top row outlined in black denotes
the scenario where the third drug is immediately added to the TDF/FTC backbone; the bottom row
represents the scenario where no third drug was added to the TFC/TDF backbone.
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Fig 3. PEP Efficacy Following On-Demand PrEP. A: Schematic of the dosing regimen. Truvada
was initially administered as ”on-demand” PrEP (2-1-1), followed by viral exposure after a certain
period. Subsequently, the PEP regimen was initiated after various time intervals, potentially
incorporating a third drug. B-D: the efficacy profiles for PEP with overall duration of 7 days, and the
exposure occurred 2 days, 3 days and 7 days after the on-demand PrEP, respectively. F-H: the efficacy
profiles for PEP with overall duration of 28 days. E&I: PEP efficacy of baseline scenario without
preceeding PrEP. All computations were performed on 1000 virtual patients. The daily dose for each
drug corresponds to 200 mg FTC, 300 mg TDF, 50 mg DTG, and 400 mg EFV. The colored lines
represent the median efficacy value in cases where PEP was initiated at the respective time point along
the x-axis. The shaded areas depict the quantile range of prophylactic efficacy.
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Fig 4. Predicted efficacy of once-daily PEP, in cases where PrEP was recently taken. A:
Schematic of dosing regimen: PrEP with incomplete, variable levels of adherence was taken and stopped
24hours before virus exposure. PEP with either TDF/FTC, or TDF/FTC + DTG or EFV was then
initiated after a variable delay and taken for 28 days. PEP efficacy is calculated with regards to
preceding PrEP adherence, as well as delay in PEP initiation. B-D: Computed prophylactic efficacy for
the distinct PrEP+PEP regimen, if PEP was initiated 2, 3, or 7 days post-exposure and taken daily for
28days. The grey-shaded area indicates PEP efficacy, with no prior PrEP, while empty boxplots
highlight the prophylactic effect of preceding PrEP, without subsequent PEP. Boxplots show the median,
interquartile ranges and whiskers encompass the 95% confidence interval.
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Fig 5. Predicted efficacy of PEP with strongly declining adherence, in cases where PrEP
was recently taken. A: Schematic of dosing regimen: PrEP with incomplete, variable levels of
adherence was taken and stopped 24 hours before virus exposure. PEP with either TDF/FTC, or
TDF/FTC + DTG or EFV was then initiated after a variable delay and adherence strongly decreases
over time. PEP efficacy is calculated with regards to preceding PrEP adherence, as well as delay in PEP
initiation. B: Simulated PEP adherence probability with a half maximum at 7 days post PEP initiation.
C–E: Computed prophylactic efficacy for the distinct PrEP+PEP regimen, if PEP was initiated 2, 3, or
7 days post-exposure and adherence declined substantially after 7 days. The grey-shaded area indicates
PEP efficacy without prior PrEP, while empty boxplots highlight the prophylactic effect of preceding
PrEP, without subsequent PEP. Boxplots show the median, interquartile ranges and whiskers encompass
the 95% confidence interval.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310798doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Competing interests 305

The authors declare that no competing interests exist. 306

Authors’ contributions 307

L.Z. and M.v.K. wrote the manuscript with help from J.F. and S.C. L.Z. and M.v.K. designed 308

the research. L.Z. performed the research and L.Z., M.v.K., J.F. and S.C. analyzed the data. 309

Acknowledgements 310

Funding 311

M.v.K. acknowledges funding from the German ministry for science and education (BMBF), grant 312

number 01KI2016, from the DFG research center MATH+, as well as “Sonderforschungsmittel” 313

(SoFo) provided through the Robert-Koch Institute. The funders had no role in the design of 314

the study or the decision to publish. 315

Data Availability Statement 316

All data and computational codes are available at https://github.com/KleistLab/PEP 317

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310798doi: medRxiv preprint 

https://github.com/KleistLab/PEP
https://doi.org/10.1101/2024.07.22.24310798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supporting Information 318

Supplementary Text S1: Viral dynamics of HIV 319

We employ a viral dynamic model of HIV [17,18], which contains six viral compartments: free 320

infectious viruses V, early infected cells, i.e. T-cells T1 and macrophages M1, productively 321

infected cells T2 and M2, and the latently infected T-cells TL. As depicted in Fig S1, the 322

dynamics can be defined by 15 reactions whose reaction propensities are denoted as a1 through 323

a15. The drug classes that are investigated in this work are also integrated in this viral dynamics. 324

Equations (S1)–(S15) define the concrete propensity of reaction.

