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Abstract 

The impact of SARS-CoV-2 and the COVID-19 pandemic on cognitive and mental health is recognised, 

yet specific effects on brain health remain understudied. We investigated the pandemic’s impact on 

brain ageing using longitudinal neuroimaging data from the UK Biobank. Brain age prediction models 

were trained from hundreds of multi-modal imaging features using a cohort of 15,334 healthy 

participants. These models were applied to an independent cohort of 1,336 participants with two MRI 

scans: either both before the pandemic (Controls) or one before and one after the pandemic onset 

(“Pandemic” group). Our findings reveal that, even with matched brain age gaps initially, the pandemic 

significantly accelerated brain ageing. The "Pandemic" group showed on average 11-month higher 

deviation of predicted brain age vs. chronological age (brain age gap) at the second time point 

compared with controls. Accelerated brain ageing was more pronounced in males and those from 

deprived socio-demographic backgrounds, with average increases of 3.3 and 7 months, respectively. 

These deviations existed regardless of SARS-CoV-2 infection. However, accelerated brain ageing 

correlated with reduced cognitive performance only in COVID-infected participants. Our study 

highlights the pandemic's significant impact on brain health, beyond direct infection effects, 

emphasising the need to consider broader social and health inequalities. 

 

Keywords: Brain ageing, UK Biobank, Pandemic, Imaging, Deprivation. 
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Introduction 

Apart from the well-documented respiratory and systemic manifestations of SARS-CoV-2, compelling 

evidence highlights its neurotropic nature, showing high rates of persistent respiratory symptoms, 

fatigue, depression, post-traumatic stress disorder, and cognitive impairment in COVID-19 survivors1. 

Emerging research has revealed potential associations between COVID-19, cognitive decline, brain 

changes2, and the molecular signatures of brain ageing3. Significant psychological distress and mental 

health issues were also reported during the early pandemic phases, especially among younger and 

vulnerable individuals4. Conversely, recent reviews suggest variable reductions in mental health service 

use5 and, across 134 cohort studies, no overall rise in mental health conditions in the general 

population, with minimal increase in depression symptoms and small negative effects in women6. 

Understanding the pandemic's effects on brain health, considering infection status and socio-

demographic factors, is crucial for addressing its long-term health consequences and broader public 

health implications. 

 

The neuroinvasion of SARS-CoV-2 is well established7, with virus persistence shown up to 230 days 

post-infection8. Central nervous system manifestations are attributed to neuroinvasion, vascular 

damage, and immune responses9. Recent studies suggest COVID-19 may worsen neurodegenerative 

processes or contribute to age-related cognitive impairments10. Longitudinal assessments indicate 

higher cognitive decline risk among COVID-19 survivors compared with controls11. Serial brain MRI 

showed reductions in grey matter (GM) thickness and white matter (WM) integrity, possibly due to 

neurodegeneration, neuroinflammation, or sensory deprivation2. Beyond brain infection or systemic 

effects, the COVID-19 pandemic may have independently impacted brain ageing due to psychosocial 

stressors, social disruptions, and lifestyle changes, as evidenced in adolescents12.  

 

While indirect evidence suggests COVID-19 infection may accelerate brain ageing and 

neurodegeneration, comprehensive studies on the broader pandemic's impact on brain age are 
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lacking, which we explore here. Advanced neuroimaging and machine learning techniques have 

enabled powerful brain age prediction models, estimating deviations from typical ageing trajectories 

as brain age gap (BAG=difference between estimated brain age and chronological age). Seminal 

works13–15 laid the foundation for these models, refined with large-scale datasets, multi-modal 

imaging13,14, extensions to multi-organ age predictions15, and proven associations with mortality. 

Utilising these methodologies, we estimate brain age and investigate the impact of COVID-19 and the 

pandemic on brain age using longitudinal neuroimaging data. 

 

We hypothesise that COVID-19 infection and the pandemic accelerated brain ageing. To test this, we 

utilised serial neuroimaging data from the UK Biobank (UKBB) study16. We trained a model using multi-

modal imaging-derived phenotypes (IDPs) to predict individual BAG. The trained model was applied to 

unseen participants with two brain scans, one before and one after the pandemic (“Pandemic” group) 

or both scans before the pandemic (“Control” group). We further assessed the impact of COVID-19 

infection within the “Pandemic” group and explored putative moderating factors on brain ageing, such 

as sex and deprivation indices, and the interrelation with cognitive decline. 
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Results  

A brain age prediction model13 (Fig. 1a) was trained on pre-March 2020 MRIs from 15,334 healthy 

middle-aged and older UKBB16 participants (‘training set’: 8,407 female; age [mean±SD]: 62.6±7.6 

years). To minimise potential confounds in brain age estimation caused by disease effects and 

comorbidities, only healthy participants, defined by absence of chronic disorders before their scans 