Figure S1. Illustration of the viral dynamic model and the interference mechanisms of
different drug classes. Free infectious viruses V can infect target cells and create early infected T-cells
T1 and macrophages M1 after successful infection. In early infected cells, the viral DNA can become
integrated into the host genome, creating late infected cells T2 and M2, which are able to release new
viruses. Early infected T-cells T1 can become latently infected, i.e. the cells will transition into a resting
state, denoted as TL. The latent infected T-cells can replicate itself or be reactivated and turn into T2

cells. Viral compartments can also be eliminated. aj∈1...15 denotes the propensity of each reaction (see
equations (S1)-(S15)). RTI: reverse transcriptase inhibitor; InI: integrase inhibitor.

325
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R1 : Clearance of free virus V → ∗ a1(t) = (CL+(1 + η(t)) · (βT · Tu +βM ·Mu)) · V
(S1)

R2 : Clearance of T1-cell T1 → ∗ a2 = (δPIC,T + δT1) · T1

(S2)

R3 : Clearance of T2-cell T2 → ∗ a3 = δT2 · T2 (S3)

R4 : Infection of susceptible T-cell V → T1 a4(t) = (1− η(t)) · βT · Tu · V
(S4)

R5 : Integration of viral DNA into T1 T1 → T2 a5(t) = (1− η(t)) · (1− p) · kT · T1

(S5)

R6 : Production of new virus T2 → V+T2 a6 = NT · T2 (S6)

R7 : Transition of T1 into latent infection T1 → TL a7(t) = (1− η(t)) · p · kT · T1

(S7)

R8 : Infection of susceptible macrophage V → M1 a8(t) = (1− η(t)) · βM ·Mu · V
(S8)

R9 : Clearance of M1-cell M1 → ∗ a9 = (δPIC,M + δM1) ·M1

(S9)

R10 : Clearance of M2-cell M2 → ∗ a10 = δM2 ·M2 (S10)

R11 : Integration of viral DNA into M1 M1 → M2 a11(t) = (1− η(t)) · kM ·M1

(S11)

R12 : Production of new virus M2 → V+M2 a12 = NM ·M2 (S12)

R13 : Clearance of TL-cell TL → ∗ a13 = δL · TL (S13)

R14 : Reactivation of TL-cell TL → T2 a14 = α · TL (S14)

R15 : Replication of TL-cell TL → TL+TL a15 = ζ · TL (S15)

Here we assume a continuous virus production model, where T2 and M2 cells will produce 326

viruses continuously until they are eliminated. The used parameters except for the replication 327

rate of TL are listed in [18], Table 1 therein. The TL replication rate ζ is adopted from [54]. 328
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Supplementary Text S2: numerical approach for PEP efficacy 329

In the Methods section we defined the prophylactic efficacy of a given prophylactic regimen, as the 330

reduction in infection probability per exposure. Since extinction probability is the complement of 331

infection probability, we can compute the extinction probability by adopting a recently developed 332

numerical approach [19]. Based on the viral dynamics model in Fig S1, the extinction probability 333

PE of each single viral compartment can be derived as follows: 334

dPE(V̂ )

dt
= (a1(t) + a4(t) + a8(t)) · PE(V̂ )− a4(t) · PE(T̂1)− a8(t) · PE(M̂1)− a1(t)

dPE(T̂1)

dt
= (a2 + a5(t) + a7(t)) · PE(T̂1)− a5(t) · PE(T̂2)− a7(t) · PE(T̂L)− a2

dPE(T̂2)

dt
= (a3 + a6)PE(T̂2)− a6 · PE(V̂ ) · PE(T̂2)− a3

dPE(T̂L)

dt
= (a13 + a14 + a15) · PE(T̂L)− a14 · PE(T̂2)− a15 · PE(T̂L)

2 − a13

dPE(M̂1)

dt
= (a9 + a11(t))PE(M̂1)− a11(t) · PE(M̂2)− a9

dPE(M̂2)

dt
= (a10 + a12)PE(M̂2)− a12 · PE(V̂ ) · PE(M̂2)− a10

(S16)

The time-dependent reaction rates are given in eqs (S1)–(S15). The system of ordinary differential 335

equations (S16) is solved backwards using standard ODE solvers, as outlined in [19]. 336
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