(see Suppl. Table S4 as in 15,17), were included for both training and unseen cohorts. Hundreds of multi-

modal IDPs were extracted18 and used as regressors in the model after PCA-based dimensionality 

reduction (Fig. 1b). To improve accuracy, separate models were created based on GM and WM features 

for males and females15. These models were then applied to our unseen study cohort with two MRIs, 

comprising 1,336 healthy participants (770 female; age: 59.7±6.2 years –Suppl. Fig. S1). This cohort 

included the “Pandemic” group (G1: N=404, 247 female) with one brain scan before and one after the 

pandemic, and the “Control” group (G2: N=932, 523 female) with both scans before the pandemic. 

The groups were adjusted to be matched for age, sex, and other health markers (see Suppl. Table S1), 

with a mean time interval between scans of ~27 months for all groups (Suppl. Fig. S1c). BAG was 

estimated at both time points, and the rate of change in BAG was calculated and normalised for the 

time interval as RBAG=(ΔBAG/ΔT). 

 

 

Performance of brain age prediction models 

Scatter plots in Fig. 1c (Suppl. Fig. S2) depict the relationship between chronological and predicted 

brain age for each brain tissue type and sex. We employed an unbiased estimation approach for brain 

age13, ensuring BAG is orthogonal to chronological age. All models demonstrated relatively similar 

prediction accuracy, with Pearson’s r ranging from 0.905 (WM female model, p<0.0001, 95%CI=0.901–

0.909; Mean Absolute Error (MAE)=2.90 years) to 0.894 (WM male model, p<0.0001, 95%CI=0.890–

0.899; MAE=3.09 years), indicating that neuroimaging features captured a large proportion of the 

chronological age variance, consistent with previous methodologically rigorous studies15,19. 
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We further confirmed that our model's estimated brain age was unbiased towards the group mean20, 

and that participants' age distribution was Gaussian13. Fig. 1d shows that there was also no significant 

correlation between the estimated BAG and chronological age when applying the trained model to 

unseen data (r<0.001)†. As expected, we found very high correlations between predicted brain ages of 

participants at the two time points (Fig. 1e, r>0.96), demonstrating high scan-rescan model 

reproducibility, further supporting that estimated brain ages reflect stable individual brain properties. 

 

Fig. 1f shows the model's generalisability, as we found no differences in mean predicted brain age gap 

between the training and unseen cohort’s first MRI data (Mann-Whitney two-sample t-test, GM: 

p=0.44, WM: p=0.99). Importantly, the estimated BAG for the first scan for the “Pandemic” group was 

not significantly different from the corresponding BAG for the Control (”No-Pandemic“) group (GM: 

p=0.23, WM: p=0.28), confirming that our matching (Suppl. Table S1) effectively achieved comparable 

baseline BAGs.  

 

 

Accelerated Brain ageing is associated with the COVID-19 pandemic, regardless of infection 

Although BAGs were not statistically different between the Pandemic and Control groups at the first 

time point, the pandemic's effect on brain ageing became evident with the second scan. Fig. 2 presents 

the rates of change in BAG between the two scans (RBAG). The “Pandemic” group displayed significantly 

higher RBAG compared with the Control group (GM=12.5 months; WM=15.3 months; p<0.001), 

indicating accelerated brain ageing. 

 

 
† For the remainder of this paper (including Fig. 1d), unless otherwise stated, we aggregated the predicted brain age gap for male and 

female models across different brain tissue types and participant groups separately. 
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To further investigate whether SARS-CoV-2 infection specifically influenced accelerated brain ageing, 

the “Pandemic” group was subdivided into: “Pandemic–COVID-19” (G3), with participants who had 

COVID-19 (121 participants–75 females, Suppl. Fig. S1e), and “Pandemic–No-COVID-19” (G4), with 

individuals without reported infection before the second scan (283 participants–172 females, Fig. 1a 

and Suppl. Fig. S1a-b). Notably, these subgroups were also adjusted to be matched to controls to 

ensure comparability (Suppl. Table S1). As illustrated in Fig. 2, both G3 and G4 had higher RBAG values 

than “No-Pandemic” controls, with no significant difference between subgroups for either GM or WM 

models (Suppl. Fig. S3 shows brain age gap distributions at various time points across groups). This 

suggests increased positive brain age deviation (accelerated brain ageing) regardless of SARS-CoV-2 

infection.  
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Fig. 1. Study design, analysis framework, and accuracy assessment of brain age prediction models. 
a) The training set, consisting of healthy participants (free from any major chronic disease) with a single 
brain scan, is used to train a brain age prediction model with 20-fold cross-validation. This model is 
applied to the unseen set participants which includes the "Pandemic" group (G1), and the "No 
Pandemic" group (G2). The "Pandemic" group is subdivided into "Pandemic–COVID-19" (G3), and 
"Pandemic–No-COVID-19" (G4). b) The analysis framework starts with the extraction of imaging-
derived phenotypes (IDPs) from grey matter (GM) and white matter (WM) tissues across different scan 
times. Separate predictive models are trained for different brain tissue types and sexes, applied to 
estimate the brain age gap at various time points. Statistical analyses are performed to compare groups 
and investigate the effects of COVID-19 and the pandemic using longitudinal data. c) Scatter plots show 
the relationship between chronological age (x-axis) and predicted brain age (y-axis) for GM and WM 
models in females (males in Suppl. Fig. S2). The diagonal line indicates where predicted age equals 
chronological age. 'N' is the number of subjects used for training. Accuracy is evaluated using Pearson 
correlation coefficient (r) and mean absolute error (MAE), averaged over 100 repetitions of 20-fold 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.22.24310790doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

cross-validation. Asterisks (****) indicate p≤1.0e-04. d) This plot illustrates the relationship between 
chronological age and predicted brain age gap for GM and WM models, combining results for both 
sexes. The black regression line indicates deviations from perfect prediction, indicating zero age-
related bias in the predicted age across the studied cohorts. e) The stability of the predictive model 
across two scans for participants in the “Pandemic” and “No-Pandemic” groups is evaluated, revealing 
a significant association between predicted brain ages from both scans (p<4e-234). The black 
regression line highlights deviations from perfect prediction. f) Boxplots compare predicted age gap 
distributions between the training set and unseen (first scan) set, and between the “Pandemic” and 
“No-Pandemic” groups for GM (left) and WM (right) models. The y-axis represents the predicted brain 
age gap in years. 'ns' indicates non-significance, showing similar mean predicted age gaps between 
unseen and training sets (GM: p=0.44, WM: p=0.99) and between “Pandemic” and “No-Pandemic” 
groups (GM: p=0.23, WM: p=0.28). Each data point in scatter plots represents an individual subject. 
 
 
 
 
 

 
Fig. 2. Effect of COVID-19 and the pandemic on brain ageing. This figure illustrates the distribution of 
the rate of change in brain age gap across different brain tissue models and subject groups. The left 
panel represents the GM model, and the right panel represents the WM model. Each subject group is 
depicted by different coloured violins: blue for the “No-Pandemic” group, orange for the “Pandemic” 
group, green for the “Pandemic–No-COVID-19” group, and red for the “Pandemic–COVID-19” group. 
The y-axis indicates the rate of change in brain age gap in months per year. Asterisks above the violins 
denote the results of two-sample t-tests comparing different groups: 'ns' indicates non-significance 
and *** indicates p-values in the range 0.0001< p ≤0.001. 
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Effects of age and sex on longitudinal brain ageing (rate of change in BAG) 

While the estimated BAG was designed to be independent of chronological age for point estimates, 

biologically plausible longitudinal effects on the RBAG cannot be excluded. We regressed RBAG against 

chronological age (at first scan). Across all groups, a positive association between chronological age 

and accelerated brain ageing was observed (Suppl. Fig. S4). This association was stronger for the 

“Pandemic” group (Fig. 3a), showing older participants exhibited higher RBAG in the “Pandemic” group 

compared with Controls. 

 

Specifically, each 1-year age increase at the first scan in Controls was associated with an approximate 

brain ageing acceleration of 5 days for GM (p=0.001) and 7 days for WM (p=0.0005) models. The 

"Pandemic" group demonstrated a twofold higher acceleration: brain ageing accelerated by 10 days 

for GM (p=0.003) and 14 days for WM (p=0.00006) models (Suppl. Fig. S4). A differential age-related 

acceleration of BAG was noted according to infection status. An even more pronounced augmentation 

of brain ageing was observed in older vs. younger participants who had been infected with COVID-19 

(G3) showing for each 1-year increase in chronological age at the first scan, brain ageing acceleration 

by 13 days for GM (p=0.002) and 16 days for WM (p=0.006) (Fig. 3a). In contrast, participants without 

infection ("Pandemic–No-COVID-19") showed less acceleration: about 8 days for GM (p=0.007) and 12 

days for WM (p=0.006). 

 

The pandemic's impact on accelerated brain ageing (higher RBAG compared to Controls) was evident in 

both male and female participants (Fig. 3b; p<0.0001). We used two-factor, two-level permutation 

tests (5,000 permutations) to assess the interplay between the pandemic, sex, and their interactions 

on brain ageing. These tests demonstrated the pandemic was a significant factor for RBAG (p=0.002 in 

both models—less than the 95%CI [0.0443–0.0564], calculated using the Wilson method21) in 

agreement with our previous results. In addition, sex was a significant factor in the GM model 

(p=0.018—less than the 95%CI [0.0443–0.0564]), but not in the WM model. Interestingly, a significant 
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interaction (p=0.004—less than the 95%CI [0.0443–0.0564]) between sex and pandemic status was 

also found (for the GM model), indicating that the combination of the pandemic and being a male led 

to the highest RBAG increases (33% more in males vs. females). The interaction plots (Fig. 3b) 

demonstrate divergence between males and females when comparing the "No-Pandemic" with the 

"Pandemic" group, highlighting the interaction between sex and the pandemic on brain ageing. 
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Fig. 3. Impact of SARS-CoV-2 infection and the COVID-19 pandemic on accelerated brain ageing, and 
the role of age and sex in brain ageing during the pandemic. a) Evidence of accelerated brain ageing 
due to COVID-19 infection and the pandemic. Solid lines represent the best-fitted associations 
between the rate of change in brain age gap (y-axis) and the average age gap across two scans (x-axis) 
for “Pandemic–COVID-19”, “Pandemic–No-COVID-19”, and “No-Pandemic” groups. Dot-dashed curves 
depict the 95% confidence intervals around the best-fit lines. b) Violin plots display the distribution of 
the rate of change in brain age gap for “Pandemic” and “No-Pandemic” groups, stratified by sex. 
Asterisks indicate significance levels (**** signifies p-values ≤ 1.0e-04) from two-sample t-tests 
between the groups. Interaction plots on the right highlight distinct patterns in GM and WM between 
the “Pandemic” and “No-Pandemic” groups. Stars in the interaction plots indicate significant results, 
based on the interaction determined by the two-factor, two-level permutation test. GM model results 
are displayed on the left, and WM model results are shown on the right in both panels. 
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Increased brain age gap rate during pandemic in deprived areas 

Besides age and sex, socio-demographic factors can influence brain health and resilience to the 

pandemic. The effects of deprivation indices or drivers of poor brain health—such as health, 

employment, education, housing, and income—on brain ageing were examined. 

 

The month-based clocks in Fig. 4a illustrate the extent of accelerated brain ageing among participants 

varying deprivation levels, highlighting changes from before to during the pandemic. The biggest 

increases were seen in participants with different health scores, showing a difference of about 5 

months and 16 days in the GM model. This suggests an average increase of 5.5 months in RBAG between 

participants with low vs. high health scores following exposure to the pandemic. Similarly, substantial 

changes were noted for low vs. high employment indices (5 months and 6 days increase), and low vs. 

high income levels (1 month and 29 days) in the GM model. The WM model showed significant RBAG 

changes for low health index (7 months and 23 days increase), low employment index (6 months and 

28 days), low education (4 months and 19 days), and low income (3 months and 8 days). 

 

Further analysis revealed significant differences (p<0.0001) in brain ageing patterns between the 

"Pandemic" and "No-Pandemic" groups across the deprivation indices (Fig. 4b-d). Generally, the 

increase in RBAG between the “Pandemic” and Control groups was higher for participants with high 

deprivation scores (low health, low education, and low employment) compared to those with low 

deprivation scores (high health, high education, and high employment). This was true for both GM and 

WM models, indicating potential interactions between the pandemic's effects and deprivation on brain 

ageing differences.  

 

To further explore such interactions, we conducted non-parametric two-factor, two-level permutation 

tests. These tests confirmed the pandemic significantly drove the differences in predicted RBAG 

between “Pandemic” and Control groups. Several deprivation indices also influenced differences 
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between low and high deprivation, including the employment (GM: p=0.0002; WM: p=0.0002), health 

(GM: p=0.0006; WM: p=0.0002), education (GM: p=0.0004; WM: p=0.0002), and income score levels 

(GM: p=0.0026; WM: p=0.0002) (all below 95%CI [0.0443–0.0564]). Housing scores were not 

significant in either model. 

 

Significant interactions between pandemic status and deprivation factors were also found (<95%CI 

[0.0443–0.0564]). Specifically, interactions between pandemic status and employment (GM: 

p=0.0056; WM: p=0.0006), health (GM: p=0.0016; WM: p=0.0002), and education scores (WM: 

p=0.0134) on brain ageing were found to be significant. Fig. 4b-d depict interaction plots comparing 

distinct patterns in GM and WM models between the “Pandemic” and “No-Pandemic” groups, 

highlighting socio-demographic factors' role in brain ageing during the pandemic. As sex significantly 

interacted with pandemic status only in the GM model (Fig. 3b), we also analysed the interplay of each 

deprivation index and pandemic status separately for female and male participants. Results showed 

that even in sex-specific models, all previous findings and interactions between pandemic and 

deprivation remained significant (Suppl. Fig. S5). 
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Fig. 4. Influence of socio-demographic factors on brain ageing during the COVID-19 pandemic. a) The 
effects of socio-demographic factors, represented by indices of deprivation, on brain ageing in 
participants grouped by pandemic status. Each clock represents the difference in the mean rate of 
change in BAG between subjects with low and high levels of specific socio-demographic factors. The 
clocks are presented separately for GM and WM models, with one set depicting participants in the 
“No-Pandemic” group and another for participants in the “Pandemic” group. The socio-demographic 
factors studied include housing score, health score, employment score, income score, and education 
score. b-d) Violin plots display the distribution of the rate of change in BAG for the “Pandemic” and 
“No-Pandemic” groups in relation to (b) low (purple) vs. high (red) employment scores, (c) low (purple) 
vs. high (red) health scores, and (d) low (purple) vs. high (red) education scores. Each plot has two 
panels: the left side represents the GM model results, and the right side shows the WM model results. 
Asterisks indicate significance levels (**** signifies p-values ≤ 1.0e-04) calculated between the 
“Pandemic” and “No-Pandemic” groups using two-sample t-tests. Small plots on the right side of each 
panel depict interaction plots, suggesting the presence of interaction effects. These plots visualise how 
the mean rate of change in BAG deviates between the “No-Pandemic” and “Pandemic” groups in both 
GM and WM models. Stars in the interaction plots indicate significant results based on the two-factor, 
two-level permutation test, highlighting the interaction between the two factors. 
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Cognitive performance, accelerated brain ageing, and COVID-19 exposure 

To assess the impacts of COVID-19 and the pandemic on cognitive performance related to longitudinal 

brain ageing, we analysed performance changes over time among individuals who completed cognitive 

tests at both scans. This analysis included three groups: “No-Pandemic”, “Pandemic–COVID-19”, and 

“Pandemic–No-COVID-19”, focusing on the top 10 cognitive tests related to dementia risk within the 

UKBB2.  

 

Among these groups, the "Pandemic–COVID-19" group showed a significantly (Fig. 5, insets) higher 

decline in performance from baseline to follow-up only for one cognitive test (trail making test—TMT). 

Specifically, there were significantly larger increases in completion time for both TMT-A and TMT-B 

compared with the Control and “Pandemic–No-COVID-19” groups (Fig. 5). This indicates a notable 

decline in cognitive function specifically in those who had contracted COVID-19. 

 

Further analysis revealed differences in the association between RBAG and TMT-A performance across 

the groups and models, using full and partial correlations excluding chronological age. A small but 

significant positive linear association was noted between brain ageing changes and cognitive decline 

in both the "No-Pandemic" and “Pandemic-No-COVID-19” groups for both GM and WM models (Suppl. 

Fig. S6). In contrast, the "Pandemic–COVID-19" group showed a more pronounced and non-linear 

decline in cognitive performance with higher RBAG, suggesting a differential threshold effect between 

GM and WM models. These findings suggest that while BAG increase during the pandemic was 

independent of COVID-19 infection, it was strongly associated with cognitive decline only in those with 

COVID-19 (G3). 
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Fig. 5. Impact of COVID-19 on cognitive performance across rates of change in brain age gap. The 
figure illustrates the percentage change in completing (top) TMT-A, and (bottom) TMT-B over two 
imaging scans across various rates of change in brain age gap for participants in the "Pandemic–COVID-
19" (red), “Pandemic–No-COVID-19” (green), and "No-Pandemic" (blue) groups, depicted using both 
GM (left) and WM (right) models. A three-year sliding window was used to create these curves. The 
standard error values are depicted in light blue (for the "No-Pandemic" group), light green (for the 
"Pandemic–No-COVID-19" group), and light red (for the "Pandemic–COVID-19" group). The boxplots 
in the top left of each plot show the distribution of percentage change in completing the TMT over 
time without a sliding window. Participants with COVID-19 (G4) had a greater percentage decline in 
performance (longer completion time) compared with the Control group (G2), with p-values of 1.3e-7 
(Trail A–GM), 5.4e-7 (Trail A–WM), 6.8e-5 (Trail B–GM), and 6.8e-6 (Trail B–WM) against a Bonferroni 
threshold of 8.33e-4. Significant differences were also noted between COVID-19 infected (G4) and non-
infected (G3) Pandemic participants (p(Trail A–GM)=3.6e-5, p(Trail A–WM)=4.8e-5, p(Trail B–
GM)=7.4e-4, p(Trail B–WM)=1.1e-4). Asterisks indicate the significance levels (*** signifies p-values ≤ 
1.0e-03 and **** signifies p-values ≤ 1.0e-04) calculated between different groups using two-sample 
t-tests.  
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Discussion  

Using longitudinal neuroimaging data from the UKBB, we estimated individual brain age, and its 

change rate compared to chronological ageing in two matched cohorts: one scanned before and during 

the COVID-19 pandemic, and the other scanned twice before the pandemic. We found that the COVID-

19 pandemic was detrimental to brain health and induced accelerated brain ageing, regardless of 

SARS-CoV-2 infection. This effect was more pronounced during the pandemic in older individuals, 

males, and those from deprived backgrounds. Cognitive performance, particularly in flexibility and 

processing speed tasks, declined significantly in COVID-19 infected individuals, correlating with 

accelerated brain ageing. Conversely, participants who experienced the pandemic without reported 

infection had similar age-related declines as Controls, demonstrating that pandemic-related 

accelerated brain ageing alone was insufficient to lead to cognitive decline.  

 

These findings provide insight into how the COVID-19 pandemic affected brain health, demonstrating 

that the general pandemic effects alone, without infection, exerted a substantial detrimental effect on 

brain health augmented by bio-social factors (age, health, and social inequalities) in healthy middle-

aged to older population. Notably, the extent of accelerated brain ageing over a matched pre-

pandemic control group, observed in grey and white matter, was similar in both non-infected and 

infected sub-cohorts. This highlights the major role of pandemic-related stressors such as anxiety, 

social isolation, and economic, and health insecurity on brain changes that may be sufficient to explain 

the observed accelerated brain ageing. In other words, our findings suggest that a full bio-psycho-

social model is needed to understand the negative brain health effects of COVID-19 infection, which 

previous research has not accounted for2.  

 

Our findings and interpretation align well with reports of increased internalising symptoms, reduced 

cortical thickness, and accelerated brain ageing in adolescents during the pandemic12. Nevertheless, 

in the age group we studied, advanced brain ageing directly indicates poor brain health, thus avoiding 
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complexities of adolescent brain maturation. The most plausible explanation for the observed 

accelerated brain ageing is chronic stress and social isolation, consistent with well-documented 

sequelae like neuroinflammation, structural and functional brain changes in preclinical models22–26. 

Prior data in humans confirm that social isolation and perceived loneliness contribute to structural and 

functional brain changes27,28.  

 

The pandemic also led to reduced physical activity, poorer diets, and increased alcohol consumption, 

all negatively impacting brain health29–31. These lifestyle changes likely contributed to the accelerated 

brain ageing observed in our study2,32. Our findings highlight the need to consider both GM and WM 

changes, with potential implications for understanding neurodegeneration and other brain health 

issues2,33. Further research should explore specific WM features driving these effects, possibly 

involving axonal degeneration, demyelination, or vascular changes. 

 

We further explored how pandemic-related stressors like social isolation, economic hardships, and 

healthcare disruptions interact with pre-existing health disparities and age to affect brain health34,35. 

These stressors disproportionately affect vulnerable populations, worsening mental health and 

amplifying inequalities36,37. Our findings highlight the augmenting effect of a range of deprivation 

factors that provides new evidence that the pandemic's effects on brain health are particularly 

pronounced in socially and economically disadvantaged populations38,39. This further emphasises the 

urgent need for policies addressing health inequalities, as the pandemic has exacerbated pre-existing 

disparities40–42.  

 

Previous studies have documented SARS-CoV-2's neural and vascular impacts, including inflammation 

and secondary systemic infection effects43,44. Our findings provide additional evidence of accelerated 

brain ageing in middle-aged to older participants with asymptomatic and mild-to-moderately affected 

COVID-19 infection without major comorbidities. This accelerated BAG effect was independent of 
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infection status. Nevertheless, we show a complex and partially differential effect of old age. While the 

BAG model is by design independent of chronological age, BAG change was higher in older age in all 

groups including Controls, suggesting that age-related mechanisms contribute to the observed 

accelerated brain ageing45. This effect was strongest for the GM model for COVID-19-infected 

participants, which may offer an explanation for the observed differential effect on cognition. Cognitive 

decline is well-documented in ageing 46,47, and we confirm faster cognitive decline in older appearing 

brains during the pandemic in all groups. However, we report a distinctly more pronounced age effect 

in COVID-infected participants with an apparent threshold effect suggesting a complex three-factor 

model of cognitive decline due to more pronounced accelerated brain ageing from pandemic-related 

stressors and additional infection-related factors in older people. This supports the concept of brain 

resilience loss leading to faster cognitive decline, consistent with existing neurodegeneration and 

dementia research2,48–50 and novel epigenetic models51,52. 

 

Our study has notable strengths and limitations. Employing BAG models provided an interpretable 

brain-wide health marker that was sensitive to disentangle contributory biopsychosocial factors 

exploiting the power of a longitudinal imaging-rich population study before and during the pandemic. 

We extended evidence on brain changes due to COVID-19 and socio-economic deprivation2,42. The 

careful subgroup comparison highlights that the main brain ‘cost’ of the pandemic was not due to 

infection itself, though causal inference cannot be claimed53. More research is necessary to establish 

causal relationships between deprivation factors and accelerated brain ageing, considering complex 

interactions. The study is further limited by access to only two time points, prohibiting assessment of 

potential reversibility. Longer follow-ups after the pandemic are needed to investigate persistent brain 

ageing effects and their long-term consequences beyond acute cognitive impacts in the infected 

subgroup. Furthermore, the time interval between scans differed between groups, with a wider spread 

in the Pandemic group compared with Controls. To mitigate this, we excluded Pandemic subjects to 

match the mean time interval to that of Controls (see Methods-Study Design). We found that the mean 
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and reduced spread of time intervals used in our analyses maintained and slightly increased the RBAG 

differences compared to results from repeating the analyses with the original unmatched Pandemic 

group. This suggests that with an ideal match of time intervals across groups, the same trends and 

differences (if not larger) should be observed.  

 

In conclusion, the COVID-19 pandemic profoundly impacted brain health, shown as accelerated brain 

ageing, influenced by bio-psycho-social factors, especially social and health deprivation. Notably, the 

main effects were independent of infection status, except for interactions between COVID-19 infection, 

brain ageing, old age, and cognitive decline. Our findings highlight the need to address health 

inequalities and lifestyle factors to mitigate accelerated brain ageing and cognitive decline. Continued 

research and targeted policies are crucial to improve brain health outcomes in future public health 

crises. 

 

 

Methods 

Study Design and Neuroimaging Data 

The UKBB imaging study provided multi-modal brain imaging data16 from over 42,677 participants 

(released in April 2023), aged 45 and older, collected at four sites with identical protocols, ensuring 

high-quality data. Before the COVID-19 pandemic, around 3,000 participants underwent a second scan 

as part of a longitudinal study. Starting in February 2021, an additional 2,000 participants were re-

scanned to investigate the effects of SARS-CoV-2, bringing the total with repeat scans to about 5,000. 

 

Re-imaging study participants met specific criteria: no incidental findings from initial scans, residence 

within a defined catchment area, and high-quality initial scans. SARS-CoV-2-positive participants were 
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identified through diagnostic tests, primary care data, hospital records, or antibody tests. Controls 

were matched 1:1 to positive cases by sex, ethnicity, birth date, imaging site, and initial imaging date. 

 

We excluded participants with chronic disorders before their scans (e.g., dementia, schizophrenia) to 

avoid bias in brain age predictions15,17 (Suppl. Table S4). Those with low-quality anatomical MRI data18 

or unreliable brain IDPs were also removed. Technical outliers were defined as IDP values greater than 

or equal to five times the standard deviation from the cohort mean IDPs. Subjects with high levels of 

missing or unreliable IDPs in any session were excluded. 

 

For training the brain age prediction model13, we used participants with one imaging session before 

March 2020 (Fig. 1a, N = 15,334; 8,407 female; age range: 45.1–82.4 years; mean  SD: 62.6  7.6 

years). The unseen set included those with two scans (N = 1,336; 770 female; age range: 48.1–80.2 

years; mean  SD: 59.7  6.2 years), divided into "Pandemic" (G1) and "No-Pandemic" (G2) groups. 

The "Pandemic" group (G1) included subjects with scans before and after the pandemic onset (N = 

404; 247 female), further split into "Pandemic–COVID-19" (G3, N = 121; 75 female) and "Pandemic–

No-COVID-19" (G4, N = 283; 172 female) (Fig. 1a). Groups were matched based on gender, age, BMI, 

alcohol intake, smoking, blood pressure, education, deprivation index, and general health metrics. 

(Suppl. Table S1, Suppl. Fig. S1).  

 

The time interval between scans differed between groups, with a wider spread in the Pandemic group 

compared to Controls, due to the timings of the data acquired during the pandemic. Including all 

available participants would have resulted in a time interval of 39.0±18.6 months for the Pandemic 

group vs. 27.1±1.5 months for Controls. Instead, we excluded 255 subjects from the Pandemic group 

to achieve a time interval distribution of 26.8±5.6 months, reducing the spread (5.6 vs. 18.6 months) 

and matching the mean time interval (26.8 months vs 27 months) to Controls. 
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Brain Age Modelling 

We trained a multivariate regression model to assess brain ageing by regressing imaging-derived 

phenotypes (IDPs) against participants' ages. This estimated an individual's brain age 𝑌𝐵 and calculated 

the brain age gap (BAG), defined as 𝛿 = 𝑌𝐵 − 𝑌, where 𝑌 is the chronological age. A positive δ (𝛿 > 0) 

indicates an older-appearing brain, while a negative δ (𝛿 < 0) indicates a younger-appearing brain. Age 

was modelled as a function of 𝑀 imaging-derived phenotypes, 𝑌𝐵 = 𝑓(𝑿), with 𝑿 being a matrix of 

dimensions 𝑁 × 𝑀, where 𝑁 is the number of participants. We used a general linear regression 

method introduced by Smith et al.13 to ensure an unbiased 𝛿 orthogonal to chronological age.  

 

Following the methodology of15, we trained separate models for males and females, and for grey 

matter (GM) and white matter (WM), using IDPs from a healthy cohort free from chronic medical 

conditions (Fig. 1b). To reduce the dimensionality of the imaging features matrix, we applied singular 

value decomposition, retaining the top 50 eigen-subject-vectors that explain the most variance in 𝑿13. 

 

A 20-fold cross-validation process was used to train the model. In each iteration, a linear regression 

model was trained on 19 folds, and the fitted coefficients were applied to the held-out fold to predict 

brain age. During prediction, we de-confounded test set measures using the regressor's weights from 

identified confounding variables in the training set, following the approach used by Miller et al.16. 

Notably, age-dependent confounds were not removed from the IDPs. To ensure robustness, this cross-

validation process was repeated 100 times with random assignment to folds in each trial, affirming the 

reliability of our brain age estimation model. 

 

Post-training, the age prediction models were applied to unseen data from G1 and G2 groups, for both 

females and males (Fig. 1a). Predictions were performed independently for initial (𝑡1) and repeat scans 

(𝑡2) of participants, allowing estimation of brain age gaps 𝛿𝑡1 and 𝛿𝑡2, respectively. The rate of change 
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in BAG (RBAG) was then calculated as (𝛿𝑡2 − 𝛿𝑡1) 𝑇⁄ , where 𝑇 is the chronological age difference 

between the two measurement time points15,54. 

 

 

Feature Selection for Brain Age Modelling 

We selected IDPs to build predictive models for brain age estimation, focusing on both GM and WM 

regions (Fig. 1b). For the GM model, structural IDPs from T1-weighted MRI scans16,18 included volumes 

of subcortical structures, cortical/cerebellar regions, cortical surface area, cortical thickness, and 

GM/WM intensity contrast, totalling M = 1,422 IDPs. The WM model used IDPs from T2-weighted and 

diffusion MRI scans, assessing tissue complexity and integrity using diffusion tensor imaging (DTI) and 

neurite orientation dispersion and density imaging (NODDI) metrics, including fractional anisotropy 

(FA), mean diffusivity (MD), eigenvalue maps, and more, totalling 443 IDPs. CSF-related IDPs were 

excluded. Selected IDPs are listed in Suppl. Tables S2 and S3.  

 

IDPs were de-confounded following16,55, considering 46 variables (Suppl. Tables S5), such as head size, 

sex, head motion, scanner table position, imaging centre, and scan-date-related drifts, excluding age-

related confounds56. 

 

 

Interaction Effects against Socio-Demographic Factors 

After calculating IDP-based brain age gaps and rates, we investigated interactions between brain ageing 

and socio-demographic factors using permutation-based inference with FSL PALM57.  

 

We conducted a series of 2-way analyses (permutation-based ANOVA) to examine the rate of change 

in BAG between two time points. Factor 1 was the pandemic presence; Factor 2 included socio-
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demographic variables: sex, regional employment, health, education, housing, and income scores. The 

latter five factors are indicators of deprivation (detailed descriptions of these indices can be found in 

the Suppl. Material).  

 

For each model tested, we assessed whether significant main effects existed—specifically, whether 

factor 1 (pandemic presence) or factor 2 (socio-demographic variable) had a discernible impact on 

brain ageing. Additionally, we explored interaction effects to determine if the combined influence of 

both factors produced a different impact on brain aging compared to their individual effects.  

 

 

Cognitive Scores 

We selected the top 10 cognitive tests from the UKBB that have been associated with dementia risk2 

(see Suppl. Table S6). To compare participants' cognitive abilities across different groups, we calculated 

the percentage change in their cognitive scores between the two scans. This was done using the 

formula: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 = (𝑆𝑐𝑜𝑟𝑒𝑡2 − 𝑆𝑐𝑜𝑟𝑒𝑡1) × 100 𝑆𝑐𝑜𝑟𝑒𝑡1⁄  where 𝑆𝑐𝑜𝑟𝑒𝑡2 and 𝑆𝑐𝑜𝑟𝑒𝑡1 

represent the cognitive test results at the second and first time points, respectively. 
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